’ -~
L/

ROOT 7
LKV

W |
'\
——

An Object-Oriented
Data Analysis Framework

Improvements in ROOT IO Cache

When accessing remote data sets

Intelligent Pre-fetching

Current transfer protocols are tuned to work with large pipelined data buffers where

bandwidth 1s the key parameter.

On the other hand,

access to scattered records 1n remote files and latency 1s the main factor.

To alleviate the latency problem,
implemented i1n recent versions of ROOT.

High latency and numerous reads create a problem

Remote access example

Distance CERN-SLAC: 9393Km
e Maximum speed: 2.9x10° Km/s
(RTT) : 62.6 ms

166 ms

Lowest latency

Measured latency :

Latency 1s proportional to
distance and can not be
reduced!!!

Root [0] TFile f("hlbig.root"):;
oot [1] f.DrawMap():

Scattered reads

a

283813 entries
280 Mbytes

152 branches

Trees represent data 1in a very

efficient way
e Data is grouped in branches.

 We read only subsets of the branch
buffers.

not
their

We need buffers that are
contiguous but we know
position and size.

10°

Cache Size
< No Cache
64KB

1MB
10MB

—
o
N

v
fe—
c
Q
x
C
A
<
=
| -

-
o

Latency (ms)

Data access can be between 10 and 100 times
faster!!!

interactive data analyslis requilires

an efficient pre-fetching/cache algorithm has been

Read multiple buffers with one request

Client | |Server

Client

0Old Method

Total time =

T
T

n (CPT + RT + L)

$\\\\\\\///,//”

The equation depends
cn both variables

New Method

Total time =
n (CPT + RT)+ L

A7

The equation does not depend
cn the latency anymore !!!

number of requests

CPT = process time (client)
RT = response time (server)
L = latency (round trip)

A real-life measurement

1s on
1s on
1s 1n
1s 1n
1s on
1s 1in

Amsterdam

Latency (ms)
0.0
0.3
2.0
.0
22.0
72.0
G 240.0

>1800.0

The file is on a CERN machine (LAN 100MB/s).
is a local read (same machine).
] a LAN (100 Mb/s - PIV 3 GHz).
a wireless network (10Mb/s - Mac duo 2Ghz).
Orsay (LAN 100Mb/s, WAN 1Gb/s - PIV 3 Ghz).

(LAN 100Mb/s,WAN 10Gb/s-AMD64) .

ADSL (8Mb/s - Mac duo 2Ghz).
Caltech (10Gb/s).
The results are in real-time seconds

Cache Size

64KB

3.4

6.0

5.6

12.3

11.7
48 .3 28.0
125.4 9.9%

OKB
3.4
8.0
11.6
124.7
230.9
743.7

* TCP/IP Jumbo frames (9XB) and a TCP/IP window size of 10 Mbytes. We hope to bring down

this number to about 4 seconds by reducing the number of transactions when opening the file.

Parallel Unzipping

Taking advantage of multi-core machines

TBasket TTreeCache

StartThreadUnzip ()

GetUnzipBuffer (pos, len) » ThreadUnzip
4

if buffer IS found

return buffer (pos, len)

if buffer IS NOT found

SendSignal ()

ReadBuffer (zip, pos,len)
UnzipBuffer (unzip, zip)

UnzipCache ()

return buffer (pos, len)

WaitForSignal ()

Since we know which buffers to read, an
additional thread can unzip them in advance.

Balance between:

eSize of the buffer
ePerformance gain
e Number of cache misses

Ideal size:

sAround 10%

Gain (overall):

*Close to 13%

Gain while using parallel unzipping |

Server

\\\\\\\\\\»

7 | IS F— S———————. W F————————

12

IIIIIIII

—_
o

It stabilizes at 12.5%

(maximum cgain)

Performance increase in %

1 l 1 |

1 [1 L 1 l L 1 1 l 1 1 1 l 1
20 40 60 80 100

Unzipping cache as % of the Tree Cache buffer

Misses for different buffer sizes

7))
Q
w
@
£
5 10°
o
e
£
—]
=

| I T T 11T

-
o
»

Ui Y ey k| B e

e]

Unzipping cache as % of the Tree Cache buffer

1 | 1
20 40 60 80 100

