// @(#)root/fft:$Id: TFFTRealComplex.cxx 24198 2008-06-10 12:53:18Z brun $
// Author: Anna Kreshuk   07/4/2006

/*************************************************************************
 * Copyright (C) 1995-2006, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/

//////////////////////////////////////////////////////////////////////////
//                                                                      
// TFFTRealComplex                                                       
//                                                                      
// One of the interface classes to the FFTW package, can be used directly
// or via the TVirtualFFT class. Only the basic interface of FFTW is implemented.
//
// Computes a real input/complex output discrete Fourier transform in 1 or more
// dimensions. However, only out-of-place transforms are now supported for transforms
// in more than 1 dimension. For detailed information about the computed transforms,
// please refer to the FFTW manual
//
// How to use it:
// 1) Create an instance of TFFTRealComplex - this will allocate input and output
//    arrays (unless an in-place transform is specified)
// 2) Run the Init() function with the desired flags and settings (see function
//    comments for possible kind parameters)
// 3) Set the data (via SetPoints()or SetPoint() functions)
// 4) Run the Transform() function
// 5) Get the output (via GetPoints() or GetPoint() functions)
// 6) Repeat steps 3)-5) as needed
// For a transform of the same size, but with different flags, 
// rerun the Init() function and continue with steps 3)-5)
//
// NOTE: 1) running Init() function will overwrite the input array! Don't set any data
//          before running the Init() function
//       2) FFTW computes unnormalized transform, so doing a transform followed by 
//          its inverse will lead to the original array scaled by the transform size
// 
//
//////////////////////////////////////////////////////////////////////////

#include "TFFTRealComplex.h"
#include "fftw3.h"
#include "TComplex.h"


ClassImp(TFFTRealComplex)

//_____________________________________________________________________________
TFFTRealComplex::TFFTRealComplex()
{
//default

   fIn   = 0;
   fOut  = 0;
   fPlan = 0;
   fN    = 0;
}

//_____________________________________________________________________________
TFFTRealComplex::TFFTRealComplex(Int_t n, Bool_t inPlace)
{
//For 1d transforms
//Allocates memory for the input array, and, if inPlace = kFALSE, for the output array


   if (!inPlace){
      fIn = fftw_malloc(sizeof(Double_t)*n);
      fOut = fftw_malloc(sizeof(fftw_complex)*(n/2+1));
   } else {
      fIn = fftw_malloc(sizeof(Double_t)*(2*(n/2+1)));
      fOut = 0;
   }
   fN = new Int_t[1];
   fN[0] = n;
   fTotalSize = n;
   fNdim = 1;
   fPlan = 0;
}

//_____________________________________________________________________________
TFFTRealComplex::TFFTRealComplex(Int_t ndim, Int_t *n, Bool_t inPlace)
{
//For ndim-dimensional transforms
//Second argurment contains sizes of the transform in each dimension

   if (ndim>1 && inPlace==kTRUE){
      Error("TFFTRealComplex", "multidimensional in-place r2c transforms are not implemented yet");
      return;
   }
   fNdim = ndim;
   fTotalSize = 1;
   fN = new Int_t[fNdim];
   for (Int_t i=0; i<fNdim; i++){
      fN[i] = n[i];
      fTotalSize*=n[i];
   }
   Int_t sizeout = Int_t(Double_t(fTotalSize)*(n[ndim-1]/2+1)/n[ndim-1]);
   if (!inPlace){
      fIn = fftw_malloc(sizeof(Double_t)*fTotalSize);
      fOut = fftw_malloc(sizeof(fftw_complex)*sizeout);
   } else {
      fIn = fftw_malloc(sizeof(Double_t)*(2*sizeout));
      fOut = 0;
   }
}

//_____________________________________________________________________________
TFFTRealComplex::~TFFTRealComplex()
{
//Destroys the data arrays and the plan. However, some plan information stays around
//until the root session is over, and is reused if other plans of the same size are
//created

   fftw_destroy_plan((fftw_plan)fPlan);
   fPlan = 0;
   fftw_free(fIn);
   fIn = 0;
   if (fOut)
      fftw_free((fftw_complex*)fOut);
   fOut = 0;
   if (fN)
      delete [] fN;
   fN = 0;
}

//_____________________________________________________________________________
void TFFTRealComplex::Init(Option_t *flags,Int_t /*sign*/, const Int_t* /*kind*/)
{
//Creates the fftw-plan
//
//NOTE:  input and output arrays are overwritten during initialisation,
//       so don't set any points, before running this function!!!!!
//
//Arguments sign and kind are dummy and not need to be specified
//Possible flag_options:
//"ES" (from "estimate") - no time in preparing the transform, but probably sub-optimal
//   performanc
//"M" (from "measure") - some time spend in finding the optimal way to do the transform
//"P" (from "patient") - more time spend in finding the optimal way to do the transform
//"EX" (from "exhaustive") - the most optimal way is found
//This option should be chosen depending on how many transforms of the same size and
//type are going to be done. Planning is only done once, for the first transform of this
//size and type.

   fFlags = flags;

   if (fOut)
      fPlan = (void*)fftw_plan_dft_r2c(fNdim, fN, (Double_t*)fIn, (fftw_complex*)fOut,MapFlag(flags));
   else
      fPlan = (void*)fftw_plan_dft_r2c(fNdim, fN, (Double_t*)fIn, (fftw_complex*)fIn, MapFlag(flags));
}

//_____________________________________________________________________________
void TFFTRealComplex::Transform()
{
//Computes the transform, specified in Init() function


   if (fPlan){
      fftw_execute((fftw_plan)fPlan);
   }
   else {
      Error("Transform", "transform hasn't been initialised");
      return;
   }
}

//_____________________________________________________________________________
void TFFTRealComplex::GetPoints(Double_t *data, Bool_t fromInput) const
{
//Fills the array data with the computed transform.
//Only (roughly) a half of the transform is copied (exactly the output of FFTW),
//the rest being Hermitian symmetric with the first half

   if (fromInput){
      for (Int_t i=0; i<fTotalSize; i++)
         data[i] = ((Double_t*)fIn)[i];
   } else {
      Int_t realN = 2*Int_t(Double_t(fTotalSize)*(fN[fNdim-1]/2+1)/fN[fNdim-1]);
      if (fOut){
         for (Int_t i=0; i<realN; i+=2){
            data[i] = ((fftw_complex*)fOut)[i/2][0];
            data[i+1] = ((fftw_complex*)fOut)[i/2][1];
         }
      }
      else {
         for (Int_t i=0; i<realN; i++)
            data[i] = ((Double_t*)fIn)[i];
      }
   }
}

//_____________________________________________________________________________
Double_t TFFTRealComplex::GetPointReal(Int_t ipoint, Bool_t fromInput) const
{
//Returns the real part of the point #ipoint from the output or the point #ipoint
//from the input

   if (fOut && !fromInput){
      Warning("GetPointReal", "Output is complex. Only real part returned");
      return ((fftw_complex*)fOut)[ipoint][0];
   }
   else
      return ((Double_t*)fIn)[ipoint];
}

//_____________________________________________________________________________
Double_t TFFTRealComplex::GetPointReal(const Int_t *ipoint, Bool_t fromInput) const
{
//Returns the real part of the point #ipoint from the output or the point #ipoint
//from the input

   Int_t ireal = ipoint[0];
   for (Int_t i=0; i<fNdim-1; i++)
      ireal=fN[i+1]*ireal + ipoint[i+1];

    if (fOut && !fromInput){
      Warning("GetPointReal", "Output is complex. Only real part returned");
      return ((fftw_complex*)fOut)[ireal][0];
   }
   else
      return ((Double_t*)fIn)[ireal];
}


//_____________________________________________________________________________
void TFFTRealComplex::GetPointComplex(Int_t ipoint, Double_t &re, Double_t &im, Bool_t fromInput) const
{
//Returns the point #ipoint.
//For 1d, if ipoint > fN/2+1 (the point is in the Hermitian symmetric part), it is still
//returned. For >1d, only the first (roughly)half of points can be returned
//For 2d, see function GetPointComplex(Int_t *ipoint,...)

   if (fromInput){
      re = ((Double_t*)fIn)[ipoint];
   } else {
      if (fNdim==1){
         if (fOut){
            if (ipoint<fN[0]/2+1){
               re = ((fftw_complex*)fOut)[ipoint][0];
               im = ((fftw_complex*)fOut)[ipoint][1];
            } else {
               re = ((fftw_complex*)fOut)[fN[0]-ipoint][0];
               im = -((fftw_complex*)fOut)[fN[0]-ipoint][1];
            }
         } else {
            if (ipoint<fN[0]/2+1){
               re = ((Double_t*)fIn)[2*ipoint];
               im = ((Double_t*)fIn)[2*ipoint+1];
            } else {
               re = ((Double_t*)fIn)[2*(fN[0]-ipoint)];
               im = ((Double_t*)fIn)[2*(fN[0]-ipoint)+1];
            }
         }
      }
      else {
         Int_t realN = 2*Int_t(Double_t(fTotalSize)*(fN[fNdim-1]/2+1)/fN[fNdim-1]);
         if (ipoint>realN/2){
            Error("GetPointComplex", "Illegal index value");
            return;
         }
         if (fOut){
            re = ((fftw_complex*)fOut)[ipoint][0];
            im = ((fftw_complex*)fOut)[ipoint][1];
         } else {
            re = ((Double_t*)fIn)[2*ipoint];
            im = ((Double_t*)fIn)[2*ipoint+1];
         }
      }
   }
}
//_____________________________________________________________________________
void TFFTRealComplex::GetPointComplex(const Int_t *ipoint, Double_t &re, Double_t &im, Bool_t fromInput) const
{
//For multidimensional transforms. Returns the point #ipoint.
//In case of transforms of more than 2 dimensions,
//only points from the first (roughly)half are returned, the rest being Hermitian symmetric


   Int_t ireal = ipoint[0];
   for (Int_t i=0; i<fNdim-2; i++)
      ireal=fN[i+1]*ireal + ipoint[i+1];
   //special treatment of the last dimension
   ireal = (fN[fNdim-1]/2+1)*ireal + ipoint[fNdim-1];

   if (fromInput){
      re = ((Double_t*)fIn)[ireal];
      return;
   } 
   if (fNdim==1){
      if (fOut){
         if (ipoint[0] <fN[0]/2+1){
            re = ((fftw_complex*)fOut)[ipoint[0]][0];
            im = ((fftw_complex*)fOut)[ipoint[0]][1];
         } else {
            re = ((fftw_complex*)fOut)[fN[0]-ipoint[0]][0];
            im = -((fftw_complex*)fOut)[fN[0]-ipoint[0]][1];
         }
      } else {
         if (ireal <fN[0]/2+1){
            re = ((Double_t*)fIn)[2*ipoint[0]];
            im = ((Double_t*)fIn)[2*ipoint[0]+1];
         } else {
            re = ((Double_t*)fIn)[2*(fN[0]-ipoint[0])];
            im = ((Double_t*)fIn)[2*(fN[0]-ipoint[0])+1];
         }
      }
   }
   else if (fNdim==2){
      if (fOut){
         if (ipoint[1]<fN[1]/2+1){
            re = ((fftw_complex*)fOut)[ipoint[1]+(fN[1]/2+1)*ipoint[0]][0];
            im = ((fftw_complex*)fOut)[ipoint[1]+(fN[1]/2+1)*ipoint[0]][1];
         } else {
            if (ipoint[0]==0){
               re = ((fftw_complex*)fOut)[fN[1]-ipoint[1]][0];
               im = -((fftw_complex*)fOut)[fN[1]-ipoint[1]][1];
            } else {
               re = ((fftw_complex*)fOut)[(fN[1]-ipoint[1])+(fN[1]/2+1)*(fN[0]-ipoint[0])][0];
               im = -((fftw_complex*)fOut)[(fN[1]-ipoint[1])+(fN[1]/2+1)*(fN[0]-ipoint[0])][1];
            }
         }
      } else {
         if (ipoint[1]<fN[1]/2+1){
            re = ((Double_t*)fIn)[2*(ipoint[1]+(fN[1]/2+1)*ipoint[0])];
            im = ((Double_t*)fIn)[2*(ipoint[1]+(fN[1]/2+1)*ipoint[0])+1];
         } else {
            if (ipoint[0]==0){
               re = ((Double_t*)fIn)[2*(fN[1]-ipoint[1])];
               im = -((Double_t*)fIn)[2*(fN[1]-ipoint[1])+1];
            } else {
               re = ((Double_t*)fIn)[2*((fN[1]-ipoint[1])+(fN[1]/2+1)*(fN[0]-ipoint[0]))];
               im = -((Double_t*)fIn)[2*((fN[1]-ipoint[1])+(fN[1]/2+1)*(fN[0]-ipoint[0]))+1];
            }
         }
      }
   }
   else {
      
      if (fOut){
         re = ((fftw_complex*)fOut)[ireal][0];
         im = ((fftw_complex*)fOut)[ireal][1];
      } else {
         re = ((Double_t*)fIn)[2*ireal];
         im = ((Double_t*)fIn)[2*ireal+1];
      }
   }
}


//_____________________________________________________________________________
Double_t* TFFTRealComplex::GetPointsReal(Bool_t fromInput) const
{
//Returns the input array// One of the interface classes to the FFTW package, can be used directly
// or via the TVirtualFFT class. Only the basic interface of FFTW is implemented.

   if (!fromInput){
      Error("GetPointsReal", "Output array is complex");
      return 0;
   }
   return (Double_t*)fIn;
}

//_____________________________________________________________________________
void TFFTRealComplex::GetPointsComplex(Double_t *re, Double_t *im, Bool_t fromInput) const
{
//Fills the argument arrays with the real and imaginary parts of the computed transform.
//Only (roughly) a half of the transform is copied, the rest being Hermitian
//symmetric with the first half

   Int_t nreal;
   if (fOut && !fromInput){
      nreal = Int_t(Double_t(fTotalSize)*(fN[fNdim-1]/2+1)/fN[fNdim-1]);
      for (Int_t i=0; i<nreal; i++){
         re[i] = ((fftw_complex*)fOut)[i][0];
         im[i] = ((fftw_complex*)fOut)[i][1];
      }
   } else if (fromInput) {
      for (Int_t i=0; i<fTotalSize; i++){
         re[i] = ((Double_t *)fIn)[i];
         im[i] = 0;
      }
   }
   else {
      nreal = 2*Int_t(Double_t(fTotalSize)*(fN[fNdim-1]/2+1)/fN[fNdim-1]);
      for (Int_t i=0; i<nreal; i+=2){
         re[i/2] = ((Double_t*)fIn)[i];
         im[i/2] = ((Double_t*)fIn)[i+1];
      }
   }
}

//_____________________________________________________________________________
void TFFTRealComplex::GetPointsComplex(Double_t *data, Bool_t fromInput) const
{
//Fills the argument arrays with the real and imaginary parts of the computed transform.
//Only (roughly) a half of the transform is copied, the rest being Hermitian
//symmetric with the first half

   Int_t nreal;

   if (fOut && !fromInput){
      nreal = Int_t(Double_t(fTotalSize)*(fN[fNdim-1]/2+1)/fN[fNdim-1]);

      for (Int_t i=0; i<nreal; i+=2){
         data[i] = ((fftw_complex*)fOut)[i/2][0];
         data[i+1] = ((fftw_complex*)fOut)[i/2][1];
      }
   } else if (fromInput){
      for (Int_t i=0; i<fTotalSize; i+=2){
         data[i] = ((Double_t*)fIn)[i/2];
         data[i+1] = 0;
      }
   }
   else {

      nreal = 2*Int_t(Double_t(fTotalSize)*(fN[fNdim-1]/2+1)/fN[fNdim-1]);
      for (Int_t i=0; i<nreal; i++)
         data[i] = ((Double_t*)fIn)[i];
   }
}

//_____________________________________________________________________________
void TFFTRealComplex::SetPoint(Int_t ipoint, Double_t re, Double_t /*im*/)
{
//Set the point #ipoint

   ((Double_t *)fIn)[ipoint] = re;
}

//_____________________________________________________________________________
void TFFTRealComplex::SetPoint(const Int_t *ipoint, Double_t re, Double_t /*im*/)
{
//For multidimensional transforms. Set the point #ipoint

   Int_t ireal = ipoint[0];
   for (Int_t i=0; i<fNdim-1; i++)
      ireal=fN[i+1]*ireal + ipoint[i+1];
   ((Double_t*)fIn)[ireal]=re;
}

//_____________________________________________________________________________
void TFFTRealComplex::SetPoints(const Double_t *data)
{
//Set all input points

   for (Int_t i=0; i<fTotalSize; i++){
      ((Double_t*)fIn)[i]=data[i];
   }
}

//_____________________________________________________________________________
void TFFTRealComplex::SetPointComplex(Int_t ipoint, TComplex &c)
{
//Sets the point #ipoint (only the real part of the argument is taken)

   ((Double_t *)fIn)[ipoint]=c.Re();
}

//_____________________________________________________________________________
void TFFTRealComplex::SetPointsComplex(const Double_t *re, const Double_t* /*im*/)
{
//Set all points. Only the real array is used

   for (Int_t i=0; i<fTotalSize; i++)
      ((Double_t *)fIn)[i] = re[i];
}

//_____________________________________________________________________________
UInt_t TFFTRealComplex::MapFlag(Option_t *flag)
{
//allowed options:
//"ES"
//"M"
//"P"
//"EX"


   TString opt = flag;
   opt.ToUpper();
   if (opt.Contains("ES"))
      return FFTW_ESTIMATE;
   if (opt.Contains("M"))
      return FFTW_MEASURE;
   if (opt.Contains("P"))
      return FFTW_PATIENT;
   if (opt.Contains("EX"))
      return FFTW_EXHAUSTIVE;
   return FFTW_ESTIMATE;
}

Last change: Wed Jun 25 08:38:55 2008
Last generated: 2008-06-25 08:38

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.