

Users Guide 3.05
June, 2003
Comments to: rootdoc@root.cern.ch

The ROOT Users Guide:
Authors: René Brun/CERN, Fons Rademakers, Suzanne Panacek/FNAL, Ilka
Antcheva/CERN, Damir Buskulic/Universite de Savoie/LAPP

Editor: Ilka Antcheva/CERN

Special Thanks to: Jörn Adamczewski/GSI, Marc Hemberger/GSI, Nick West/Oxford, Elaine
Lyons, Philippe Canal/FNAL, and Andrey Kubarovsky/FNAL

June 2003 v3.05 Preface i

Preface

In late 1994, we decided to learn and investigate Object Oriented programming and C++ to
better judge the suitability of these relatively new techniques for scientific programming. We
knew that there is no better way to learn a new programming environment than to use it to
write a program that can solve a real problem. After a few weeks, we had our first
histogramming package in C++. A few weeks later we had a rewrite of the same package
using the, at that time, very new template features of C++. Again, a few weeks later we had
another rewrite of the package without templates since we could only compile the version
with templates on one single platform using a specific compiler. Finally, after about four
months we had a histogramming package that was faster and more efficient than the well-
known FORTRAN based HBOOK histogramming package. This gave us enough confidence
in the new technologies to decide to continue the development. Thus was born ROOT.

Since its first public release at the end of 1995, ROOT has enjoyed an ever-increasing
popularity. Currently it is being used in all major High Energy and Nuclear Physics
laboratories around the world to monitor, to store and to analyze data. In the other sciences
as well as the medical and financial industries, many people are using ROOT. We estimate
the current user base to be around several thousand people.

In 1997, Eric Raymond analyzed in his paper "The Cathedral and the Bazaar" the
development method that makes Linux such a success. The essence of that method is:
"release early, release often and listen to your customers". This is precisely how ROOT is
being developed. Over the last five years, many of our "customers" became co-developers.
Here we would like to thank our main co-developers and contributors:

Masaharu Goto who wrote the CINT C++ interpreter. CINT has become an essential part of
ROOT. Despite being 8 time zones ahead of us, we often have the feeling he is sitting in the
room next door.

Philippe Canal is one of the ROOT main developers. He is responsible for fundamental
components of the ROOT system such as the I/O, dictionary, ACLIC and the Tree query
mechanism. Philippe is the ROOT support coordinator at FNAL.

Andrei & Mihaela Gheata (Alice collaboration), co-authors of the ROOT geometry classes
and Virtual Monte-Carlo.

Olivier Couet, who after a successful development and maintenance of PAW, has joined the
ROOT team and is working on the graphics sub-system.

Ilka Antcheva is working on the Graphical User Interface classes. She is also responsible for
this latest edition of the Users Guide with a better style, improved index and several new
chapters.

Bertrand Bellenot who develops the Win32GDK version of ROOT. Bertrand has also many
other contributions like the nice RootShower example.

Valeriy Onuchin is working on the Graphical User Interface under Windows and is
developing the Carrot system, a web interface to ROOT and CINT.

Gerri Ganis is working on the authentication procedures to be used by the root daemons and
the PROOF system.

Maarten Ballintijn (MIT) is one of the main developers of the PROOF sub-system.

ii Preface June 2003 v3.05

Valeri Fine (now at BNL) who ported ROOT to Windows and who also contributed largely to
the 3-D graphics. Valeri is currently working on a version of ROOT using the Qt system as
an implementation of the TVirtualX abstract interface.

Victor Perevoztchikov (BNL) is working on key elements of the I/O system, in particular the
improved support for STL collections.

Suzanne Panacek who was the author of the first version of this Users Guide. Suzanne has
also been very active in preparing tutorials and giving lectures about ROOT.

Nenad Buncic who developed the HTML documentation generation system and integrated
the X3D viewer inside ROOT.

Axel Naumann who develops further the THtml class and helps in porting ROOT under
Windows (CYGWIN/gcc implementation).

Further we would like to thank all the people mentioned in the
$ROOTSYS/README/CREDITS file for their contributions, and finally, everybody who gave
comments, reported bugs and provided fixes.

Happy ROOTing!

Rene Brun & Fons Rademakers

Geneva, June 2003

June 2003 v3.05 Table of Contents iii

Table of Contents

Preface i

Table of Contents iii

1 Introduction 1
The ROOT Mailing List.. 1
Contact Information.. 2
Conventions Used in This Book ... 2
The Framework... 2

What Is a Framework?.. 3
Why Object-Oriented?.. 4

Installing ROOT ... 4
The Organization of the ROOT Framework ... 4

$ROOTSYS/bin.. 5
$ROOTSYS/lib... 6
$ROOTSYS/tutorials.. 7
$ROOTSYS/test ... 7
$ROOTSYS/include ... 8
$ROOTSYS/<library>.. 8

How to Find More Information... 9

2 Getting Started 11
Start and Quit a ROOT Session .. 11

Exit ROOT.. 12
First Example: Using the GUI .. 12
Second Example: Building a Multi-pad Canvas ... 15

Printing the Canvas... 16
The ROOT Command Line .. 16

CINT Extensions .. 16
Helpful Hints for Command Line Typing 17
Multi-line Commands... 17

Regular Expression ... 18
Conventions .. 18

Coding Conventions ... 18
Machine Independent Types... 19
TObject ... 19

Global Variables ... 20
gROOT ... 20
gFile.. 20
gDirectory... 20
gPad .. 20
gRandom .. 21
gEnv.. 21

History File ... 21
Environment Setup ... 21

iv Table of Contents June 2003 v3.05

The Script Path ... 22
Logon and Logoff Scripts ... 22
Tracking Memory Leaks... 22
Memory Checker .. 23
Converting HBOOK/PAW Files... 23

3 Histograms 25
The Histogram Classes ... 25
Creating Histograms ... 26
Fixed or Variable Bin Size.. 27

Bin Numbering Convention.. 27
Re-binning .. 27

Filling Histograms .. 27
Automatic Re-binning Option .. 28

Random Numbers and Histograms ... 28
Adding, Dividing, and Multiplying... 29
Projections .. 29

Drawing Histograms... 29
Setting the Style.. 30

Draw Options.. 30
Statistics Display... 32
Setting Line, Fill, Marker, and Text Attributes... 32
Setting Tick Marks on the Axis .. 32
Giving Titles to the X, Y and Z Axis.. 33
The SCATter Plot Option ... 33
The ARRow Option .. 33
The BOX Option... 33
The ERRor Bars Options .. 34
The Color Option .. 34
The TEXT Option... 35
The CONTour Options ... 35
The LEGO Options... 36
The SURFace Options .. 37
The BAR Options ... 37

Vertical BAR chart ... 37
Horizontal BAR Chart .. 38

The Z Option: Display the Color Palette on the Pad................................... 39
Setting the Color Palette ... 39
TPaletteAxis ... 39

Drawing a Sub-range of a 2-D Histogram (the [cutg] Option) 40
Drawing Options for 3-D Histograms... 40
Superimposing Histograms with Different Scales 40
Making a Copy of an Histogram... 41
Normalizing Histograms... 42
Saving/Reading Histograms to/from a File... 42
Miscellaneous Operations... 42
Alphanumeric Bin Labels ... 43
Histogram Stacks .. 45

THStack Example... 45
Profile Histograms .. 46

The TProfile Constructor.. 46
Example of a TProfile... 47
Drawing a Profile without Error Bars... 48
Create a Profile from a 2D Histogram.. 48
Create a Histogram from a Profile.. 48
Generating a Profile from a TTree.. 48
2D Profiles.. 48
Example of a TProfile2D Histogram.. 49

4 Graphs 51
TGraph.. 51

June 2003 v3.05 Table of Contents v

Creating Graphs.. 51
Graph Draw Options... 51
Continuous Line, Axis and Stars (AC*) 52
Bar Graphs (AB)... 52
Filled Graphs (AF) ... 53
Marker Options... 53

Superimposing Two Graphs ... 54
TGraphErrors .. 55
TGraphAsymmErrors ... 56
TMultiGraph ... 57
Fitting a Graph .. 58
Setting the Graph's Axis Title ... 58
Zooming a Graph .. 59

5 Fitting Histograms 61
The Fit Panel... 61
The Fit Method ... 62
Fit with a Predefined Function.. 62
Fit with a User-Defined Function ... 63

Creating a TF1 with a Formula... 63
Creating a TF1 with Parameters ... 63
Creating a TF1 with a User Function.. 64

Fixing and Setting Bounds for Parameters.. 64
Fitting Sub Ranges.. 65
Example: Fitting Multiple Sub Ranges ... 65
Adding Functions to the List... 66
Combining Functions.. 67
Associated Function.. 69
Access to the Fit Parameters and Results.. 69
Associated Errors.. 69
Fit Statistics .. 69
The Minimization Package ... 70

Basic Concepts of Minuit ... 70
The Transformation of Limited Parameters.................................. 71
How to Get the Right Answer from Minuit 71
Reliability of Minuit Error Estimates ... 72

6 A Little C++ 75
Classes, Methods and Constructors .. 75
Inheritance and Data Encapsulation.. 76
Creating Objects on the Stack and Heap... 77

7 CINT the C++ Interpreter 81
What is CINT? .. 81
The ROOT Command Line Interface ... 82
The ROOT Script Processor ... 84

Un-named Scripts ... 84
Named Scripts .. 85
Executing a Script from a Script... 86

Resetting the Interpreter Environment .. 86
A Script Containing a Class Definition... 88
Debugging Scripts... 89
Inspecting Objects... 90
ROOT/CINT Extensions to C++ .. 91
ACLiC - The Automatic Compiler of Libraries for CINT......................... 91

Usage .. 92
Setting the Include Path.. 93
Intermediate Steps and Files... 95
Moving between Interpreter and Compiler................................... 95

vi Table of Contents June 2003 v3.05

8 Object Ownership 97
Ownership by Current Directory (gDirectory) ... 97
Ownership by the Master TROOT Object (gROOT) 98

The Collection of Specials.. 98
Access to the Collection Contents .. 98

Ownership by Other Objects... 99
Ownership by the User.. 99

The kCanDelete Bit .. 99
The kMustCleanup Bit.. 100

9 Graphics and the Graphical User Interface 101
Drawing Objects ... 101
Interacting with Graphical Objects ... 101

Moving, Resizing and Modifying Objects.................................. 102
Selecting Objects .. 103
Context Menus: the Right Mouse Button 103
Executing Events when a Cursor Passes on Top of an Object.... 105

Graphical Containers: Canvas and Pad... 106
The Global Pad: gPad ... 107
The Coordinate Systems of a Pad... 108
Converting between Coordinates Systems 109
Dividing a Pad into Sub-pads ... 109
Updating the Pad .. 111
Making a Pad Transparent .. 111
Setting the Log Scale is a Pad Attribute 112
WaitPrimitive method... 112
Locking the Pad.. 113

Graphical Objects ... 113
Lines, Arrows, and Geometrical Objects.................................... 113
Text and Latex Mathematical Expressions 117
Mathematical Symbols ... 118
Example 1... 119
Example 2... 119
Example 3... 120
Text in Labels and TPaves.. 121
Sliders... 123

Axis... 124
Axis Title .. 124
Axis Options and Characteristics.. 125
Setting the Number of Divisions .. 125
Zooming the Axis ... 125
Drawing Axis Independently of Graphs or Histograms.............. 126
Orientation of Tick Marks on Axis... 126
Label Position... 126
Label Orientation.. 126
Labels for Exponents .. 127
Number of Digits in Labels .. 127
Tick Mark Label Position ... 127
Label Formatting .. 127
Stripping Decimals ... 128
Optional Grid.. 128
Axis Binning Optimization... 128
Axis with Time Units ... 128
Axis: Example 1 ... 132
Axis: Example 2 ... 133
Axis: Example with Time Display ... 134

Graphical Objects Attributes... 135
Text Attributes.. 135
Line Attributes.. 138
Fill Attributes.. 139
Color and Color Palettes... 140

June 2003 v3.05 Table of Contents vii

The Graphical Editor .. 142
Copy/Paste with DrawClone... 143

Example 1: TCanvas::DrawClonePad .. 143
Example 2: TObject::DrawClone ... 143
Copy/Paste Programmatically .. 144

Legends... 144
The PostScript Interface.. 146

Special Characters .. 147
Multiple Pictures in a PostScript File: Case 1 147
Multiple Pictures in a PostScript File: Case 2 148

Create or Modify a Style... 148

10 Folders and Tasks 151
Folders .. 151
Why Use Folders?... 151
How to Use Folders .. 152

Creating a Folder Hierarchy ... 152
Posting Data to a Folder (Producer) ... 153
Reading Data from a Folder (Consumer) 153

Tasks ... 154
Execute and Debug Tasks... 156

11 Input/Output 157
The Physical Layout of ROOT Files... 157

The File Header .. 159
The Top Directory Description... 159
The Histogram Records .. 159
The Class Description List (StreamerInfo List).......................... 160
The List of Keys and the List of Free Blocks 161
File Recovery.. 162

The Logical ROOT File: TFile and TKey... 162
Viewing the Logical File Contents ... 164
The Current Directory .. 165
Objects in Memory and Objects on Disk.................................... 165
Saving Histograms to Disk ... 167
Histograms and the Current Directory.. 169
Saving Objects to Disk ... 169
Saving Collections to Disk ... 169
A TFile Object Going Out of Scope ... 170
Retrieving Objects from Disk... 170
Subdirectories and Navigation.. 171

Streamers .. 173
Streaming Pointers.. 173
Automatically Generated Streamers ... 173
Transient Data Members (//!) ... 174
The Pointer to Objects (//->)... 175
Variable Length Array.. 175
Prevent Splitting (//||)... 175
Streamers with Special Additions... 175
Writing Objects .. 176
Ignore Object Streamers ... 177
Streaming a TClonesArray ... 177

Pointers and References in Persistency... 178
Streaming C++ Pointers ... 178
Motivation for the TRef Class .. 178
Using TRef ... 178
How Does It Work?.. 179
Action on Demand.. 180
Array of TRef ... 181

Schema Evolution ... 182
The TStreamerInfo Class.. 183

viii Table of Contents June 2003 v3.05

The TStreamerElement Class ... 183
Example: TH1 StreamerInfo... 184
Optimized StreamerInfo ... 185
Automatic Schema Evolution ... 185
Manual Schema Evolution.. 185
Building Class Definitions with the StreamerInfo...................... 186
Example: MakeProject ... 186

Migrating to ROOT 3 ... 188
Compression and Performance ... 189
Remotely Access to ROOT Files via a rootd .. 190

TNetFile URL... 190
Remote Authentication ... 190
A Simple Session.. 191
The rootd Daemon.. 191
Starting rootd via inetd ... 192
Command Line Arguments for rootd.. 192

Reading ROOT Files via Apache Web Server.. 192
Using the General Open() Function of TFile.............................. 193

12 Trees 195
Why Should You Use a Tree? .. 195
A Simple TTree .. 196
Show an Entry with TTree::Show... 197
Print the Tree Structure with TTree::Print .. 197
Scan a Variable the Tree with TTree::Scan .. 197
The Tree Viewer ... 198
Creating and Saving Trees .. 200

Creating a Tree from a Folder Hierarchy.................................... 200
Autosave ... 201

Branches ... 201
Adding a Branch to Hold a List of Variables.. 201
Adding a TBranch to Hold an Object ... 202

Setting the Split-level ... 203
Exempt a Data Member from Splitting....................................... 204
Adding a Branch to Hold a TClonesArray 205
Identical Branch Names.. 205

Adding a Branch with a Folder ... 205
Adding a Branch with a Collection... 205
Examples for Writing and Reading Trees... 206
Example 1: A Tree with Simple Variables ... 207

Writing the Tree ... 207
Viewing the Tree .. 208
Reading the Tree... 209

Example 2: A Tree with a C Structure .. 211
Writing the Tree ... 212
Analysis .. 214

Example 3: Adding Friends to Trees .. 216
Adding a Branch to an Existing Tree.. 216
TTree::AddFriend... 216

Example 4: A Tree with an Event Class ... 219
The Event Class.. 219
The EventHeader Class .. 220
The Track Class .. 220
Writing the Tree ... 221
Reading the Tree... 222

Trees in Analysis .. 224
Simple Analysis Using TTree::Draw.. 224

Using Selection with TTree:Draw .. 225
Using TCut Objects in TTree::Draw .. 226
Accessing the Histogram in Batch Mode 226
Using Draw Options in TTree::Draw ... 226
Superimposing Two Histograms .. 227

June 2003 v3.05 Table of Contents ix

Setting the Range in TTree::Draw.. 227
TTree::Draw Examples... 228
Creating an Event List .. 233
Filling a Histogram... 235
Projecting a Histogram ... 236

Using TTree::MakeClass .. 237
Using TTree::MakeSelector.. 241
Performance Benchmarks ... 242
Impact of Compression on I/O.. 243
Chains ... 244

TChain::AddFriend... 245

13 Adding a Class 247
The Role of TObject ... 247

Introspection, Reflection and Run Time Type Identification 247
Collections.. 247
Input/Output ... 248
Paint/Draw.. 248
GetDrawOption .. 248
Clone/DrawClone ... 248
Browse.. 248
SavePrimitive ... 248
GetObjectInfo ... 248
IsFolder... 248
Bit Masks and Unique ID ... 249

Motivation... 249
Template Support ... 250

The Default Constructor ... 251
rootcint: The CINT Dictionary Generator... 252
Adding a Class with a Shared Library .. 255

The LinkDef.h File ... 255
Adding a Class with ACLiC ... 257

14 Collection Classes 259
Understanding Collections.. 259
General Characteristics ... 259
Determining the Class of Contained Objects .. 260

Types of Collections... 260
Ordered Collections (Sequences) ... 260
Sorted Collection .. 261
Unordered Collections.. 261

Iterators: Processing a Collection ... 261
Foundation Classes ... 261

TCollection ... 261
TIterator.. 262

A Collectable Class... 262
The TIter Generic Iterator... 263
The TList Collection... 265
Iterating Over a TList ... 265
The TObjArray Collection.. 266
TClonesArray – An Array of Identical Objects .. 267

The Idea Behind TClonesArray.. 267
Template Containers and STL .. 268

15 Physics Vectors 269
The Physics Vector Classes .. 269
TVector3 ... 269

Declaration / Access to the components 270
Other Coordinates... 270
Arithmetic / Comparison .. 271
Related Vectors .. 271

x Table of Contents June 2003 v3.05

Scalar and Vector Products... 271
Angle between Two Vectors .. 271
Rotation around Axes ... 271
Rotation around a Vector.. 271
Rotation by TRotation .. 271
Transformation from Rotated Frame .. 272

TRotation .. 272
Declaration, Access, Comparisons ... 272
Rotation around Axes ... 272
Rotation around Arbitrary Axis .. 273
Rotation of Local Axes... 273
Inverse Rotation.. 273
Compound Rotations .. 273
Rotation of TVector3.. 273

TLorentzVector... 274
Declaration ... 274
Access to Components.. 274
Vector Components in Non-Cartesian Coordinates.................... 275
Arithmetic and Comparison Operators 275
Magnitude/Invariant mass, beta, gamma, scalar product............ 275
Lorentz Boost ... 276
Rotations... 276
Miscellaneous ... 277

TLorentzRotation.. 277
Declaration ... 277
Access to the Matrix Components/Comparisons........................ 278
Transformations of a Lorentz Rotation....................................... 278
Transformation of a TLorentzVector.. 279

Physics Vector Example ... 279

16 Matrix Elements and Operations 281

17 The ROOT Geometry Package 283
Architecture .. 283

Volumes and Nodes.. 283
Shapes and Materials .. 284

An Interactive Session .. 285
Drawing the Geometry ... 285
Particle Tracking .. 285
Checking the Geometry .. 286

Saving Geometry in a File .. 286

18 The Tutorials and Tests 289
$ROOTSYS/tutorials .. 289
$ROOTSYS/test.. 290

Event – An Example of a ROOT Application 291
stress - Test and Benchmark... 294
guitest – A Graphical User Interface .. 295

19 Example Analysis 297
Explanation ... 297
Script... 300

20 Networking 305
Setting-up a Connection.. 305
Sending Objects over the Network ... 305
Closing the Connection... 306
A Server with Multiple Sockets .. 307

June 2003 v3.05 Table of Contents xi

21 Writing a Graphical User Interface 309
The ROOT GUI Classes ... 309
Widgets and Frames.. 309
TVirtualX.. 310

Abstract Graphics Base Class TVirtualX 310
A Simple Example .. 310

A Standalone Version... 315
Widgets Overview .. 316

TGObject .. 317
TGWidget ... 317
TGWindow... 318
Frames .. 318

Layout Management ... 321
Event Processing: Signals and Slots ... 323
The Widgets in Details.. 329

Buttons.. 329
Menus ... 333
Toolbar ... 335
List Boxes... 336
Combo Boxes ... 338
Sliders... 339
Progress Bars .. 340
Static Widgets... 341
Status Bar ... 341
Splitters... 342

22 Automatic HTML Documentation 345

23 PROOF: Parallel Processing 347

24 Threads 349
Threads and Processes .. 349

Process Properties... 349
Thread Properties.. 349
The Initial Thread ... 350

Implementation of Threads in ROOT ... 350
Installation .. 350

Classes .. 350
TThread .. 350
TMutex ... 350
TCondition.. 350
TSemaphore.. 351

TThread for Pedestrians.. 351
Initialization.. 351
Coding .. 351
Loading... 351
Creating .. 351
Running .. 352

TThread in More Detail .. 352
Asynchronous Actions.. 352
Synchronous Actions: TCondition ... 352
Xlib Connections .. 353
Canceling a TThread .. 353

Advanced TThread: Launching a Method in a Thread 355
Known Problems... 356
Glossary .. 356

Process.. 356
Thread... 356
Concurrency ... 357
Parallelism .. 357
Reentrant .. 357

xii Table of Contents June 2003 v3.05

Thread-specific Data... 357
Synchronization.. 357
Critical Section ... 357
Mutex.. 357
Semaphore .. 357
Readers/Writer Lock... 358
Condition Variable ... 358
Multithread Safe Levels.. 358
Deadlock... 358
Multiprocessor .. 358

List of Example Files.. 359
Example: mhs3 ... 359
Example: conditions ... 359
Example: TMhs3 .. 359
Example: CalcPiThread.. 359

25 Appendix A: Install and Build ROOT 361
ROOT Copyright and Licensing Agreement: ... 361
Installing ROOT ... 362
Choosing a Version... 362

Supported Platforms ... 362
Installing Precompiled Binaries .. 362
Installing the Source ... 363

Installing and Building the Source from a Compressed File 363
More Build Options .. 363

Setting the Environment Variables ... 365
Documentation to Download .. 366

PostScript Documentation .. 366
HTML Documentation ... 366

26 Index 367

June 2003 v3.05 Introduction 1

1 Introduction

In the mid 1990's, René Brun and Fons Rademakers had many years of experience
developing interactive tools and simulation packages. They had lead successful projects
such as PAW, PIAF, and GEANT, and they knew the twenty-year-old FORTRAN libraries
had reached their limits. Although still very popular, these tools could not scale up to the
challenges offered by the Large Hadron Collider, where the data is a few orders of
magnitude larger than anything seen before.

At the same time, computer science had made leaps of progress especially in the area of
Object Oriented Design, and René and Fons were ready to take advantage of it.

ROOT was developed in the context of the NA49 experiment at CERN. NA49 has generated
an impressive amount of data, around 10 Terabytes per run. This rate provided the ideal
environment to develop and test the next generation data analysis.

One cannot mention ROOT without mentioning CINT its C++ interpreter. CINT was created
by Masa Goto in Japan. It is an independent product, which ROOT is using for the command
line and script processor.

ROOT was, and still is, developed in the "Bazaar style", a term from the book "The
Cathedral and the Bazaar" by Eric S. Raymond. It means a liberal, informal development
style that heavily leverages the diverse and deep talent of the user community. The result is
that physicists developed ROOT for themselves; this made it specific, appropriate, useful,
and over time refined and very powerful.

When it comes to storing and mining large amount of data, physics plows the way with its
Terabytes, but other fields and industry follow close behind as they acquiring more and more
data over time, and they are ready to use the true and tested technologies physics has
invented. In this way, other fields and industries have found ROOT useful and they have
started to use it also.

The development of ROOT is a continuous conversation between users and developers with
the line between the two blurring at times and the users becoming co-developers.

In the bazaar view, software is released early and frequently to expose it to thousands of
eager co-developers to pound on, report bugs, and contribute possible fixes. More users find
more bugs, because more users add different ways of stressing the program. By now, after
six years, many, many users have stressed ROOT in many ways, and it is quiet mature.
Most likely, you will find the features you are looking for, and if you have found a hole, you
are encouraged to participate in the dialog and post your suggestion or even implementation
on roottalk, the ROOT mailing list.

The ROOT Mailing List
You can subscribe to roottalk, the ROOT Mailing list by registering at the ROOT web site:
http://root.cern.ch/root/Registration.phtml

This is a very active list and if you have a question, it is likely that it has been asked,
answered, and stored in the archives. Please use the search engine to see if your question
has already been answered before sending mail to root talk.

2 Introduction June 2003 v3.05

At: http://root.cern.ch/root/roottalk/AboutRootTalk.html you can browse the roottalk archives.
You can send your question without subscribing to: roottalk@root.cern.ch

Contact Information
This book was written by several authors. If you would like to contribute a chapter or add to
a section, please contact us. This is the first and early release of this book, and there are still
many omissions. However, we wanted to follow the ROOT tradition of releasing early and
often to get feedback early and catch mistakes. We count on you to send us suggestions on
additional topics or on the topics that need more documentation. Please send your
comments, corrections, questions, and suggestions to: rootdoc@root.cern.ch

We attempt to give the user insight into the many capabilities of ROOT. The book begins
with the elementary functionality and progresses in complexity reaching the specialized
topics at the end.

The experienced user looking for special topics may find these chapters useful: Networking,
Writing a Graphical User Interface, Threads, and PROOF: Parallel Processing.

Because this book was written by several authors, you may see some inconsistencies and a
"change of voice" from one chapter to the next. We felt we could accept this in order to have
the expert explain what they know best.

Conventions Used in This Book
We tried to follow a style convention for the sake of clarity. Here are the few styles we used.

To show source code in scripts or source files:

{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To show the ROOT command line, we show the ROOT prompt without numbers. In the
interactive system, the ROOT prompt has a line number (root[12]); for the sake of
simplicity we left off the line number.

Bold monotype font indicates the ROOT class names as TObject, TClass, and text for you
to enter at verbatim.

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000

Italic bold monotype font indicates a global variable, for example gDirectory. We also
used the italic font to highlight the comments in the code listing.

When a variable term is used, it is shown between angled brackets. In the example below
the variable term <library> can be replaced with any library in the $ROOTSYS directory:
$ROOTSYS/<library>/inc.

The Framework
ROOT is an object-oriented framework aimed at solving the data analysis challenges of
high-energy physics. There are two key words in this definition, object oriented and
framework. First, we explain what we mean by a framework and then why it is an object-
oriented framework.

June 2003 v3.05 Introduction 3

What Is a Framework?
Programming inside a framework is a little like living in a city. Plumbing, electricity,
telephone, and transportation are services provided by the city. In your house, you have
interfaces to the services such as light switches, electrical outlets, and telephones. The
details, for example the routing algorithm of the phone switching system, are transparent to
you as the user. You do not care; you are only interested in using the phone to communicate
with your collaborators to solve your domain specific problems.

Programming outside of a framework may be compared to living in the country. In order to
have transportation and water, you will have to build a road and dig a well. To have services
like telephone and electricity you will need to route the wires to your home. In addition, you
cannot build some things yourself. For example, you cannot build a commercial airport on
your patch of land. From a global perspective, it would make no sense for everyone to build
their own airport. You see you will be very busy building the infrastructure (or framework)
before you can use the phone to communicate with your collaborators and have a drink of
water at the same time.

In software engineering, it is much the same way. In a framework the basic utilities and
services, such as I/O and graphics, and are provided. In addition, ROOT being a HEP
analysis framework, it provides a large selection of HEP specific utilities such as histograms
and fitting. The drawback of a framework is that you are constrained to it, as you are
constraint to use the routing algorithm provided by your telephone service. You also have to
learn the framework interfaces, which in this analogy is the same as learning how to use a
telephone.

If you are interested in doing physics, a good HEP framework will save you much work.
Below is a list of the more commonly used components of ROOT:

• Command Line Interpreter
• Histograms and Fitting
• Graphic User Interface widgets
• 2D Graphics
• I/O
• Collection Classes
• Script Processor

There are also less commonly used components, these are:

• 3D Graphics
• Parallel Processing (PROOF)
• Run Time Type Identification (RTTI)
• Socket and Network Communication
• Threads

Advantages of Frameworks
The benefits of frameworks can be summarized as follows:

• Less code to write: The programmer should be able to use and reuse the majority of the
code. Basic functionality, such as fitting and histogramming are implemented and ready
to use and customize.

• More reliable and robust code: Code inherited from a framework has already been
tested and integrated with the rest of the framework.

• More consistent and modular code: Code reuse provides consistency and common
capabilities between programs, no matter who writes them. Frameworks also make it
easier to break programs into smaller pieces.

• More focus on areas of expertise: Users can concentrate on their particular problem
domain. They don't have to be experts at writing user interfaces, graphics, or
networking to use the frameworks that provide those services.

4 Introduction June 2003 v3.05

Why Object-Oriented?
Object-Oriented Programming offers considerable benefits compared to Procedure-Oriented
Programming:

• Encapsulation enforces data abstraction and increases opportunity for reuse.
• Sub classing and inheritance make it possible to extend and modify objects.
• Class hierarchies and containment hierarchies provide a flexible mechanism for

modeling real-world objects and the relationships among them.
• Complexity is reduced because there is little growth of the global state, the state is

contained within each object, rather than scattered through the program in the form of
global variables.

• Objects may come and go, but the basic structure of the program remains relatively
static, increases opportunity for reuse of design.

Installing ROOT
The installation and building of ROOT is described in Appendix A: Install and Build ROOT.
You can download the binaries (7 MB to 11 MB depending on the platform), or the source
(about 3.4 MB). ROOT can be compiled by the GNU g++ compiler on most UNIX platforms.

ROOT is currently running on the following platforms:

• Intel x86 Linux (g++, egcs and KAI/KCC)
• Intel Itanium Linux (g++)
• HP HP-UX 10.x (HP CC and aCC, egcs1.2 C++ compilers)
• IBM AIX 4.1 (xlc compiler and egcs1.2)
• Sun Solaris for SPARC (SUN C++ compiler and egcs)
• Sun Solaris for x86 (SUN C++ compiler)
• Sun Solaris for x86 KAI/KCC
• Compaq Alpha OSF1 (egcs1.2 and DEC/CXX)
• Compaq Alpha Linux (egcs1.2)
• SGI Irix (g++ , KAI/KCC and SGI C++ compiler)
• Windows NT and Windows95 (Visual C++ compiler)
• Mac MkLinux and Linux PPC (g++)
• Hitachi HI-UX (egcs)
• LynxOS
• MacOS (CodeWarrior, no graphics)

The Organization of the ROOT Framework
Now we know in abstract terms what the ROOT framework is, let's look at the physical
directories and files that come with the installation of ROOT.

You may work on a platform where your system administrator has already installed ROOT.
You will need to follow the specific development environment for your setup and you may
not have write access to the directories. In any case, you will need an environment variable
called ROOTSYS, which holds the path of the top directory.

> echo $ROOTSYS
/home/root

In the ROOTSYS directory are examples, executables, tutorials, header files, and if you opted
to download the source it is also here. The directories of special interest to us are bin,
tutorials, lib, test, and include. The diagram on the next page shows the contents
of these directories.

June 2003 v3.05 Introduction 5

*.h
...

cint
makecint
new
proofd
proofserv
rmkdepend
root
root.exe
rootcint
root-config
rootd

bin

$ROOTSYS

libCint.so
libCore.so
libEG.so
*libEGPythia.so
*libEGPythia6.so
libEGVenus.so
libGpad.so
libGraf.so
libGraf3d.so
libGui.so
libGX11.so
*libGX11TTF.so
libHist.so
libHistPainter.so
libHtml.so
libMatrix.so
libMinuit.so
libNew.so
libPhysics.so
libPostscript.so
libProof.so
*libRFIO.so
*libRGL.so
libRint.so
*libThread.so
libTree.so
libTreePlayer.so
libTreeViewer.so
*libttf.so
libX3d.so
libXpm.a

Aclock.cxx
Aclock.h
Event.cxx
Event.h
EventLinkDef.h
Hello.cxx
Hello.h
MainEvent.cxx
Makefile
Makefile.in
Makefile.win32
README
TestVectors.cxx
Tetris.cxx
Tetris.h
eventa.cxx
eventb.cxx
eventload.cxx
guitest.cxx
hsimple.cxx
hworld.cxx
minexam.cxx
stress.cxx
tcollbm.cxx
tcollex.cxx
test2html.cxx
tstring.cxx
vlazy.cxx
vmatrix.cxx
vvector.cxx

lib testtutorials include

* Optional
Installation

EditorBar.C
Ifit.C
analyze.C
archi.C
arrow.C
basic.C
basic.dat
basic3d.C
benchmarks.C
canvas.C
classcat.C
cleanup.C
compile.C
copytree.C
copytree2.C
demos.C
demoshelp.C
dialogs.C
dirs.C
ellipse.C
eval.C
event.C
exec1.C
exec2.C
feynman.C
fildir.C
file.C
fillrandom.C
first.C
fit1.C
fit1_C.C

fitslicesy.C
formula1.C
framework.C
games.C
gaxis.C
geometry.C
gerrors.C
gerrors2.C
graph.C
h1draw.C
hadd.C
hclient.C
hcons.C
hprod.C
hserv.C
hserv2.C
hsimple.C
hsum.C
hsumTimer.C
htmlex.C
io.C
latex.C
latex2.C
latex3.C
manyaxis.C
multifit.C
myfit.C
na49.C
na49geomfile.C
na49view.C
na49visible.C

ntuple1.C
oldbenchmarks.C
pdg.dat
psexam.C
pstable.C
rootalias.C
rootenv.C
rootlogoff.C
rootlogon.C
rootmarks.C
runcatalog.sql
runzdemo.C
second.C
shapes.C
shared.C
splines.C
sqlcreatedb.C
sqlfilldb.C
sqlselect.C
staff.C
staff.dat
surfaces.C
tcl.C
testrandom.C
tornado.C
tree.C
two.C
xyslider.C
xysliderAction.C
zdemo.C
h1analysis.C

$ROOTSYS/bin
The bin directory contains several executables.

root shows the ROOT splash screen and calls root.exe
root.exe is the executable that root calls, if you use a debugger

 such as gdb, you will need to run root.exe directly
rootcint is the utility ROOT uses to create a class dictionary for

 CINT
rmkdepend is a modified version of makedepend that works for C++

 It is used by the ROOT build system
root-config is a script returning the needed compile flags and

 libraries for projects that compile and link with ROOT
cint is the C++ interpreter executable that is independent of

 ROOT
makecint is the pure CINT version of rootcint. It is used to

 generate a dictionary. It is used by some of CINT
 install scripts to generate dictionaries for external
 system libraries

proofd is a small daemon used to authenticate a user of
 ROOT parallel processing capability (PROOF)

proofserv is the actual PROOF process, which is started by
 proofd after a user, has successfully been
 authenticated

rootd is the daemon for remote ROOT file access
 (see TNetFile)

6 Introduction June 2003 v3.05

$ROOTSYS/lib
There are several ways to use ROOT, one way is to run the executable by typing root at
the system prompt another way is to link with the ROOT libraries and make the ROOT
classes available in your own program.

Here is a short description for each library, the ones marked with a * are only installed when
the options specified them.

- libCint.so is the C++ interpreter (CINT).
- libCore.so is the Base classes
- libEG.so is the abstract event generator interface classes
- *libEGPythia.so is the Pythia5 event generator interface
- *libEGPythia6.so is the Pythia6 event generator interface
- libEGVenus.so is the Venus event generator interface
- libGpad.so is the pad and canvas classes which depend on low level graphics
- libGraf.so is the 2D graphics primitives (can be used independent of libGpad.so)
- libGraf3d.so is the3D graphics primitives
- libGui.so is the GUI classes (depend on low level graphics)
- libGX11.so is the low level graphics interface to the X11 system
- *libGX11TTF.so is an add on library to libGX11.so providing TrueType fonts
- libHist.so is the histogram classes
- libHistPainter.so is the histogram painting classes
- libHtml.so is the HTML documentation generation system
- libMatrix.so is the matrix and vector manipulation
- libMinuit.so - The MINUIT fitter
- libNew.so is the special global new/delete, provides extra memory checking and

interface for shared memory (optional)
- libPhysics.so is the physics quantity manipulation classes (TLorentzVector, etc.)
- libPostScript.so is the PostScript interface
- libProof.so is the parallel ROOT Facility classes
- *libRFIO.so is the interface to CERN RFIO remote I/O system.
- *libRGL.so is the interface to OpenGL.
- libRint.so is the interactive interface to ROOT (provides command prompt).
- *libThread.so is the Thread classes.
- libTree.so is the TTree object container system.
- libTreePlayer.so is the TTree drawing classes.
- libTreeViewer.so is the graphical TTree query interface.
- libX3d.so is the X3D system used for fast 3D display.

Library Dependencies
The libraries are designed and organized to minimize dependencies, such that you can
include just enough code for the task at hand rather than having to include all libraries or one
monolithic chunk.

The core library (libCore.so) contains the essentials; it needs to be included for all ROOT
applications. In the diagram, you see that libCore is made up of Base classes, Container
classes, Meta information classes, Networking classes, Operating system specific classes,
and the ZIP algorithm used for compression of the ROOT files.

The CINT library (libCint.so) is also needed in all ROOT applications, but libCint can
be used independently of libCore, in case you only need the C++ interpreter and not
ROOT. That is the reason these two are separate.

June 2003 v3.05 Introduction 7

A program referencing only TObject only needs libCore and libCint. This includes the
ability to read and write ROOT objects, and there are no dependencies on graphics, or the
GUI.

A batch program, one that does not have a graphic display, which creates, fills, and saves
histograms and trees, only needs the core (libCore and libCint), libHist and
libTree. If other libraries are needed, ROOT loads them dynamically. For example if the
TreeViewer is used, libTreePlayer and all the libraries the TreePlayer box above
has an arrow to, are loaded also. In this case: GPad, Graf3d, Graf, HistPainter,
Hist, and Tree. The difference between libHist and libHistPainter is that the
former needs to be explicitly linked and the latter will be loaded automatically at runtime
when needed. In the diagram, the dark boxes outside of the core are automatically loaded
libraries, and the light colored ones are not automatic. Of course, if one wants to access an
automatic library directly, it has to be explicitly linked also. An example of a dynamically
linked library is Minuit. To create and fill histograms you need to link libHist. If the code
has a call to fit the histogram, the "Fitter" will check if Minuit is already loaded and if not it
will dynamically load it.

$ROOTSYS/tutorials
The tutorials directory contains many example scripts. They assume some basic knowledge
of ROOT, and for the new user we recommend reading the chapters: Histograms and
Input/Output before trying the examples. The more experienced user can jump to chapter
The Tutorials and Tests to find more explicit and specific information about how to build and
run the examples.

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the framework.
When a new release is cut, the examples in this directory are compiled and run to test the
new release's backward compatibility.

We see these source files:

- hsimple.cxx - Simple test program that creates and saves some histograms
- MainEvent.cxx - Simple test program that creates a ROOT Tree object and fills it

with some simple structures but also with complete histograms. This program uses the
files Event.cxx, EventCint.cxx and Event.h. An example of a procedure to link

8 Introduction June 2003 v3.05

this program is in bind_Event. Note that the Makefile invokes the rootcint utility
to generate the CINT interface EventCint.cxx.

- Event.cxx - Implementation for classes Event and Track
- minexam.cxx - Simple test program to test data fitting.
- tcollex.cxx - Example usage of the ROOT collection classes
- tcollbm.cxx - Benchmarks of ROOT collection classes
- tstring.cxx - Example usage of the ROOT string class
- vmatrix.cxx - Verification program for the TMatrix class
- vvector.cxx - Verification program for the TVector class
- vlazy.cxx - Verification program for lazy matrices.
- hworld.cxx - Small program showing basic graphics.
- guitest.cxx - Example usage of the ROOT GUI classes
- Hello.cxx - Dancing text example
- Aclock.cxx - Analog clock (a la X11 xclock)
- Tetris.cxx - The famous Tetris game (using ROOT basic graphics)
- stress.cxx - Important ROOT stress testing program.

The $ROOTSYS/test directory is a gold mine of ROOT-wisdom nuggets, and we encourage
you to explore and exploit it. However, we recommend that the new user read the chapter
‘Getting Started’. The chapter ‘Tutorials and Tests’ has instructions on how to build all the
programs and goes over the examples Event and stress.

$ROOTSYS/include
The include directory contains all header files. It is especially important because the
header files contain the class definitions.

$ROOTSYS/<library>
The directories we explored above are available when downloading the binaries or the
source. When downloading the source you also get a directory for each library with the
corresponding header and source files. Each library directory contains an inc and src
subdirectory. To see what classes are in a library, you can check the <library>/inc
directory for the list of class definitions. For example, the physics library contains these class
definitions:

> ls -m $ROOTSYS/physics/inc
CVS, LinkDef.h, TLorentzRotation.h, TLorentzVector.h, TRotation.h,
TVector2.h, TVector3.h

June 2003 v3.05 Introduction 9

How to Find More Information
The ROOT web site has up to date documentation. The ROOT source code automatically
generates this documentation, so each class is explicitly documented on its own web page,
which is always up to date with the latest official release of ROOT. The class index web
pages can be found at http://root.cern.ch/root/html/ClassIndex.html. Each page contains a
class description, and an explanation of each method. It shows the class it was derived from
and lets you jump to the parent class page by clicking on the class name. If you want more
detail, you can even see the source. In addition to this, the site contains tutorials, "How
To's", and a list of publications and example applications.

June 2003 v3.05 Getting Started 11

2 Getting Started

We begin by showing you how to use ROOT interactively. There are two examples to click
through and learn how to use the GUI. We continue by using the command line, and
explaining the coding conventions, global variables and the environment setup.

If you have not installed ROOT, you can do so by following the instructions in the appendix,
or on the ROOT web site: http://root.cern.ch/root/Availability.html

Start and Quit a ROOT Session
To start ROOT you can type root at the system prompt. This starts up CINT the ROOT
command line C/C++ interpreter and it gives you the ROOT prompt (root [0]).

% root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 3.05/03 25 March 2003 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

FreeType Engine v2.1.3 used to render TrueType fonts.
Compiled for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.15.80, Mar 17 2003
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root [0]

It is possible to launch ROOT with some command line options, as shown on the next page:

% root -/?
Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C]
 Options:
 -b : run in batch mode without graphics
 -n : do not execute logon and logoff macros as
 specified in .rootrc
 -q : exit after processing command line script files
 -l : do not show the image logo (splash screen)

–b: ROOT session runs in batch mode, without graphics display. This mode is useful in case
one does not want to set the DISPLAY or cannot do it for some reason.

–n: Usually, launching a ROOT session will execute a logon script and quitting will execute a
logoff script. This option prevents the execution of these two scripts.

12 Getting Started June 2003 v3.05

It is also possible to execute a script without entering a ROOT session. One simply adds the
name of the script(s) after the ROOT command. Be warned: after finishing the execution of
the script, ROOT will normally enter a new session.

–q: It is processing command line script files and exit. Retrieving previous commands and
navigating on the Command Line.

For example if you would like to run a script in the background, exit after execution, and
redirect the output into a file, use the following syntax:

root -b -q myMacro.C > myMacro.log

You can build a shared library with ACLiC (see the Chapter on CINT) and then use the
shared library on the command line for a quicker execution (i.e. compiled speed rather than
interpreted speed).

root -b -q myMacro.so > myMacro.log

ROOT has a powerful C/C++ interpreter giving you access to all available ROOT classes,
global variables, and functions via a command line. By typing C++ statements at the prompt,
you can create objects, call functions, execute scripts, etc. For example:

root[] 1+sqrt(9)
(double)4.000000000000e+00
root[] for (int i = 0; i<4; i++) cout << "Hello" << i << endl
Hello 0
Hello 1
Hello 2
Hello 3
root[] .q

Exit ROOT
Type .q to quit the command line.

root[] .q

First Example: Using the GUI
In this example, we show how to use a function object, and change its attributes using the
GUI. Again, start ROOT:

% root
root[] TF1 f1("func1","sin(x)/x",0,10)
root[] f1.Draw()

You should see something like this:

June 2003 v3.05 Getting Started 13

NOTE: The GUI on MS-Windows looks and works a little different from the one on UNIX. We
are working on porting the new GUI class to Windows. Once they are available, the GUI will
be changed to be identical to the one in UNIX. In this book, we used the UNIX GUI.

Drawing a function is interesting, but it is not unique to a function. Evaluating and calculating
the derivative and integral are what one would expect from a function. TF1, the function
class defines these methods for us.

root[] f1.Eval(3)
(Double_t)4.70400026866224020e-02
root[] f1.Derivative(3)
(Double_t)(-3.45675056671992330e-01)
root[] f1.Integral(0,3)
(Double_t)1.84865252799946810e+00
root[] f1.Draw

Note that by default TF1::Paint, the method that draws the function, computes 100
equidistant points to draw it. You can set the number of points to a higher value with the
TF1::SetNpx() method:

root[] f1.SetNpx(2000);

Classes, Methods and Constructors
Object oriented programming introduces objects, which have data members and methods.

The line TF1 f1("func1","sin(x)/x",0,10) creates an object named f1 of the class
TF1 that is a one-dimensional function. The type of an object is called a class. The object is
called an instance of a class. When a method builds an object, it is called a constructor.

TF1 f1("func1","sin(x)/x",0,10)

In our constructor, we used sin(x)/x, which is the function to use, and 0 and 10 are the
limits. The first parameter, func1 is the name of the object f1. Most objects in ROOT have
a name. ROOT maintains a list of objects that can be searched to find any object by its given
name (in our example func1).

The syntax to call an object's method, or if one prefers, to make an object do something is:

object.method_name(parameters)

This is the usual way of calling methods in C++. The dot can be replaced by “->" if object
is a pointer. In compiled code, the dot MUST be replaced by a "->" if object is a pointer.

object_ptr->method_name(parameters)

So now, we understand the two lines of code that allowed us to draw our function.
f1.Draw() stands for “call the method Draw associated with the object f1 of class TF1”.
We will see the advantages of using objects and classes very soon.

One point, the ROOT framework is an object oriented framework; however this does not
prevent the user from calling plain functions. For example, most simple scripts have
functions callable by the user.

User interaction
If you have quit the framework, try to draw the function sin(x)/x again. Now, we can look
at some interactive capabilities. Every object in a window (which is called a canvas) is in fact
a graphical object in the sense that you can grab it, resize it, and change some
characteristics with a mouse click.

For example, bring the cursor over the x-axis. The cursor changes to a hand with a pointing
finger when it is over the axis. Now, left click and drag the mouse along the axis to the right.
You have a very simple zoom.

14 Getting Started June 2003 v3.05

When you move the mouse over any object, you can get access to selected methods by
pressing the right mouse button and obtaining a context menu. If you try this on the function
TF1, you will get a menu showing available methods. The other objects on this canvas are
the title a TPaveText, the x and y-axis, which are TAxis objects, the frame a TFrame, and
the canvas a TCanvas. Try clicking on these and observe the context menu with their
methods.

For the function, try for example to select the SetRange method and put -10, 10 in the
dialog box fields. This is equivalent to executing the member function
f1.SetRange(-10,10) from the command line prompt, followed by f1.Draw().

Here are some other options you can try. For example, select the DrawPanel item of the
popup menu. You will see a panel like this:

Try to resize the bottom slider and click Draw. You can zoom your graph. If you click on
"lego2" and "Draw", you will see a 2D representation of your graph:

June 2003 v3.05 Getting Started 15

This 2D plot can be rotated interactively. Of course, ROOT is not limited to 1D graphs - it is
possible to plot real 2D functions or graphs. There are numerous ways to change the
graphical options/colors/fonts with the various methods available in the popup menu.

Line attributes Text attributes Fill attributes

Once the picture suits your wishes, you may want to see the code you should put in a script
to obtain the same result. To do that, choose the "Save as canvas.C" option in the "File"
menu. This will generate a script showing the various options. Notice that you can also
save the picture in PostScript or GIF format. One other interesting possibility is to save your
canvas in native ROOT format. This will enable you to open it again and to change
whatever you like, since all the objects associated to the canvas (histograms, graphs) are
saved at the same time.

Second Example: Building a Multi-pad Canvas
Let’s now try to build a canvas (i.e. a window) with several pads. The pads are sub-
windows that can contain other pads or graphical objects.

root[] TCanvas *MyC = new TCanvas("MyC","Test canvas",1)
root[] MyC->Divide(2,2)

Once again, we called the constructor of a class, this time the class TCanvas. The
difference with the previous constructor call is that we want to build an object with a pointer
to it. Next, we call the method Divide of the TCanvas class (that is TCanvas::Divide),
which divides the canvas into four zones and sets up a pad in each of them.

16 Getting Started June 2003 v3.05

root[] MyC->cd(1)
root[] f1->Draw()

Now, the function f1 will be drawn in the first pad. All objects will now be drawn in that pad.
To change the active pad, there are three ways:

1/ Click on the middle button of the mouse on an object, for example a pad. This sets this
pad as the active one.

2/ Use the method TCanvas::cd with the pad number, as was done in the example
above:

root[] MyC->cd(3)

Pads are numbered from left to right and from top to bottom.

Each new pad created by TCanvas::Divide has a name, which is the name of the
canvas followed by _1, _2, etc. For example to apply the method cd() to the third pad, you
would write:

root[] MyC_3->cd()

3/ Third pad will be selected since you called TPad::cd() for the object MyC_3. ROOT
automatically found the pad that was named MyC_3 when you typed it on the command
line (see ROOT/CINT Extensions to C++).

The obvious question is: what is the relation between a canvas and a pad? In fact, a
canvas is a pad that spans through an entire window. This is nothing else than the notion of
inheritance. The TPad class is the parent of the TCanvas class.

Printing the Canvas
To print a canvas click on the File menu and select Print. This will create a postscript
file containing the canvas with name <canvasname>.ps. Then you can send the
postscript file to your printer.

The ROOT Command Line
We have briefly touched on how to use the command line, and you probably saw that there
are different types of commands.

1. CINT commands start with “.”

root[].? //this command will list all the CINT commands
root[].L <filename> //load [filename]
root[].x <filename> //load and execute [filename]

2. SHELL commands start with “.!” for example:

root[] .! ls

3. C++ commands follow C++ syntax (almost)

root[] TBrowser *b = new TBrowser()

CINT Extensions
We can see that some things are not standard C++. The CINT interpreter has several
extensions. See the section ROOT/CINT Extensions to C++ in chapter CINT the C++
Interpreter

June 2003 v3.05 Getting Started 17

Helpful Hints for Command Line Typing
The interpreter knows all the classes, functions, variables, and user defined types. This
enables ROOT to help the user complete the command line. For example we do not know
yet anything about the TLine class. We can use the Tab feature to get help. Where <TAB>
means type the <TAB> key. This lists all the classes starting with TL.

root[] l = new TL<TAB>
TLeaf
TLeafB
TLeafC
TLeafD
TLeafF
TLeafI
TLeafObject
TLeafS
TLine
TLatex
TLegendEntry
TLegend
TLink
TList
TListIter
TLazyMatrix
TLazyMatrixD

This lists the different constructors and parameters for TLine.

root[] l = new TLine(<TAB>
TLine TLine()
TLine TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)
TLine TLine(const TLine& line)

Multi-line Commands
You can use the command line to execute multi-line commands. To begin a multi-line
command you must type a single left curly bracket {, and to end it you must type a single
right curly bracket }.

 For example:

root[] {
end with '}'> Int_t j = 0;
end with '}'> for (Int_t i = 0; i < 3; i++)
end with '}'> {
end with '}'> j= j + i;
end with '}'> cout << "i = " << i << ", j = " << j << endl;
end with '}'> }
end with '}'> }
i = 0, j = 0
i = 1, j = 1
i = 2, j = 3

It is more convenient to edit scripts than the command line, and if your multi line commands
are getting unmanageable you may want to start a script instead.

18 Getting Started June 2003 v3.05

Regular Expression
The meta-characters below can be used in a regular expression:

'^' start-of-line anchor
'$' end-of-line anchor
'.' matches any character
'[' start a character class
']’ end a character class
'^’ negates character class if first character
'*’ Kleene closure (matches 0 or more)
'+’ Positive closure (1 or more)
'?’ Optional closure (0 or 1)

When using wildcards the regular expression is assumed to be preceded by a '^' (BOL) and
terminated by '$' (EOL). All '*' (closures) are assumed to be preceded by a '.', i.e. any
character, except slash _/_. Its special treatment allows the easy matching of pathnames.
For example, _*.root_ will match _aap.root_, but not _pipo/aap.root_.

The escape characters are:

 \\ backslash
 \b backspace
 \f form feed
 \n new line
 \r carriage return
 \s space
 \t tab
 \e ASCII ESC character ('\033')
 \DDD number formed of 1-3 octal digits
 \xDD number formed of 1-2 hex digits
 \^C C = any letter. Control code

The class TRegexp can be used to create a regular expression from an input string. If
wildcard is true then the input string contains a wildcard expression.

TRegexp(const char *re, Bool_t wildcard)

Regular expression and wildcards can be easily used in methods like:

Ssiz_t Index(const TString& string,Ssiz_t* len,Ssiz_t i) const

which finds the first occurrence of the regular expression in the string and returns its
position.

Conventions
In this paragraph, we will explain some of the conventions used in ROOT source and
examples.

Coding Conventions
From the first days of ROOT development, it was decided to use a set of coding
conventions. This allows a consistency throughout the source code. Learning these will
help you identify what type of information you are dealing with and enable you to
understand the code better and quicker. Of course, you can use whatever convention you
want but if you are going to submit some code for inclusion into the ROOT sources you will
need to use these.

June 2003 v3.05 Getting Started 19

These are the coding conventions:

• Classes begin with T: TLine, TTree
• Non-class types end with _t: Int_t
• Data members begin with f: fTree
• Member functions begin with a capital: Loop()
• Constants begin with k: kInitialSize, kRed
• Global variables begin with g: gEnv
• Static data members begin with fg: fgTokenClient
• Enumeration types begin with E: EColorLevel
• Locals and parameters begin with

a lower case: nbytes
• Getters and setters begin with

Get and Set: SetLast(), GetFirst()

Machine Independent Types
Different machines may have different lengths for the same type. The most famous
example is the int type. It may be 16 bits on some old machines and 32 bits on some
newer ones. To ensure the size of your variables, use these pre defined types in ROOT:

• Char_t Signed Character 1 byte
• Uchar_t Unsigned Character 1 byte
• Short_t Signed Short integer 2 bytes
• UShort_t Unsigned Short integer 2 bytes
• Int_t Signed integer 4 bytes
• UInt_t Unsigned integer 4 bytes
• Long_t Signed long integer 8 bytes
• ULong_t Unsigned long integer 8 bytes
• Float_t Float 4 bytes
• Double_t Float 8 bytes
• Bool_t Boolean (0=false, 1=true)

If you do not want to save a variable on disk, you can use int or Int_t, the result will be
the same and the interpreter or the compiler will treat them in exactly the same way.

TObject
In ROOT, almost all classes inherit from a common base class called TObject. This kind
of architecture is also used in the Java language. The TObject class provides default
behavior and protocol for all objects in the ROOT system. The main advantage of this
approach is that it enforces the common behavior of the derived classes and consequently
it ensures the consistency of the whole system.

TObject provides protocol, i.e. (abstract) member functions, for:

• Object I/O (Read(), Write())
• Error handling (Warning(), Error(), SysError(), Fatal())
• Sorting (IsSortable(), Compare(), IsEqual(), Hash())
• Inspection (Dump(), Inspect())
• Printing (Print())
• Drawing (Draw(), Paint(), ExecuteEvent())
• Bit handling (SetBit(), TestBit())
• Memory allocation (operator new and delete, IsOnHeap())
• Access to meta information (IsA(), InheritsFrom())
• Object browsing (Browse(), IsFolder())

See "The Role of TObject" in the chapter "Adding a Class".

20 Getting Started June 2003 v3.05

Global Variables
ROOT has a set of global variables that apply to the session. For example, gDirectory
always holds the current directory, and gStyle holds the current style. All global variables
begin with “g” followed by a capital letter.

gROOT
The single instance of TROOT is accessible via the global gROOT and holds information
relative to the current session. By using the gROOT pointer you get the access to basically
every object created in a ROOT program. The TROOT object has several lists pointing to the
main ROOT objects.

The Collections of gROOT
During a ROOT session, the gROOT keeps a series of collections to manage objects. These
can be accessed with the gROOT::GetListOf… methods

gROOT->GetListOfClasses()
gROOT->GetListOfColors()
gROOT->GetListOfTypes()
gROOT->GetListOfGlobals()
gROOT->GetListOfGlobalFunctions()
gROOT->GetListOfFiles()
gROOT->GetListOfMappedFiles()
gROOT->GetListOfSockets()
gROOT->GetListOfCanvases()
gROOT->GetListOfStyles()
gROOT->GetListOfFunctions()
gROOT->GetListOfSpecials()
gROOT->GetListOfGeometries()
gROOT->GetListOfBrowsers()
gROOT->GetListOfMessageHandlers()

These methods return a TSeqCollection, meaning a collection of objects, and they can
be used to do list operations such as finding an object, or traversing the list and calling a
method for each of the members. See the TCollection class description for the full set
of methods supported for a collection.

For example, to find a canvas called c1:

root[] gROOT->GetListOfCanvases()->FindObject("c1")

This returns a pointer to a TObject, and before you can use it as a canvas you will need
cast it to a TCanvas*.

gFile
gFile is the pointer to the current opened file.

gDirectory
gDirectory is a pointer to the current directory. The concept and role of a directory is
explained in chapter Input/Output.

gPad
A graphic object is always drawn on the active pad. It is convenient to access the active
pad, no matter what it is. For that we have gPad that is always pointing to the active pad.
For example, if you want to change the fill color of the active pad to blue, but you do not
know its name, you can use gPad.

June 2003 v3.05 Getting Started 21

root[] gPad->SetFillColor(38)

To get the list of colors, if you have an open canvas, click in the "View" menu, selecting the
"Colors" entry.

gRandom
gRandom is a pointer to the current random number generator. By default, it points to a
TRandom object. Setting the seed to 0 implies that the seed will be generated from the time.
Any other value will be used as a constant.

The following basic random distributions are provided:

 Gaus(mean,sigma)

 Rndm()

 Landau(mean,sigma)

 Poisson(mean)

 Binomial(ntot,prob)

You can customize your ROOT session by replacing the random number generator. You
can delete gRandom and recreate it with your own:

root[] delete gRandom;
root[] gRandom = new TRandom3(0); //seed=0

TRandom3 derives from TRandom and is a very fast generator with higher periodicity.

gEnv
gEnv is the global variable (of type TEnv) with all the environment settings for the current
session. This variable is set by reading the contents of a .rootrc file (or
$ROOTSYS/etc/system.rootrc) at the beginning of the session. See "Environment
Setup" below for more information.

History File
You can use the up and down arrow at the command line, to access the previous and next
command. The commands are recorded in the history file $HOME/.root_hist. It contains
the last 100 commands. It is a text file, and you can edit and cut and paste from it.

You can specify the history file in the system.rootrc file (see below), by setting the
Rint.History option. You can also turn off the command logging in the
system.rootrc file with the option: Rint.History: -

Environment Setup
The behavior of a ROOT session can be tailored with the options in the rootrc file. At
start-up, ROOT looks for a rootrc file in the following order:

• ./.rootrc //local directory
• $HOME/.rootrc //user directory
• $ROOTSYS/etc/system.rootrc //global ROOT directory

If more than one rootrc file is found in the search paths above, the options are merged,
with precedence local, user, global.

While in a session, to see current settings, you can do:

22 Getting Started June 2003 v3.05

root[] gEnv->Print()

The rootrc file typically looks like:

Path used by dynamic loader to find shared libraries
Unix.*.Root.DynamicPath: .:~/rootlibs:$ROOTSYS/lib
Unix.*.Root.MacroPath: .:~/rootmacros:$ROOTSYS/macros

Path where to look for TrueType fonts
Unix.*.Root.UseTTFonts: true
Unix.*.Root.TTFontPath:
…
Activate memory statistics
Rint.Root.MemStat: 1
Rint.Load: rootalias.C
Rint.Logon: rootlogon.C
Rint.Logoff: rootlogoff.C
…
Rint.Canvas.MoveOpaque: false
Rint.Canvas.HighLightColor: 5

The various options are explained in $ROOTSYS/etc/system.rootrc.

The .rootrc file contents are combined. For example, if the flag to use true type fonts is
set to true in one of the system.rootrc files, you have to explicitly overwrite it and set it
to false. Removing the UseTTFonts statement in the local .rootrc file will not disable
true fonts.

The Script Path
ROOT looks for scripts in the path specified in the rootrc file in the Root.Macro.Path
variable. You can expand this path to hold your own directories.

Logon and Logoff Scripts
The rootlogon.C and rootlogoff.C files are script loaded and executed at start-up
and shutdown. The rootalias.C file is loaded but not executed. It typically contains small
utility functions. For example, the rootalias.C script that comes with the ROOT
distributions and is in the $ROOTSYS/tutorials defines the function edit(char
*file). This allows the user to call the editor from the command line. This particular
function will start the VI editor if the environment variable EDITOR is not set.

root[0] edit("c1.C")

For more details, see $ROOTSYS/tutorials/rootalias.C.

Tracking Memory Leaks
You can track memory usage and detect leaks by monitoring the number of objects that are
created and deleted (see TObjectTable). To use this facility, edit the file .rootrc if you
have this file or $ROOTSYS/etc/system.rootrc and edit or add the two following lines:

Root.MemStat: 1
Root.ObjectStat: 1

June 2003 v3.05 Getting Started 23

In your code or on the command line you can type the line:

gObjectTable->Print();

This line will print the list of active classes and the number of instances for each class. By
comparing consecutive print outs, you can see objects that you forgot to delete.

Note that this method cannot show leaks coming from the allocation of non-objects or
classes unknown to ROOT.

Memory Checker
A memory checking system was developed by D.Bertini and M.Ivanov and added in ROOT
version 3.02.07.

To activate the memory checker you can set the resource Root.MemCheck to 1 (e.g.:
Root.MemCheck: 1) in the .rootrc file. You also have to link with libNew.so (e.g. use
root-config --new --libs) or use rootn.exe. When these settings are in place,
you will find a file "memcheck.out" in the directory where you started your ROOT program
after the completion of the program execution.

You can also set the resource Root.MemCheckFile to the name of a file. The memory
information will be written to that file. The contents of this memcheck.out can be analyzed
and transformed into printable text via the memprobe program (in $ROOTSYS/bin).

Converting HBOOK/PAW Files
ROOT has a utility called h2root that you can use to convert your HBOOK/PAW
histograms or ntuples files into ROOT files. To use this program, you type the shell script
command:

h2root <hbookfile> <rootfile>

If you do not specify the second parameter, a file name is automatically generated for you.
If hbookfile is of the form file.hbook, then the ROOT file will be called file.root.

This utility converts HBOOK histograms into ROOT histograms of the class TH1F. HBOOK
profile histograms are converted into ROOT profile histograms (see class TProfile).
HBOOK row-wise and column-wise ntuples are automatically converted to ROOT Trees
(see the chapter on Trees). Some HBOOK column-wise ntuples may not be fully converted
if the columns are an array of fixed dimension (e.g. var[6]) or if they are a multi-
dimensional array.

HBOOK integer identifiers are converted into ROOT named objects by prefixing the integer
identifier with the letter "h" if the identifier is a positive integer and by "h_" if it is a negative
integer identifier. In case of row-wise or column-wise ntuples, each column is converted to
a branch of a tree. Note that h2root is able to convert HBOOK files containing several
levels of sub-directories.

Once you have converted your file, you can look at it and draw histograms or process
ntuples using the ROOT command line. An example of session is shown below:

// this connects the file hbookconverted.root
root[] TFile f("hbookconverted.root");

//display histogram named h10 (was HBOOK id 10)
root[] h10.Draw();

//display column "var" from ntuple h30
root[] h30.Draw("var");

You can also use the ROOT browser (see TBrowser) to inspect this file.

24 Getting Started June 2003 v3.05

The chapter on trees explains how to read a tree. ROOT includes a function
TTree::MakeClass to automatically generate the code for a skeleton analysis function
(see the chapter Example Analysis).

In case one of the ntuple columns has a variable length (e.g. px(ntrack)),
h.Draw("px") will histogram the px column for all tracks in the same histogram. Use the
script quoted above to generate the skeleton function and create/fill the relevant histogram
yourself.

June 2003 v3.05 Histograms 25

3 Histograms

This chapter covers the functionality of the histogram classes. We begin with an overview
of the histogram classes and their inheritance relationship. Then we give instructions on the
histogram features.

We have put this chapter ahead of the graphics chapter so that you can begin working with
histograms as soon as possible. Some of the examples have graphics commands that may
look unfamiliar to you. These are covered in the chapter on Input/Output.

The Histogram Classes
ROOT supports the following histogram types:

1-D histograms:

• TH1C: are histograms with one byte per channel. Maximum bin content = 255
• TH1S: are histograms with one short per channel. Maximum bin content = 65 535
• TH1F: are histograms with one float per channel. Maximum precision 7 digits
• TH1D: are histograms with one double per channel. Maximum precision 14 digits

2-D histograms:

• TH2C: are histograms with one byte per channel. Maximum bin content = 255
• TH2S: are histograms with one short per channel. Maximum bin content = 65 535
• TH2F: are histograms with one float per channel. Maximum precision 7 dig
• TH2D: are histograms with one double per channel. Maximum precision 14 digits

3-D histograms:

• TH3C: are histograms with one byte per channel. Maximum bin content = 255
• TH3S: are histograms with one short per channel. Maximum bin content = 65 535
• TH3F: are histograms with one float per channel. Maximum precision 7 digits
• TH3D: are histograms with one double per channel. Maximum precision 14 digits

Profile histograms:

• TProfile: one dimensional profiles
• TProfile2D: two dimensional profiles

Profile histograms are used to display the mean value of Y and its RMS for each bin in X.
Profile histograms are in many cases an elegant replacement of two-dimensional
histograms. The inter-relation of two measured quantities X and Y can always be visualized
with a two-dimensional histogram or scatter-plot. If Y is an unknown but single-valued
approximate function of X, it will have greater precisions in a profile histogram than in a
scatter plot.

All histogram classes are derived from the base class TH1. The next image shows the class
hierarchy of the histogram classes.

26 Histograms June 2003 v3.05

TH1

TH3 TH2

TH1C TH1S TH1F TH1D

TProfile

TH2C TH2S TH2F TH2DTH3S TH3F

TProfile2D

TH3C TH3D

The TH*C classes also inherit from the array class TArrayC.

The TH*S classes also inherit from the array class TArrayS.

The TH*F classes also inherit from the array class TArrayF.

The TH*D classes also inherit from the array class TArrayD.

The histogram classes have a rich set of methods. Below is a list of what one can do with
the histogram classes.

Creating Histograms
Histograms are created with constructors:

TH1F *h1 = new TH1F("h1","h1 title",100,0,4.4);
TH2F *h2 = new TH2F("h2","h2 title",40,0,4,30,-3,3);

The parameters to the TH1 constructor are: the name of the histogram, the title, the number
of bins, the x minimum, and x maximum.

Histograms may also be created by:

• Calling the Clone method of an existing histogram (see below)
• Making a projection from a 2-D or 3-D histogram (see below)
• Reading a histogram from a file

When a histogram is created, a reference to it is automatically added to the list of in-memory
objects for the current file or directory. This default behavior can be disabled for an individual
histogram or for all histograms by setting a global switch.

Here is the syntax to set the directory of a histogram:

// to set the in-memory directory for h the current histogram
h->SetDirectory(0);

// global switch to disable
TH1::AddDirectory(kFALSE);

When the histogram is deleted, the reference to it is removed from the list of objects in
memory. In addition, when a file is closed, all histograms in memory associated with this file
are automatically deleted. See chapter Input/Output.

June 2003 v3.05 Histograms 27

Fixed or Variable Bin Size
All histogram types support fixed or variable bin sizes. 2-D histograms may have fixed size
bins along X and variable size bins along Y or vice-versa. The functions to fill, manipulate,
draw, or access histograms are identical in both cases.

To create a histogram with variable bin size one can use this constructor:

TH1(const char name,const *title,Int_t nbins,*xbins)

The parameters to this constructor are:

• title: histogram title
• nbins: number of bins
• xbins: array of low-edges for each bin. It is an array of size nbins+1

Each histogram always contains three TAxis objects: fXaxis, fYaxis, and fZaxis. To
access the axis parameters first get the axis from the histogram, and then call the TAxis
access methods.

TAxis *xaxis = h->GetXaxis();
Double_t binCenter = xaxis->GetBinCenter(bin);

See class TAxis for a description of all the access methods. The axis range is always
stored internally in double precision.

Bin Numbering Convention
For all histogram types: nbins, xlow, xup

Bin# 0 contains the underflow.

Bin# 1 contains the first bin with low-edge (xlow INCLUDED).

The second to last bin (bin# nbins) contains the upper-edge (xup EXCLUDED).

The Last bin (bin# nbins+1) contains the overflow.

In case of 2-D or 3-D histograms, a "global bin" number is defined. For example, assuming
a 3-D histogram with binx, biny, binz, the function returns a global/linear bin number.

Int_t bin = h->GetBin(binx,biny,binz);

This global bin is useful to access the bin information independently of the dimension.

Re-binning
At any time, a histogram can be re-binned via the TH1::Rebin method. It returns a new
histogram with the re-binned contents. If bin errors were stored, they are recomputed
during the re-binning.

Filling Histograms
A histogram is typically filled with statements like:

h1->Fill(x);
h1->Fill(x,w); //with weight
h2->Fill(x,y);
h2->Fill(x,y,w);
h3->Fill(x,y,z);
h3->Fill(x,y,z,w);

The Fill method computes the bin number corresponding to the given x, y or z argument
and increments this bin by the given weight. The Fill() method returns the bin number

28 Histograms June 2003 v3.05

for 1-D histograms or global bin number for 2-D and 3-D histograms. If TH1::Sumw2() has
been called before filling, the sum of squares is also stored.

One can also increment a bin number directly by calling TH1::AddBinContent. Replace
the existing content via TH1::SetBinContent, and access the bin content of a given bin
via TH1::GetBinContent.

Double_t binContent = h->GetBinContent(bin);

Automatic Re-binning Option
By default, the number of bins is computed using the range of the axis. You can change
this to automatically re-bin by setting the automatic re-binning option:

h->SetBit(TH1::kCanRebin);

Once this is set, the Fill method will automatically extend the axis range to accommodate
the new value specified in the Fill argument. The method used is to double the bin size
until the new value fits in the range, merging bins two by two.

This automatic binning option is extensively used by the TTree::Draw function when
drawing histograms of variables in TTree with an unknown range. The automatic binning
option is supported for 1-D, 2-D and 3-D histograms.

During filling, some statistics parameters are incremented to compute the mean value and
root mean square with the maximum precision. In case of histograms of type TH1C, TH1S,
TH2C, TH2S, TH3C, TH3S a check is made that the bin contents do not exceed the
maximum positive capacity (127 or 65 535). Histograms of all types may have positive
or/and negative bin contents.

Random Numbers and Histograms
TH1::FillRandom can be used to randomly fill a histogram using the contents of an
existing TF1 function or another TH1 histogram (for all dimensions). For example, the
following two statements create and fill a histogram 10 000 times with a default Gaussian
distribution of mean 0 and sigma 1:

TH1F h1("h1","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);

TH1::GetRandom can be used to return a random number distributed according the
contents of a histogram.

To fill a histogram following the distribution in an existing histogram you can use the second
signature of TH1::FillRandom.

This code snipped assumes that h is an existing histogram (TH1).

root[] TH1F h2("h2","Random Histo",100,-3,3);
root[] h2->FillRandom(h,1000);

The distribution contained in the histogram h (TH1) is integrated over the channel contents.
It is normalized to 1. Getting one random number implies:

• Generating a random number between 0 and 1 (say r1)
• Find the bin in the normalized integral for r1
• Fill histogram channel

The second parameter (1000) indicates how many random numbers are generated.

June 2003 v3.05 Histograms 29

Adding, Dividing, and Multiplying
Many types of operations are supported on histograms or between histograms:

• Addition of a histogram to the current histogram
• Additions of two histograms with coefficients and storage into the current histogram
• Multiplications and divisions are supported in the same way as additions.
• The Add, Divide and Multiply functions also exist to add, divide or multiply a

histogram by a function.

If a histogram has associated error bars (TH1::Sumw2 has been called), the resulting error
bars are also computed assuming independent histograms. In case of divisions, binomial
errors are also supported.

Projections
One can:

• Make a 1-D projection of a 2-D histogram or Profile. See functions
TH2::ProjectionX, TH2::ProjectionY, TH2::ProfileX,
TH2::ProfileY, TProfile::ProjectionX, TProfile2D::ProjectionXY

• Make a 1-D, 2-D or profile out of a 3-D histogram see functions TH3::ProjectionZ,
TH3::Project3D.

One can fit these projections via: TH2::FitSlicesX, TH2::FitSlicesY,
TH3::FitSlicesZ.

Drawing Histograms
When you call the Draw method of a histogram (TH1::Draw) for the first time, it creates a
THistPainter object and saves a pointer to painter as a data member of the histogram.
The THistPainter class specializes in the drawing of histograms. It allows logarithmic
axes (x, y, z) when the CONT drawing option is using. The THistPainter class is
separated from the histogram so that one can have histograms without the graphics
overhead, for example in a batch program. The choice to give each histogram has its own
painter rather than a central singleton painter, allows two histograms to be drawn in two
threads without overwriting the painter's values.

When a displayed histogram is filled again, you do not have to call the Draw method again.
The image is refreshed the next time the pad is updated. A pad is updated after one of
these three actions:

• A carriage control on the ROOT command line
• A click inside the pad
• A call to TPad::Update

By default, a call to TH1::Draw clears the pad of all objects before drawing the new image
of the histogram. You can use the "SAME" option to leave the previous display in tact and
superimpose the new histogram. The same histogram can be drawn with different graphics
options in different pads.

When a displayed histogram is deleted, its image is automatically removed from the pad.

To create a copy of the histogram when drawing it, you can use TH1::DrawClone. This
will clone the histogram and allow you to change and delete the original one without
affecting the clone.

You can use TH1::DrawNormalized to draw a normalized copy of a histogram.

TH1 *TH1::DrawNormalized(Option_t *option,Double_t norm) const

A clone of this histogram is normalized to norm and drawn with option. A pointer to the
normalized histogram is returned. The contents of the histogram copy are scaled such that
the new sum of weights (excluding under and overflow) is equal to norm.

30 Histograms June 2003 v3.05

Note that the returned normalized histogram is not added to the list of histograms in the
current directory in memory. It is the user's responsibility to delete this histogram. The
kCanDelete bit is set for the returned object. If a pad containing this copy is cleared, the
histogram will be automatically deleted. See the chapter ‘Draw Options’ for the list of
options.

Setting the Style
Histograms use the current style gStyle, which is the global object of class TStyle. To
change the current style for histograms, the TStyle class provides a multitude of methods
ranging from setting the fill color to the axis tick marks. Here are a few examples:

void SetHistFillColor(Color_t color = 1)
void SetHistFillStyle(Style_t styl = 0)
void SetHistLineColor(Color_t color = 1)
void SetHistLineStyle(Style_t styl = 0)
void SetHistLineWidth(Width_t width = 1)

When you change the current style and would like to propagate the change to a previously
created histogram you can call TH1::UseCurrentStyle. You will need to call
UseCurrentStyle on each histogram.

When reading many histograms from a file and you wish to update them to the current style
you can use gROOT::ForceStyle and all histograms read after this call will be updated to
use the current style (also see the chapter Graphics and Graphic User Interfaces). When a
histogram is automatically created as a result of a TTree::Draw, the style of the histogram
is inherited from the tree attributes and the current style is ignored. The tree attributes are
the ones set in the current TStyle at the time the tree was created. You can change the
existing tree to use the current style, by calling TTree::UseCurrentStyle().

Draw Options
 The following draw options are supported on all histogram classes:

• "AXIS": Draw only the axis
• "HIST": When an histogram has errors it is visualized by default with error bars. To

visualize it without errors use the option HIST together with the required
option (e.g. "HIST SAME C")

• "SAME": Superimpose on previous picture in the same pad
• "CYL": Use cylindrical coordinates
• "POL": Use polar coordinates
• "SPH": Use spherical coordinates
• "PSR": Use pseudo-rapidity/phi coordinates
• "LEGO": Draw a lego plot with hidden line removal
• "LEGO1": Draw a lego plot with hidden surface removal
• "LEGO2": Draw a lego plot using colors to show the cell contents
• "SURF": Draw a surface plot with hidden line removal
• "SURF1": Draw a surface plot with hidden surface removal
• "SURF2": Draw a surface plot using colors to show the cell contents
• "SURF3": Same as SURF with a contour view on the top
• "SURF4": Draw a surface plot using Gouraud shading
• “SURF5”: Same as SURF3 but only the colored contour is drawn. Used with option

CYL, SPH or PSR it allows to draw colored contours on a sphere, a cylinder
or in a pseudo rapidly space. In Cartesian or polar coordinates, option
SURF3 is used.

June 2003 v3.05 Histograms 31

 The following options are supported for 1-D histogram classes:

• "AH": Draw the histogram, but not the axis labels and tick marks
• "B": Draw a bar chart
• "C": Draw a smooth curve through the histogram bins
• "E": Draw the error bars
• "E0": Draw the error bars including bins with 0 contents
• "E1": Draw the error bars with perpendicular lines at the edges
• "E2": Draw the error bars with rectangles
• "E3": Draw a fill area through the end points of the vertical error bars
• "E4": Draw a smoothed filled area through the end points of the error bars
• "L": Draw a line through the bin contents
• "P": Draw a (Poly) marker at each bin using the histogram's current marker style
• "P0": Draw current marker at each bin including empty bins
• "*H": Draw histogram with a * at each bin
• "LF2": Draw histogram as with option "L" but with a fill area. Note that "L” also

draws a fill area if the histogram fill color is set but the fill area corresponds
to the histogram contour.

• "9”: Force histogram to be drawn in high resolution mode. By default, the
histogram is drawn in low resolution in case the number of bins is greater
than the number of pixels in the current pad

• “][“: Draw histogram without the vertical lines for the first and the last bin. Use it
when superposing many histograms on the same picture.

The following options are supported for 2-D histogram classes:

• "ARR": Arrow mode. Shows gradient between adjacent cells
• "BOX": Draw a box for each cell with surface proportional to contents
• "COL": Draw a box for each cell with a color scale varying with contents
• "COLZ": Same as "COL" with a drawn color palette
• "CONT": Draw a contour plot (same as CONT0)
• "CONTZ": Same as "CONT" with a drawn color palette
• "CONT0": Draw a contour plot using surface colors to distinguish contours
• "CONT1": Draw a contour plot using line styles to distinguish contours
• "CONT2": Draw a contour plot using the same line style for all contours
• "CONT3": Draw a contour plot using fill area colors
• "CONT4": Draw a contour plot using surface colors (SURF option at theta = 0)
• "LIST": Generate a list of TGraph objects for each contour
• "FB": To be used with LEGO or SURFACE, suppress the Front-Box
• "BB": To be used with LEGO or SURFACE, suppress the Back-Box
• "SCAT": Draw a scatter-plot (default)
• "TEXT": Draw cell contents as text
• "[cutg]": Draw only the sub-range selected by the TCutG name "cutg".
• "Z": The "Z" option can be specified with the options: BOX, COL, CONT, SURF,

and LEGO to display the color palette with an axis indicating the value of the
corresponding color on the right side of the picture.

Most options can be concatenated without spaces or commas, for example:

h->Draw("E1SAME");
h->Draw("e1same");

The options are not case sensitive. The options BOX, COL and COLZ, use the color palette
defined in the current style (see TStyle::SetPalette)

The options CONT, SURF, and LEGO have by default 20 equidistant contour levels, you can
change the number of levels with TH1::SetContour.

32 Histograms June 2003 v3.05

You can also set the default drawing option with TH1::SetOption. To see the current
option use TH1::GetOption. For example:

h->SetOption("lego");
h->Draw(); // will use the lego option
h->Draw("scat") // will use the scatter plot option

Statistics Display
By default, drawing a histogram includes drawing the statistics box. To eliminate the
statistics box use: TH1::SetStats(kFALSE).

If the statistics box is drawn, you can select the type of information displayed with
gStyle->SetOptStat(mode). The mode has up to seven digits that can be set to on (1)
or off (0). mode = iourmen (default = 0001111)

• n = 1 the name of histogram is printed
• e = 1 the number of entries printed
• m = 1 the mean value printed
• r = 1 the root mean square printed
• u = 1 the number of underflows printed
• o = 1 the number of overflows printed
• i = 1 the integral of bins printed

WARNING: never call SetOptStat(000111); but SetOptStat(1111), 0001111 will be
taken as an octal number.

With the option "same", the statistic box is not redrawn. With the option "same", the
statistic box is drawn. If it hides the previous statistics box, you can change its position with
these lines (if h is the pointer to the histogram):

root[] TPaveStats *st =
 (TPaveStats*)h->GetListOfFunctions()->FindObject("stats");
root[] st->SetX1NDC (newx1); //new x start position
root[] st->SetX2NDC (newx2); //new x end position

Setting Line, Fill, Marker, and Text Attributes
The histogram classes inherit from the attribute classes: TAttLine, TAttFill,
TAttMarker and TAttText. See the description of these classes for the list of options.

Setting Tick Marks on the Axis
The TPad::SetTicks method specifies the type of tick marks on the axis. Assume
tx = gPad->GetTickx() and ty = gPad->GetTicky().

• tx = 1; tick marks on top side are drawn (inside)
• tx = 2; tick marks and labels on top side are drawn
• ty = 1; tick marks on right side are drawn (inside)
• ty = 2; tick marks and labels on right side are drawn
• By default only the left Y axis and X bottom axis are drawn (tx=ty=0)

Use TPad::SetTicks(tx,ty) to set these options. See also The TAxis methods to set
specific axis attributes. In case multiple color filled histograms are drawn on the same pad,
the fill area may hide the axis tick marks. One can force a redraw of the axis over all the
histograms by calling:

gPad->RedrawAxis();

June 2003 v3.05 Histograms 33

Giving Titles to the X, Y and Z Axis
Because the axis title is an attribute of the axis, you have to get the axis first and then call
TAxis::SetTitle.

h->GetXaxis()->SetTitle("X axis title");
h->GetYaxis()->SetTitle("Y axis title");

The histogram title and the axis titles can be any TLatex string. The titles are part of the
persistent histogram. For example if you wanted to write E with a subscript (T) you could
use this:

h->GetXaxis()->SetTitle("E_{T}");

For a complete explanation of the Latex mathematical expressions see chapter "Graphics
and Graphical User Interface". It is also possible to specify the histogram title and the axis
titles at creation time. These titles can be given in the "title" parameter. They must be
separated by ";":

TH1F* h=new TH1F("h","Histogram title;X Axis;Y Axis;Z Axis",100,0,1);

Any title can be omitted:

TH1F* h=new TH1F("h","Histogram title;;Y Axis",100,0,1);
TH1F* h=new TH1F("h",";;Y Axis",100,0,1);

The method SetTitle has the same syntax:

h->SetTitle("Histogram title;An other X title Axis");

The SCATter Plot Option
By default, 2D histograms are drawn as scatter plots. For each cell (i,j) a number of
points proportional to the cell content are drawn. A maximum of 500 points per cell are
drawn. If the maximum is above 500 contents are normalized to 500.

The ARRow Option
The ARR option shows the gradient between adjacent cells. For each cell (i,j) an arrow is
drawn. The orientation of the arrow follows the cell gradient

The BOX Option
For each cell (i,j) a box is drawn with surface proportional to contents.

34 Histograms June 2003 v3.05

The ERRor Bars Options
'E' Default. Draw only error bars, without markers

'E0' Draw also bins with 0 contents

'E1' Draw small lines at the end of error bars

'E2' Draw error rectangles

'E3' Draw a fill area through the end points of vertical error bars

‘E4' Draw a smoothed filled area through the end points of error bars

The Color Option
For each cell (i,j) a box is drawn with a color proportional to the cell content. The color
table used is defined in the current style (gStyle). The color palette in TStyle can be
modified with TStyle::SetPalette.

June 2003 v3.05 Histograms 35

The TEXT Option
For each cell (i, j) the cell content is printed. The text attributes are:

Text font = current TStyle font
Text size = 0.02* pad-height * marker-size
Text color = marker color

The CONTour Options
The following contour options are supported:

• "CONT": Draw a contour plot (same as CONT0)
• "CONT0": Draw a contour plot using surface colors to distinguish contours
• "CONT1": Draw a contour plot using line styles to distinguish contours
• "CONT2": Draw a contour plot using the same line style for all contours
• "CONT3": Draw a contour plot using fill area colors
• "CONT4": Draw a contour plot using surface colors (SURF option at theta = 0)

36 Histograms June 2003 v3.05

The default number of contour levels is 20 equidistant levels and can be changed with
TH1::SetContour. When option "LIST" is specified together with option "CONT", the
points used to draw the contours are saved in the TGraph object and are accessible in the
following way:

TObjArray *contours = gROOT->GetListOfSpecials()->FindObject("contours");
Int_t ncontours = contours->GetSize();
TList *list = (TList*)contours->At(i);

Where "i" is a contour number and list contains a list of TGraph objects. For one given
contour, more than one disjoint poly-line may be generated. The TGraph numbers per
contour are given by list->GetSize(). Here we show how to access the first graph in
the list.

TGraph *gr1 = (TGraph*)list->First();

The LEGO Options
In a lego plot, the cell contents are drawn as 3D boxes, with the height of the box
proportional to the cell content. A lego plot can be represented in several coordinate
systems; the default system is Cartesian coordinates. Other possible coordinate systems
are CYL, POL, SPH, and PSR.

"LEGO": Draw a lego plot with hidden line removal
"LEGO1": Draw a lego plot with hidden surface removal
"LEGO2": Draw a lego plot using colors to show the cell contents

See TStyle::SetPalette to change the color palette. We suggest you use palette 1
with the call

gStyle->SetColorPalette(1);

June 2003 v3.05 Histograms 37

The SURFace Options
In a surface plot, cell contents are represented as a mesh. The height of the mesh is
proportional to the cell content. A surface plot can be represented in several coordinate
systems. The default is Cartesian coordinates, and the other possible systems are CYL,
POL, SPH, and PSR.

• "SURF": Draw a surface plot with hidden line removal
• "SURF1": Draw a surface plot with hidden surface removal
• "SURF2": Draw a surface plot using colors to show the cell contents
• "SURF3": Same as SURF with a contour view on the top
• "SURF4": Draw a surface plot using Gouraud shading

The following picture uses SURF1. See TStyle::SetPalette to change the color
palette. We suggest you use palette 1 with the call:

gStyle->SetColorPalette(1);

The BAR Options
When the option "bar" or "hbar" is specified, a bar chart is drawn.

Vertical BAR chart
The options are "bar","bar0","bar1","bar2","bar3","bar4".

• The bar is filled with the histogram fill color.
• The left side of the bar is drawn with a light fill color
• The right side of the bar is drawn with a dark fill color
• The percentage of the bar drawn with either the light or dark color is:

o 0 per cent for option "bar" or "bar0"
o 10 per cent for option "bar1"
o 20 per cent for option "bar2"
o 30 per cent for option "bar3"
o 40 per cent for option "bar4"

38 Histograms June 2003 v3.05

Use TH1::SetBarWidth to control the bar width (default is the bin width).
Use TH1::SetBarOffset to control the bar offset (default is 0).
See example in $ROOTSYS/tutorials/hbars.C

Horizontal BAR Chart
The options for the horizontal bar chart are:
"hbar","hbar0","hbar1","hbar2","hbar3","hbar4"

• A horizontal bar is drawn for each bin.
• The bar is filled with the histogram fill color
• The bottom side of the bar is drawn with a light fill color
• The top side of the bar is drawn with a dark fill color
• The percentage of the bar drawn with either the light or dark color is

o 0 per cent for option "hbar" or "hbar0"
o 10 per cent for option "hbar1"
o 20 per cent for option "hbar2"
o 30 per cent for option "hbar3"
o 40 per cent for option "hbar4"

Use TH1::SetBarWidth to control the bar width (default is the bin width).
Use TH1::SetBarOffset to control the bar offset (default is 0).
See example in $ROOTSYS/tutorials/hbars.C

June 2003 v3.05 Histograms 39

The Z Option: Display the Color Palette on the Pad
The "Z" option can be specified with the options: BOX, COL, CONT, SURF, and LEGO
to display the color palette with an axis indicating the value of the corresponding color on
the right side of the picture.

If there is not enough space on the right side, you can increase the size of the right margin
by calling TPad::SetRightMargin().

The attributes used to display the palette axis values are taken from the Z axis of the
object. For example, you can set the labels size on the palette axis with:

hist->GetZaxis()->SetLabelSize();

Setting the Color Palette
You can set the color palette with TStyle::SetPalette, e.g.

gStyle->SetPalette(ncolors,colors);

For example, the option COL draws a 2-D histogram with cells represented by a box filled
with a color index, which is a function of the cell content. If the cell content is N, the color
index used will be the color number in colors[N]. If the maximum cell content is greater
than ncolors, all cell contents are scaled to ncolors.

If ncolors <= 0, a default palette (see below) of 50 colors is defined. This palette is
recommended for pads, labels.

If ncolors == 1 && colors == 0, a pretty palette with a violet to red spectrum is
created. We recommend you use this palette when drawing lego plots, surfaces, or
contours.

If ncolors > 0 and colors == 0, the default palette is used with a maximum of
ncolors.

The default palette defines:

• Index 0 to 9: shades of gray
• Index 10 to 19: shades of brown
• Index 20 to 29: shades of blue
• Index 30 to 39: shades of red
• Index 40 to 49: basic colors

The color numbers specified in the palette can be viewed by selecting the item "colors" in
the "VIEW" menu of the canvas toolbar. The color's red, green, and blue values can be
changed via TColor::SetRGB.

TPaletteAxis
A TPaletteAxis object is used to display the color palette when drawing 2D histograms.
The object is automatically created when drawing a 2D histogram when the option "z" is
specified. It is added to the histogram list of functions. It can be retrieved and its attributes
can be changed with:

TPaletteAxis *palette=(TPaletteAxis*)h->FindObject("palette");

The palette can be interactively moved and resized. The context menu can be used to set
the axis attributes. It is possible to select a range on the axis, to set the min/max in z.

40 Histograms June 2003 v3.05

Drawing a Sub-range of a 2-D Histogram
(the [cutg] Option)

Using a TCutG object, it is possible to draw a 2D histogram sub-range. One must create a
graphical cut (mouse or C++) and specify the name of the cut between [] in the Draw
option. For example, with a TCutG named "cutg", one can call:

myhist->Draw("surf1 [cutg]");

Or, assuming two graphical cuts with name "cut1" and "cut2", one can do:

h1.Draw("lego");
h2.Draw("[cut1,-cut2],surf,same");

The second Draw will superimpose on top of the first lego plot a subset of h2 using the
"surf" option with:

• all the bins inside cut1
• all the bins outside cut2

Up to 16 cuts may be specified in the cut string delimited by "[..]". Currently only the
following drawing options are sensitive to the cuts option: col, box, scat, hist,
lego, surf and cartesian coordinates only.

See a complete example in the tutorial $ROOTSYS/tutorials/fit2a.C. This tutorial
produces the following picture:

Drawing Options for 3-D Histograms
By default a 3D scatter plot is drawn. If the "BOX" option is specified, a 3D box with a
volume proportional to the cell content is drawn.

Superimposing Histograms with Different Scales
The following script creates two histograms; the second histogram is the bins integral of the
first one. It shows a procedure to draw the two histograms in the same pad and it draws the
scale of the second histogram using a new vertical axis on the right side.

June 2003 v3.05 Histograms 41

void twoscales() {
 TCanvas *c1 = new TCanvas("c1","different scales hists",600,400);

 //create, fill and draw h1
 gStyle->SetOptStat(kFALSE);
 TH1F *h1 = new TH1F("h1","my histogram",100,-3,3);
 Int_t i;
 for (i=0;i<10000;i++) h1->Fill(gRandom->Gaus(0,1));
 h1->Draw();
 c1->Update();
 //create hint1 filled with the bins integral of h1
 TH1F *hint1 = new TH1F("hint1","h1 bins integral",100,-3,3);
 Float_t sum = 0;
 for (i=1;i<=100;i++) {
 sum += h1->GetBinContent(i);
 hint1->SetBinContent(i,sum);
 }
 //scale hint1 to the pad coordinates
 Float_t rightmax = 1.1*hint1->GetMaximum();
 Float_t scale = gPad->GetUymax()/rightmax;
 hint1->SetLineColor(kRed);
 hint1->Scale(scale);
 hint1->Draw("same");
 //draw an axis on the right side
 TGaxis *axis = new TGaxis(gPad->GetUxmax(),gPad->GetUymin(),
 gPad->GetUxmax(), gPad->GetUymax(),0,rightmax,510,"+L");
 axis->SetLineColor(kRed);
 axis->SetLabelColor(kRed);
 axis->Draw();
}

Making a Copy of an Histogram
Like for any other ROOT object derived from TObject, one can use the Clone method.
This makes an identical copy of the original histogram including all associated errors and
functions:

TH1F *hnew = (TH1F*)h->Clone();
hnew->SetName("hnew");
// renaming is recommended, because otherwise you will
// have two histograms with the same name

42 Histograms June 2003 v3.05

Normalizing Histograms
You can scale a histogram (TH1 *h) such that the bins integral is equal to the normalization
parameter norm with:

Double_t scale = norm/h->Integral();
h->Scale(scale);

Saving/Reading Histograms to/from a File
The following statements create a ROOT file and store a histogram on the file. Because
TH1 derives from TNamed, the key identifier on the file is the histogram name:

TFile f("histos.root","new");
TH1F h1("hgaus","histo from a gaussian",100,-3,3);
h1.FillRandom("gaus",10000);
h1->Write();

To read this histogram in another ROOT session, do:

TFile f("histos.root");
TH1F *h = (TH1F*)f.Get("hgaus");

One can save all histograms in memory to the file by:

file->Write();

For a more detailed explanation, see chapter Input/Output.

Miscellaneous Operations
• TH1::KolmogorovTest(TH1 *h2,Option_t *option)is statistical test of

compatibility in shape between two histograms. The parameter option is a character
string that specifies options

o "U" include Underflows in test (also for 2-dim)

o "O" include Overflows (also valid for 2-dim)

o "N" include comparison of normalizations

o "D" put out a line of "Debug" printout

o "M" return the maximum Kolmogorov distance instead of prob

o "X" run the pseudo experiments post-processor with the following procedure: it
makes pseudo experiments based on random values from the parent
distribution and compare the KS distance of the pseudo experiment to the
parent distribution. Bin the KS distances in a histogram, and then take the
integral of all the KS values above the value obtained from the original data to
Monte Carlo distribution. The number of pseudo-experiments NEXPT is
currently fixed at 1000. The function returns the integral. Note that this option
"X" is much slower.

• TH1::Smooth - it smoothes the bin contents of a 1D histogram
• TH1::Integral: returns the integral of bin contents in a given bin range
• TH1::GetMean(int axis):returns the mean value along axis
• TH1::GetRMS(int axis):returns the Root Mean Square along axis
• TH1::GetEntries(): returns the number of entries
• TH1::GetAsymmetry(TH1 *h2,Double_t c2,Double_t dc2) : returns an

histogram containing the asymmetry of this histogram with h2, where the asymmetry
is defined as:

June 2003 v3.05 Histograms 43

Asymmetry = (h1 - h2)/(h1 + h2) //where h1 = this

It works for 1D, 2D, etc. histograms. The parameter c2 is an optional argument that
gives a relative weight between the two histograms, and c2 is the error on this weight.
This is useful, for example, when forming an asymmetry between two histograms from
two different data sets that need to be normalized to each other in some way. The
function calculates the errors assuming Poisson statistics on h1 and h2 (that is,
dh = sqrt(h)). Here is an example: assuming h1 and h2 are already filled:

h3 = h1->GetAsymmetry(h2)

then h3 is created and filled with the asymmetry between h1 and h2; h1 and h2 are left
intact. Note that the user’s responsibility is to ménage the created histograms.

• TH1::Reset(): resets the bin contents and errors of a histogram

Alphanumeric Bin Labels
By default, a histogram axis is drawn with its numeric bin labels. One can specify
alphanumeric labels instead.

Option 1: SetBinLabel
To set an alphanumeric bin label call:

TAxis::SetBinLabel(bin,label);

This can always be done before or after filling. When the histogram is drawn, bin labels will
be automatically drawn.

Option 2: Fill
You can also call a Fill function with one of the arguments being a string:

hist1->Fill(somename,weigth);
hist2->Fill(x,somename,weight);
hist2->Fill(somename,y,weight);
hist2->Fill(somenamex,somenamey,weight);

See example in $ROOTSYS/tutorials/hlabels1.C, hlabels2.C.

44 Histograms June 2003 v3.05

Option 3: TTree::Draw
You can use a char* variable type to histogram strings with TTree::Draw.

tree.Draw("Nation::Division");
// where "Nation" and "Division" are two char* branches of a Tree

There is an example in $ROOTSYS/tutorials/cernstaff.C.

If a variable is defined as char* it is drawn as a string by default. You change that and
draw the value of char[0] as an integer by adding an arithmetic operation to the
expression as shown below.

tree.Draw("MyChar + 0");
//this will draw the integer value of MyChar[0] where "MyChar" is char[5]

Sort Options
When using the options 2 or 3 above, the labels are automatically added to the list
(THashList) of labels for a given axis. By default, an axis is drawn with the order of bins
corresponding to the filling sequence. It is possible to reorder the axis alphabetically or by
increasing or decreasing values. The reordering can be triggered via the TAxis context
menu by selecting the menu item "LabelsOption" or by calling directly.

TH1::LabelsOption(option,axis)

Where axis may be "X","Y" or "Z". The parameter option may be:

• "a" sort by alphabetic order
• ">" sort by decreasing values
• "<" sort by increasing values
• "h" draw labels horizontal
• "v" draw labels vertical
• "u" draw labels up (end of label right adjusted)
• "d" draw labels down (start of label left adjusted)

When using the option 2 above, new labels are added by doubling the current number of
bins in case one label does not exist yet. When the Filling is terminated, it is possible to trim
the number of bins to match the number of active labels by calling:

TH1::LabelsDeflate(axis)

Where axis = "X","Y" or "Z"

This operation is automatic when using TTree::Draw. Once bin labels have been created,
they become persistent if the histogram is written to a file or when generating the C++ code
via SavePrimitive.

June 2003 v3.05 Histograms 45

Histogram Stacks
A THStack is a collection of TH1 (or derived) objects. To add a histogram to the stack, use
THStack::Add(TH1 *h). The THStack owns the objects in the list.

By default, THStack::Draw draws the histograms stacked as shown in the left pad in the
picture above. If the option "nostack” is used, the histograms are superimposed as if
they were drawn one at a time using the "same" draw option. The right pad in the picture
above illustrates the THStack drawn with the "nostack" option.

hs->Draw("nostack");

THStack Example
Next is a simple example, for a more complex example see
$ROOTSYS/tutorials/hstack.C.

{
 THStack hs("hs","test stacked histograms");
 TH1F *h1 = new TH1F("h1","test hstack",100,-4,4);
 h1->FillRandom("gaus",20000);
 h1->SetFillColor(kRed);
 hs.Add(h1);

 TH1F *h2 = new TH1F("h2","test hstack",100,-4,4);
 h2->FillRandom("gaus",15000);
 h2->SetFillColor(kBlue);
 hs.Add(h2);

 TH1F *h3 = new TH1F("h3","test hstack",100,-4,4);
 h3->FillRandom("gaus",10000);
 h3->SetFillColor(kGreen);
 hs.Add(h3);

 TCanvas c1("c1","stacked hists",10,10,700,900);
 c1.Divide (1,2);
 c1.cd(1);
 hs.Draw();
 c1.cd(2);
 hs->Draw("nostack");
}

46 Histograms June 2003 v3.05

Profile Histograms
Profile histograms are in many cases an elegant replacement of two-dimensional
histograms. The relationship of two quantities X and Y can be visualized by a two-
dimensional histogram or a scatter-plot; its representation is not particularly satisfactory,
except for sparse data. If Y is an unknown [but single-valued] function of X, it can be
displayed by a profile histogram with much better precision than by a scatter-plot. Profile
histograms display the mean value of Y and its RMS for each bin in X.

The following shows the contents [capital letters] and the values shown in the graphics
[small letters] of the elements for bin j.

When you fill a profile histogram with TProfile.Fill[x,y]:

H[j] will contain for each bin j the sum of the y values for this bin
L[j] contains the number of entries in the bin j.
e[j] or s[j] will be the resulting error depending on the selected option described in Build
Options below.

E[j] = sum Y**2

L[j] = number of entries in bin J

H[j] = sum Y

h[j] = H[j] / L[j]

s[j] = sqrt[E[j] / L[j] - h[j]**2]

e[j] = s[j] / sqrt[L[j]]

In the special case where s[j] is zero, when there is only one entry per bin, e[j] is
computed from the average of the s[j] for all bins. This approximation is used to keep the
bin during a fit operation.

The TProfile Constructor
The TProfile constructor takes up to six arguments. The first five parameters are similar
to TH1D::TH1D.

TProfile(const char *name,const char *title,Int_t nbins,
 Axis_t xlow,Axis_t xup,Option_t *option)

The first five parameters are similar to TH1D::TH1D. All values of y are accepted at filling
time. To fill a profile histogram, you must use TProfile::Fill function.

Note that when filling the profile histogram the method TProfile::Fill checks if the
variable y is between fYmin and fYmax. If a minimum or maximum value is set for the Y
scale before filling, then all values below ymin or above ymax will be discarded. Setting the
minimum or maximum value for the Y scale before filling has the same effect as calling the
special TProfile constructor above where ymin and ymax are specified.

Build Options

The last parameter is the build option. If a bin has N data points all with the same value Y,
which is the case when dealing with integers, the spread in Y for that bin is zero, and the
uncertainty assigned is also zero, and the bin is ignored in making subsequent fits. If
SQRT(Y) was the correct error in the case above, then SQRT(Y)/SQRT(N) would be the
correct error here. In fact, any bin with non-zero number of entries N but with zero spread
(spread = s[j]) should have an uncertainty SQRT(Y)/SQRT(N).

Now, is SQRT(Y)/SQRT(N) really the correct uncertainty? That it is only in the case where
the Y variable is some sort of counting statistics, following a Poisson distribution. This is the
default case. However, Y can be any variable from an original NTUPLE, and does not
necessarily follow a Poisson distribution.

June 2003 v3.05 Histograms 47

The computation of errors is based on the parameter option:

Y = values of data points; N = number of data points

' ' The default is blank, the Errors are:

 spread/SQRT(N) for a non-zero spread

 SQRT(Y)/SQRT(N) for a spread of zero and some data points

 0 for no data points

‘s’ Errors are:

 spread for a non-zero spread

 SQRT(Y) for a Spread of zero and some data points

 0 for no data points

‘i’ Errors are:

 spread/SQRT(N) for a non-zero spread

 1/SQRT(12*N) for a Spread of zero and some data points

 0 for no data points

‘G’ Errors are:

 spread/SQRT(N) for a non-zero spread

 sigma/SQRT(N) for a spread of zero and some data points

 0 for no data points

The third case (option 'i') is used for integer Y values with the uncertainty of ±0.5,
assuming the probability that Y takes any value between Y-0.5 and Y+0.5 is uniform (the
same argument for Y uniformly distributed between Y and Y+1). An example is an ADC
measurement.

The 'G ' option is useful, if all Y variables are distributed according to some known Gaussian
of standard deviation Sigma. For example when all Y's are experimental quantities
measured with the same instrument with precision Sigma.

Example of a TProfile
Here is the graphic output of a simple example of a profile histogram:

48 Histograms June 2003 v3.05

{
 // Create a canvas giving the coordinates and the size
 TCanvas *c1 = new TCanvas("c1","Profile example",200,10,700,500);

 // Create a profile with the name, title, the number of bins, the
 // low and high limit of the x-axis and the low and high limit
 // of the y-axis. No option is given so the default is used.
 hprof = new TProfile("hprof","Profile of pz versus px",100,-4,4,0,20);

 // Fill the profile 25000 times with random numbers
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {

 // Use the random number generator to get two numbers following a
 //gaussian distribution with mean=0 and sigma=1
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 hprof->Fill(px,pz,1);
 }
 hprof->Draw();
}

Drawing a Profile without Error Bars
To draw a profile histogram and not show the error bars use the "HIST" option in the
TProfile::Draw method. This will draw the outline of the TProfile.

Create a Profile from a 2D Histogram
You can make a profile from a histogram using the methods TH2::ProfileX and
TH2::ProfileY.

Create a Histogram from a Profile
To create a regular histogram from a profile histogram, use the method
TProfile::ProjectionX.

This example instantiates a TH1D object by copying the TH1D piece of TProfile.

TH1D *sum = myProfile.ProjectionX()

You can do the same with a 2D profile using the method TProfile2D::ProjectionXY.

Generating a Profile from a TTree
The 'prof' and 'profs' options in the TTree::Draw method (see the chapter on
Trees) generate a profile histogram (TProfile), given a two dimensional expression in the
tree, or a TProfile2D given a three dimensional expression. Note that you can specify
'prof'or 'profs': 'prof'generates a TProfile with error on the mean,
'profs'generates a TProfile with error on the spread,

2D Profiles
The class for a 2D Profile is called TProfile2D. It is in many cases an elegant
replacement of a three-dimensional histogram. The relationship of three measured
quantities X, Y and Z can be visualized by a three-dimensional histogram or scatter-plot; its
representation is not particularly satisfactory, except for sparse data. If Z is an unknown
(but single-valued) function of (X,Y), it can be displayed with a TProfile2D with better
precision than by a scatter-plot. A TProfile2D displays the mean value of Z and its RMS for

June 2003 v3.05 Histograms 49

each cell in X,Y. The following shows the cumulated contents (capital letters) and the
values displayed (small letters) of the elements for cell I, J.

When you fill a profile histogram with TProfile2D.Fill[x,y,z]:

E[i,j] contains for each bin i,j the sum of the z values for this bin

L[i,j] contains the number of entries in the bin j

e[j] or s[j] will be the resulting error depending on the selected option described in
Build Options above.

 E[i,j] = sum z

 L[i,j] = sum l

 h[i,j] = H[i,j] / L[i,j]

 s[i,j] = sqrt[E[i,j] / L[i,j]- h[i,j]**2]

 e[i,j] = s[i,j] / sqrt[L[i,j]]

In the special case where s[i,j] is zero, when there is only one entry per cell, e[i,j] is
computed from the average of the s[i,j] for all cells. This approximation is used to keep
the cell during a fit operation.

Example of a TProfile2D Histogram
{
 // Creating a Canvas and a TProfile2D
 TCanvas *c1 = new TCanvas("c1","Profile histogram example",
 200,10,700,500);
 hprof2d = new TProfile2D("hprof2d","Profile of pz versus px and py",
 40,-4,4,40,-4,4,0,20);

 // Filling the TProfile2D with 25000 points
 Float_t px, py, pz;
 for (Int_t i=0; i<25000; i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 hprof2d->Fill(px,py,pz,1);
 }
 hprof2d->Draw();
}

50 Histograms June 2003 v3.05

June 2003 v3.05 Graphs 51

4 Graphs

A graph is a graphics object made of two arrays X and Y, holding the x, y coordinates of n
points. There are several graph classes, they are: TGraph, TGraphErrors,
TGraphAsymmErrors, and TMultiGraph.

TGraph
The TGraph class supports the general case with non equidistant points, and the special
case with equidistant points.

Creating Graphs
Graphs are created with the constructor. Here is an example. First we define the arrays of
coordinates and then create the graph. The coordinates can be arrays of doubles or floats.

Int_t n = 20;
Double_t x[n], y[n];

for (Int_t i=0; i<n; i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
}
TGraph *gr1 = new TGraph (n, x, y);

An alternative constructor takes only the number of points (n). It is expected that the
coordinates will be set later.

TGraph *gr2 = new TGraph(n);

Graph Draw Options
The various draw options for a graph are explained in TGraph::PaintGraph. They are:

- "L" A simple poly-line between every points is drawn
- "F" A fill area is drawn
- "A" Axis are drawn around the graph
- "C" A smooth curve is drawn
- "*" A star is plotted at each point
- "P" The current marker of the graph is plotted at each point
- "B" A bar chart is drawn at each point
- "[]" Only the end vertical/horizontal lines of the error bars are drawn. This

 option only applies to the TGraphAsymmErrors.

The options are not case sensitive and they can be concatenated in most cases. Let's look
at some examples.

52 Graphs June 2003 v3.05

Continuous Line, Axis and Stars (AC*)

{
 Int_t n = 20;
 Double_t x[n], y[n];

 for (Int_t i=0;i<n;i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }

 // create graph
 TGraph *gr = new TGraph(n,x,y);
 TCanvas *c1 = new TCanvas("c1","Graph Draw Options",200,10,600,400);

 // draw the graph with axis,contineous line, and put a * at each point
 gr->Draw("AC*");
}

Bar Graphs (AB)

June 2003 v3.05 Graphs 53

root[] TGraph *gr1 = new TGraph(n,x,y);
root[] gr1->SetFillColor(40);
root[] gr1->Draw("AB");

This code will only work if n, x, and y is defined. The previous example defines these. You
need to set the fill color, because by default the fill color is white and will not be visible on a
white canvas. You also need to give it an axis, or the bar chart will not be displayed properly.

Filled Graphs (AF)

root[] TGraph *gr3 = new TGraph(n,x,y);
root[] gr3->SetFillColor(45);
root[] gr3->Draw("AF")

This code will only work if n, x, y are defined. The first example defines them. You need to
set the fill color, because by default the fill color is white and will not be visible on a white
canvas. You also need to give it an axis, or the bar chart will not be displayed properly.
Currently one can not specify the "CF" option.

Marker Options

54 Graphs June 2003 v3.05

{
 Int_t n = 20;
 Double_t x[n], y[n];

 // build the arrays with the coordinate of points
 for (Int_t i=0; i<n; i++) {
 x[i] = i*0.1;
 y[i] = 10*sin(x[i]+0.2);
 }

 // create graphs
 TGraph *gr3 = new TGraph(n,x,y);

 TCanvas *c1 = new TCanvas ("c1","Graph Draw Options",200,10,600,400);

 // draw the graph with the axis,contineous line, and put
 // a marker using the graph's marker style at each point
 gr3->SetMarkerStyle(21);
 c1->cd(4);
 gr3->Draw("APL");

 // get the points in the graph and put them into an array
 Double_t *nx = gr3->GetX();
 Double_t *ny = gr3->GetY();

 // create markers of different colors
 for (Int_t j=2; j<n-1; j++) {
 TMarker *m = new TMarker(nx[j], 0.5*ny[j], 22);
 m->SetMarkerSize(2);
 m->SetMarkerColor(31+j);
 m->Draw();
 }
}

Superimposing Two Graphs
To super impose two graphs you need to draw the axis only once, and leave out the "A" in
the draw options for the second graph. Here is an example:

June 2003 v3.05 Graphs 55

{
 gROOT->Reset();
 Int_t n = 20;
 Double_t x[n], y[n], x1[n], y1[n];

 // create the blue graph with a cos function
 for (Int_t i=0; i<n; i++) {
 x[i] = i*0.5;
 y[i] = 5*cos(x[i]+0.2);
 x1[i] = i*0.5;
 y1[i] = 5*sin(x[i]+0.2);
 }

 TGraph *gr1 = new TGraph(n,x,y);
 TGraph *gr2 = new TGraph(n,x1,y1);

 TCanvas *c1 = new TCanvas("c1","Two Graphs",200,10,600,400);

 // draw the graph with axis,contineous line, and put a * at each point
 gr1->SetLineColor(4);
 gr1->Draw("AC*");

 // superimpose the second graph by leaving out the axis option "A"
 gr2->SetLineWidth(3);
 gr2->SetMarkerStyle(21);
 gr2->SetLineColor(2);
 gr2->Draw("CP");
}

TGraphErrors
A TGraphErrors is a TGraph with error bars. The various draw format options of
TGraphErrors::Paint are derived from TGraph.

void TGraphErrors::Paint(Option_t *option)

In addition, it can be drawn with the "Z" option to leave off the small lines at the end of the
error bars. If option contains ">" an arrow is drawn at the end of the error bars if option
contains "|>" a full arrow is drawn at the end of the error bars the size of the arrow is set to
2/3 of the marker size.

The option “[]” is interesting to superimpose systematic errors on top of the graph with the
statistical errors. When it is specified only the end vertical/horizontal lines of the error bars
are drawn. To control the size of the error along x use:

 gStyle->SetErrorX(dx);

Set dx=0 to suppress the error along x.

56 Graphs June 2003 v3.05

Use:

gStyle->SetEndErrorSize(np);

to control the size of the lines at the end of the error bars (when option 1 is used). By
default np=1; np represents the number of pixels.

The constructor has four arrays as parameters. X and Y as in TGraph and X-errors and
Y-errors the size of the errors in the x and y direction. This example is in
$ROOTSYS/tutorials/gerrors.C.

{
 gROOT->Reset();

 c1 = new TCanvas("c1","A Simple Graph with error bars",200,10,700,500);

 c1->SetFillColor(42);
 c1->SetGrid();
 c1->GetFrame()->SetFillColor(21);
 c1->GetFrame()->SetBorderSize(12);

 // create the coordinate arrays
 Int_t n = 10;
 Float_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Float_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the error arrays
 Float_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Float_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create the TGraphErrors and draw it
 gr = new TGraphErrors(n,x,y,ex,ey);
 gr->SetTitle("TGraphErrors Example");
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);
 gr->Draw("ALP");

 c1->Update();
}

TGraphAsymmErrors
A TGraphAsymmErrors is a TGraph with asymmetric error bars. It inherits the various
draw format options from TGraph. Its method Paint(Option_t *option) paints the
TGraphAsymmErrors with the current attributes.

You can set the following additional options for drawing:

"z" or “Z” the horizontal and vertical small lines are not drawn at the end of error bars

“>” an arrow is drawn at the end of the error bars

“|>” a full arrow is drawn at the end of the error bar; its size is 2/3 of the marker size

“[]” only the end vertical/horizontal lines of the error bars are drawn; this option is
interesting to superimpose systematic errors on top of a graph with statistical
errors.

The constructor has six arrays as parameters: X and Y as TGraph and low X-errors and
high X-errors, low Y-errors and high Y-errors. The low value is the length of the error bar to
the left and down, the high value is the length of the error bar to the right and up.

June 2003 v3.05 Graphs 57

{
 gROOT->Reset();
 c1 = new TCanvas("c1","A Simple Graph with error bars",
 200,10,700,500);
 c1->SetFillColor(42);
 c1->SetGrid();
 c1->GetFrame()->SetFillColor(21);
 c1->GetFrame()->SetBorderSize(12);

 // create the arrays for the points
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5, .61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the arrays with high and low errors
 Double_t exl[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t eyl[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};
 Double_t exh[n] = {.02,.08,.05,.05,.03,.03,.04,.05,.06,.03};
 Double_t eyh[n] = {.6,.5,.4,.3,.2,.2,.3,.4,.5,.6};

 // create TGraphAsymmErrors with the arrays
 gr = new TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh);
 gr->SetTitle("TGraphAsymmErrors Example");
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(21);
 gr->Draw("ALP");
}

TMultiGraph
A TMultiGraphis a collection of TGraph (or derived) objects. Use TMultiGraph::Add
to add a new graph to the list. The TMultiGraph owns the objects in the list. The drawing
options are the same as for TGraph.

58 Graphs June 2003 v3.05

{
 // create the points
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 Double_t x2[n] = {-.12,.15,.35,.45,.6,.71,.8,.95,.99,1.05};
 Double_t y2[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};

 // create the width of errors in x and y direction
 Double_t ex[n] = {.05,.1,.07,.07,.04,.05,.06,.07,.08,.05};
 Double_t ey[n] = {.8,.7,.6,.5,.4,.4,.5,.6,.7,.8};

 // create two graphs
 TGraph *gr1 = new TGraph(n,x2,y2);
 TGraphErrors *gr2 = new TGraphErrors(n,x,y,ex,ey);

 // create a multigraph and draw it
 TMultiGraph *mg = new TMultiGraph();
 mg->Add(gr1);
 mg->Add(gr2);
 mg->Draw("ALP");
}

Fitting a Graph
The Fit method of the graph works the same as the TH1::Fit (see Fitting Histograms).

Setting the Graph's Axis Title
To give the axis of a graph a title you need to draw the graph first, only then does it actually
have an axis object. Once drawn, you set the title by getting the axis and calling the
TAxis::SetTitle method, and if you want to center it you can call the
TAxis::CenterTitle method.

Assuming that n, x, and y are defined. Next code sets the titles of the x and y axes.

June 2003 v3.05 Graphs 59

root[] gr5 = new TGraph(n,x,y);
root[] gr5->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root[] gr5->Draw("ALP")
root[] gr5->GetXaxis()->SetTitle("X-Axis")
root[] gr5->GetYaxis()->SetTitle("Y-Axis")
root[] gr5->GetXaxis()->CenterTitle()
root[] gr5->GetYaxis()->CenterTitle()
root[] gr5->Draw(“ALP”)

For more graph examples see: these scripts in the $ROOTSYS/tutorials directory
graph.C, gerrors.C, zdemo.C, and gerrors2.C.

Zooming a Graph
To zoom a graph you can create a histogram with the desired axis range first. Draw the
empty histogram and then draw the graph using the existing axis from the histogram.

The next example is the same graph as above with a zoom in the x and y direction.

{
 gROOT->Reset();
 c1 = new TCanvas("c1","A Zoomed Graph",200,10,700,500);
 // create a histogram for the axis range
 hpx = new TH2F("hpx","Zoomed Graph Example",10,0,0.5,10,1.0,8.0);
 // no statistics
 hpx->SetStats(kFALSE);
 hpx->Draw();

 // create a graph
 Int_t n = 10;
 Double_t x[n] = {-.22,.05,.25,.35,.5,.61,.7,.85,.89,.95};
 Double_t y[n] = {1,2.9,5.6,7.4,9,9.6,8.7,6.3,4.5,1};
 gr = new TGraph(n,x,y);
 gr->SetMarkerColor(4);
 gr->SetMarkerStyle(20);

 // and draw it without an axis
 gr->Draw("LP");
}

60 Graphs June 2003 v3.05

June 2003 v3.05 Fitting Histograms 61

5 Fitting Histograms

To fit a histogram you can use the Fit Panel on a visible histogram using the GUI, or you
can use the TH1::Fit method. The Fit Panel, which is limited, is best for prototyping. The
histogram needs to be drawn in a pad before the Fit Panel is available. The TH1::Fit
method is more powerful and used in scripts and programs.

The Fit Panel
To display the Fit Panel right click on a histogram to
bring up the context menu, and then select the menu
option: FitPanel.

The first sets of buttons are the predefined functions of
ROOT that can be used to fit the histogram. You have a
choice of several polynomials, a Gaussian, a landau, and
an exponential function. You can also define a function
and call it "user". It will be linked to the user button on
this panel.

You have the option to specify Quiet or Verbose. This is
the amount of feedback printed on the root command line
on the result of the fit. When a fit is executed the image
of the function is drawn on the current pad. By default the
image of the histogram is replaced with the image of the
function. Select Same Picture to see the function drawn
and the histogram on the same picture.

Select W: Set all weights to 1, to set all errors to 1.

Select E: Compute best errors to use the Minos
technique to compute best errors.

When fitting a histogram, the function is attached to the
histogram's list of functions. By default the previously
fitted function is deleted and replaced with the most
recent one, so the list only contains one function. You
can select + : Add to list of functions to add the newly

fitted function to the existing list of functions for the histogram. Note that the fitted functions
are saved with the histogram when it is written to a ROOT file. By default, the function is
drawn on the pad displaying the histogram.

Select N: Do not store/draw function to avoid adding the function to the histogram and to
avoid drawing it.

Select 0: Do not draw function to avoid drawing the result of the fit.

Select L: Log Likelihood to use log likelihood method (default is chisquare method).

The slider at the bottom of the panel allows you to set a range for the fit. Drag the edges of
the slider towards the center to narrow the range. Draw the entire range to change the
beginning and end. To returns to the original setting, you need to press Defaults. To apply
the fit, press the Fit button.

62 Fitting Histograms June 2003 v3.05

The Fit Method
To fit a histogram programmatically, you can use the TH1::Fit method. Here is the
signature of TH1::Fit and an explanation of the parameters:

void Fit(const char *fname ,Option_t *option,
 Option_t *goption,Axis_t xxmin,Axis_t xxmax)

*fname: The name of the fitted function (the model) is passed as the first parameter. This
name may be one of ROOT pre-defined function names or a user-defined function.

The following functions are predefined, and can be used with the TH1::Fit method.

• gaus: A Gaussian function with 3 parameters:
 f(x) = p0*exp(-0.5*((x-p1)/p2)^2))

• expo: An exponential with 2 parameters:
 f(x) = exp(p0+p1*x).

• polN: A polynomial of degree N:
 f(x) = p0 + p1*x + p2*x^2 +...

• landau: A Landau function with mean and sigma. This function has been adapted
 from the CERNLIB routine G110 denlan.

*option: The second parameter is the fitting option. Here is the list of fitting options:

- "W" Set all errors to 1
- "I" Use integral of function in bin instead of value at bin center
- "L" Use log likelihood method (default is chi-square method)
- "U" Use a user specified fitting algorithm
- "Q" Quiet mode (minimum printing)
- "V" Verbose mode (default is between Q and V)
- "E" Perform better errors estimation using Minos technique
- "M" Improve fit results
- "R" Use the range specified in the function range
- "N" Do not store the graphics function, do not draw
- "0" Do not plot the result of the fit. By default the fitted function is drawn unless the

option "N" above is specified.
- "+" Add this new fitted function to the list of fitted functions (by default, the previous

function is deleted and only the last one is kept)
- "B" Disable the automatic computation of the initial parameter values for the standard

functions like poln, expo, and gaus.

*goption: Third parameter is the graphics option (goption), it is the same as in the
TH1::Draw (see Draw Options above).

xxmin, xxmax: Fourth and fifth parameters specify the range over which to apply the fit.
By default, the fitting function object is added to the histogram and is drawn in the current
pad.

Fit with a Predefined Function
To fit a histogram with a predefined function, simply pass the name of the function in the
first parameter of TH1::Fit. For example, this line fits histogram object hist with a
Gaussian.

root[] hist.Fit("gaus");

For pre-defined functions, there is no need to set initial values for the parameters, it is done
automatically.

June 2003 v3.05 Fitting Histograms 63

Fit with a User-Defined Function
You can create a TF1 object and use it in the call the TH1::Fit. The parameter in to the
Fit method is the NAME of the TF1 object.

There are three ways to create a TF1.

1. Using C++ like expression using x with a fixed set of operators and functions defined in
TFormula.

2. Same as #1, with parameters

3. Using a function that you have defined

Creating a TF1 with a Formula
Let's look at the first case. Here we call the TF1 constructor by giving it the formula:
sin(x)/x.

root[] TF1 *f1 = new TF1("f1","sin(x)/x",0,10)

You can also use a TF1 object in the constructor of another TF1.

root[] TF1 *f2 = new TF1("f2","f1*2",0,10)

Creating a TF1 with Parameters
The second way to construct a TF1 is to add parameters to the expression. For example,
this TF1 has 2 parameters:

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);

The parameter index is enclosed in square brackets. To set the initial parameters explicitly
you can use the SetParameter method.

root[] f1->SetParameters(0,10);

This sets parameter 0 to 10. You can also use SetParameters to set multiple parameters
at once.

root[] f1->SetParameters(10,5);

This sets parameter 0 to 10 and parameter 1 to 5. We can now draw the TF1:

root[] f1->Draw()

64 Fitting Histograms June 2003 v3.05

Creating a TF1 with a User Function
The third way to build a TF1 is to define a function yourself and then give its name to the
constructor. A function for a TF1 constructor needs to have this exact signature:

Double_t fitf(Double_t *x,Double_t *par)

The two parameters are:

• Double_t *x: a pointer to the dimension array. Each element contains a dimension.
For a 1D histogram only x[0] is used, for a 2D histogram x[0] and x[1] is used, and for
a 3D histogram x[0], x[1], and x[2] are used. For histograms, only 3 dimensions apply,
but this method is also used to fit other objects, for example an ntuple could have 10
dimensions.

• Double_t *par: a pointer to the parameters array. This array contains the current
values of parameters when it is called by the fitting function.

The following script $ROOTSYS/tutorials/myfit.C illustrates how to fit a 1D histogram
with a user-defined function. First we declare the function.

// define a function with 3 parameters
Double_t fitf(Double_t *x,Double_t *par)
{
 Double_t arg = 0;
 if (par[2] != 0) arg = (x[0] - par[1])/par[2];
 Double_t fitval = par[0]*TMath::Exp(-0.5*arg*arg);
 return fitval;
}

Now we use the function:

// this function used fitf to fit a histogram
void fitexample()
{
 // open a file and get a histogram
 TFile *f = new TFile("hsimple.root");
 TH1F *hpx = (TH1F*)f->Get(*hpx);

 // Create a TF1 object using the function defined above.
 // The last three parameters specify the number of parameters
 // for the function.
 TF1 *func = new TF1("fit",fitf,-3,3,3);

 // set the parameters to the mean and RMS of the histogram
 func->SetParameters(500,hpx->GetMean(),hpx->GetRMS());

 // give the parameters meaningful names
 func->SetParNames ("Constant","Mean_value","Sigma");

 // call TH1::Fit with the name of the TF1 object
 hpx->Fit("fit");
}

Fixing and Setting Bounds for Parameters
Parameters must be initialized before invoking the Fit method. The setting of the
parameter initial values is automatic for the predefined functions: poln, exp, gaus. You
can disable the automatic computation by specifying the "B" option when calling the Fit
method. When a function is not predefined, the fit parameters must be initialized to some
value as close as possible to the expected values before calling the fit function.

June 2003 v3.05 Fitting Histograms 65

To set bounds for one parameter, use TF1::SetParLimits:

func->SetParLimits(0,-1,1);

When the lower and upper limits are equal, the parameter is fixed. This statement fixes
parameter 4 at 10.

func->SetParameters(4,10)
func->SetParLimits(4,77,77);

However, to fix a parameter to 0, one must call the FixParameter function:

func->SetParameter(4,0)
func->FixParameter(4,0);

Note that you are not forced to fix the limits for all parameters. For example, if you fit a
function with 6 parameters, you can:

func->SetParameters(0,3.1,1.e-6,-1.5,0,100);
func->SetParLimits(3,-10,-4);
func->FixParameter(4,0);

With this setup, parameters 0->2 can vary freely, parameter 3 has boundaries [-10,-4] with
initial value –8, and parameter 4 is fixed to 0.

Fitting Sub Ranges
By default, TH1::Fit will fit the function on the defined histogram range. You can specify
the option "R" in the second parameter of TH1::Fit to restrict the fit to the range specified
in the TF1 constructor. In this example, the fit will be limited to –3 to 3, the range specified
in the TF1 constructor.

root[] TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3);
root[] hist->Fit("f1","R");

You can also specify a range in the call to TH1::Fit:

root[] hist->Fit("f1","","",-2,2)

For more complete examples, see $ROOTSYS/tutorials/myfit.C and
$ROOTSYS/tutorials/multifit.C.

Example: Fitting Multiple Sub Ranges
The script for this example is in macro
multifit.C in
$ROOTSYS/tutorials/ directory. It
shows how to use several Gaussian
functions with different parameters on
separate sub ranges of the same
histogram.

To use a Gaussian, or any other ROOT
built in function, on a sub range you
need to define a new TF1. Each is
'derived' from the canned function gaus.

66 Fitting Histograms June 2003 v3.05

// Create 4 TF1 objects, one for each subrange
 g1 = new TF1("m1","gaus",85,95);
 g2 = new TF1("m2","gaus",98,108);
 g3 = new TF1("m3","gaus",110,121);

// The total is the sum of the three, each has 3 parameters
 total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125);

Here we fill a histogram with bins defined in the array x (see
$ROOTSYS/tutorials/multifit.C).

// Create a histogram and set it's contents
 h = new TH1F("g1","Example of several fits in subranges",np,85,134);
 h->SetMaximum(7);
 for (int i=0; i<np; i++) {
 h->SetBinContent(i+1,x[i]);
 }

// Define the parameter array for the total function
 Double_t par[9];

When fitting simple functions, such as a Gaussian, the initial values of the parameters are
automatically computed by ROOT. In the more complicated case of the sum of 3 Gaussian
functions, the initial values of parameters must be set. In this particular case, the initial
values are taken from the result of the individual fits.

The use of the "+" sign is explained below:

// Fit each function and add it to the list of functions
 h->Fit(g1,"R");
 h->Fit(g2,"R+");
 h->Fit(g3,"R+");

// Get the parameters from the fit
 g1->GetParameters(&par[0]);
 g2->GetParameters(&par[3]);
 g3->GetParameters(&par[6]);

// Use the parameters on the sum
 total->SetParameters(par);
 h->Fit(total,"R+");

Adding Functions to the List
The example $ROOTSYS/tutorials/multifit.C also illustrates how to fit several
functions on the same histogram. By default a Fit command deletes the previously fitted
function in the histogram object. You can specify the option "+" in the second parameter to
add the newly fitted function to the existing list of functions for the histogram.

root[] hist->Fit("f1","+","",-2,2)

Note that the fitted function(s) are saved with the histogram when it is written to a ROOT file.

June 2003 v3.05 Fitting Histograms 67

Combining Functions
You can combine functions to fit a histogram with their sum. Here is an example, the code is
in $ROOTSYS/tutorials/FitDemo.C. We have a function that is the combination of a
background and lorenzian peak. Each function contributes 3 parameters.
y(E) = a1 + a2E + a3E2 + AP (G / 2 p)/((E-m)2 + (G/2)2)

 background lorenzianPeak
 par[0] = a1 par[0] = AP

par[1] = a2 par[1] = G

par[2] = a3 par[2] = m

The combination function (fitFunction) has six parameters:
fitFunction = background (x, par) + lorenzianPeak (x, &par[3])

 par[0] = a1

 par[1] = a2

 par[2] = a3

 par[3] = Ap

par[4] = G

 par[5] = m

This script creates a histogram and fits the combination of the two functions. First we define
the two functions and the combination function:

// Quadratic background function
Double_t background(Double_t *x, Double_t *par) {
 return par[0] + par[1]*x[0] + par[2]*x[0]*x[0];
}
// Lorenzian Peak function
Double_t lorentzianPeak(Double_t *x, Double_t *par) {
 return (0.5*par[0]*par[1]/TMath::Pi()) / TMath::Max(1.e-10,
 (x[0]-par[2])*(x[0]-par[2])+ .25*par[1]*par[1]);
}
// Sum of background and peak function
Double_t fitFunction(Double_t *x, Double_t *par) {
 return background(x,par) + lorentzianPeak(x,&par[3]); }
void FittingDemo()
{
// bevington exercise by P. Malzacher, modified by R. Brun
 const int nBins = 60;
 Stat_t data[nBins] = { 6, 1,10,12, 6,13,23,22,15,21,
 23,26,36,25,27,35,40,44,66,81,
 75,57,48,45,46,41,35,36,53,32,
 40,37,38,31,36,44,42,37,32,32,
 43,44,35,33,33,39,29,41,32,44,
 26,39,29,35,32,21,21,15,25,15};
 TH1F *histo = new TH1F("example_9_1",
 "Lorentzian Peak on Quadratic Background",60,0,3);

 for(int i=0; i < nBins; i++) {
 // we use these methods to explicitly set the content
 // and error instead of using the fill method.
 histo->SetBinContent(i+1,data[i]);
 histo->SetBinError(i+1,TMath::Sqrt(data[i]));
 }
} // continued...

68 Fitting Histograms June 2003 v3.05

 // create a TF1 with the range from 0 to 3 and 6 parameters
 TF1 *fitFcn = new TF1("fitFcn",fitFunction,0,3,6);

 // first try without starting values for the parameters
 // this defaults to 1 for each param.
 histo->Fit("fitFcn");
 // this results in an ok fit for the polynomial function however
 // the non-linear part (lorenzian) does not respond well
 // second try: set start values for some parameters
 fitFcn->SetParameter(4,0.2); // width
 fitFcn->SetParameter(5,1); // peak

 histo->Fit("fitFcn","V+");

 // improve the picture:
 TF1 *backFcn = new TF1("backFcn",background,0,3,3);
 backFcn->SetLineColor(3);
 TF1 *signalFcn = new TF1("signalFcn",lorentzianPeak,0,3,3);
 signalFcn->SetLineColor(4);
 Double_t par[6];

 // writes the fit results into the par array
 fitFcn->GetParameters(par);

 backFcn->SetParameters(par);
 backFcn->Draw("same");

 signalFcn->SetParameters(&par[3]);
 signalFcn->Draw("same");
}

This is the result:

For another example see: http://root.cern.ch/root/html/examples/backsig.C.html

June 2003 v3.05 Fitting Histograms 69

Associated Function
One or more objects (typically a TF1*) can be added to the list of functions (fFunctions)
associated to each histogram. A call to TH1::Fit adds the fitted function to this list. Given
a histogram h, one can retrieve the associated function with:

TF1 *myfunc = h->GetFunction("myfunc");

Access to the Fit Parameters and Results
If the histogram (or graph) is made persistent, the list of associated functions is also
persistent. Retrieve a pointer to the function with the TH1::GetFunction() method.
Then you can retrieve the fit parameters from the function (TF1) with calls such as:

root[] TF1 *fit = hist->GetFunction(function_name);
root[] Double_t chi2 = fit->GetChisquare();
// value of the first parameter
root[] Double_t p1 = fit->GetParameter(0);
// error of the first parameter
root[] Double_t e1 = fit->GetParError(0);

Associated Errors
By default, for each bin, the sum of weights is computed at fill time. One can also call
TH1::Sumw2 to force the storage and computation of the sum of the square of weights per
bin. If Sumw2 has been called, the error per bin is computed as the sqrt(sum of
squares of weights), otherwise the error is set equal to the sqrt (bin content).
To return the error for a given bin number, do:

Double_t error = h->GetBinError(bin);

Fit Statistics
 You can change the statistics box to display the fit parameters with the
TStyle::SetOptFit(mode) method. This mode has four digits.

mode = pcev (default = 0111)

• v = 1 print name/values of parameters
• e = 1 print errors (if e=1, v must be 1)
• c = 1 print Chi-square/number of degrees of freedom
• p = 1 print probability

For example:

gStyle->SetOptFit(1011);

This prints the fit probability, parameter names/values, and errors.

70 Fitting Histograms June 2003 v3.05

The Minimization Package
This package was originally written in FORTRAN by Fred James and part of PACKLIB
(patch D506). It has been converted to a C++ class by Rene Brun. The current
implementation in C++ is a straightforward conversion of the original FORTRAN version.
The main changes are:

• The variables in the various Minuit labeled common blocks have been changed to the
TMinuit class data members

• The internal arrays with a maximum dimension depending on the maximum number of
parameters are now data members’ arrays with a dynamic dimension such that one can
fit very large problems by simply initializing the TMinuit constructor with the maximum
number of parameters

• The include file Minuit.h has been commented as much as possible using existing
comments in the code or the printed documentation

• The original Minuit subroutines are now member functions
• Constructors and destructor have been added
• Instead of passing the FCN function in the argument list, the addresses of this function

is stored as pointer in the data members of the class. This is by far more elegant and
flexible in an interactive environment. The member function SetFCN can be used to
define this pointer

• The ROOT static function Printf is provided to replace all format statements and to
print on currently defined output file

• The derived class TMinuitOld contains obsolete routines from the FORTRAN based
version

• The functions SetObjectFit/GetObjectFit can be used inside the FCN function
to set/get a referenced object instead of using global variables

• By default fGraphicsMode is true. When calling the Minuit functions such as
mncont, mnscan, or any Minuit command invoking mnplot, TMinuit::mnplot()
produces a TGraph object pointed by fPlot. One can retrieve this object with
TMinuit::GetPlot(). For example:

h->Fit("gaus");
gMinuit->Command("SCAn 1");

TGraph *gr = (TGraph*)gMinuit->GetPlot();
gr->SetMarkerStyle(21);
gr->Draw("alp");

• To set Minuit in no graphics mode, call

gMinuit->SetGraphicsMode(kFALSE);

Basic Concepts of Minuit
The Minuit package acts on a multi parameter FORTRAN function to which one must give
the generic name FCN. In the ROOT implementation, the function FCN is defined via the
Minuit SetFCN member function when a HistogramFit command is invoked. The value
of FCN will in general depend on one or more variable parameters.

To take a simple example, in case of ROOT histograms (classes TH1C, TH1S, TH1F,
TH1D) the Fit function defines the Minuit fitting function as being H1FitChisquare or
H1FitLikelihood depending on the options selected. H1FitChisquare calculates the
chi-square between the user fitting function (Gaussian, polynomial, user defined, etc) and
the data for given values of the parameters. It is the task of Minuit to find those values of
the parameters which give the lowest value of chi-square.

June 2003 v3.05 Fitting Histograms 71

The Transformation of Limited Parameters
For variable parameters with limits, Minuit uses the following transformation:

Pint = arcsin(2((Pext -a)/(b-a))-1)

Pext = a+((b- a)/(2))(sinPint+1)

so that the internal value Pint can take on any value, while the external value Pext can take
on values only between the lower limit a and the ext upper limit b. Since the transformation
is necessarily non-linear, it would transform a nice linear problem into a nasty non-linear
one, which is the reason why limits should be avoided if not necessary. In addition, the
transformation does require some computer time, so it slows down the computation a little
bit, and more importantly, it introduces additional numerical inaccuracy into the problem in
addition to what is introduced in the numerical calculation of the FCN value. The effects of
non-linearity and numerical round off both become more important as the external value gets
closer to one of the limits (expressed as the distance to nearest limit divided by distance
between limits). The user must therefore be aware of the fact that, for example, if he puts
limits of (0, 1010) on a parameter, then the values 0.0 and 1. 0 will be indistinguishable to the
accuracy of most machines.

The transformation also affects the parameter error matrix, of course, so Minuit does a
transformation of the error matrix (and the ``parabolic'' parameter errors) when there are
parameter limits. Users should however realize that the transformation is only a linear
approximation, and that it cannot give a meaningful result if one or more parameters is very
close to a limit, where partial Pext/partial Pint ≠0. Therefore, it is recommended
that:

• Limits on variable parameters should be used only when needed in order to prevent the
parameter from taking on unphysical values

• When a satisfactory minimum has been found using limits, the limits should then be
removed if possible, in order to perform or re-perform the error analysis without limits

How to Get the Right Answer from Minuit
Minuit offers the user a choice of several minimization algorithms. The MIGRAD algorithm
is in general the best minimized for nearly all functions. It is a variable-metric method with
inexact line search, a stable metric updating scheme, and checks for positive-definiteness.
Its main weakness is that it depends heavily on knowledge of the first derivatives, and fails
miserably if they are very inaccurate.

If parameter limits are needed, in spite of the side effects, then the user should be aware of
the following techniques to alleviate problems caused by limits:

Getting the Right Minimum with limits
If MIGRAD converges normally to a point where no parameter is near one of its limits, then
the existence of limits has probably not prevented Minuit from finding the right minimum.
On the other hand, if one or more parameters is near its limit at the minimum, this may be
because the true minimum is indeed at a limit, or it may be because the minimized has
become ``blocked'' at a limit. This may normally happen only if the parameter is so close to a
limit (internal value at an odd multiple of #((pi)/(2)) that Minuit prints a warning to this
effect when it prints the parameter values. The minimized can become blocked at a limit,
because at a limit the derivative seen by the minimized partial F/partial Pint is zero
no matter what the real derivative partial F/partial Pext is.

((partial F)/(partial Pint)) =

((partial F)/(partial Pext))((partial Pext)/(partial Pint)) =

 ((partial F)/(partial Pext)) = 0

Getting the Right Parameter Errors with Limits
In the best case, where the minimum is far from any limits, Minuit will correctly transform
the error matrix, and the parameter errors it reports should be accurate and very close to
those you would have got without limits. In other cases (which should be more common,

72 Fitting Histograms June 2003 v3.05

since otherwise you wouldn't need limits), the very meaning of parameter errors becomes
problematic. Mathematically, since the limit is an absolute constraint on the parameter, a
parameter at its limit has no error, at least in one direction. The error matrix, which can
assign only symmetric errors, then becomes essentially meaningless.

Interpretation of Parameter Errors
There are two kinds of problems that can arise: the reliability of Minuit’s error estimates,
and their statistical interpretation, assuming they are accurate.

Statistical Interpretation
For discussion of basic concepts, such as the meaning of the elements of the error matrix, or
setting of exact confidence levels see the articles:

• F.James. Determining the statistical Significance of experimental Results. Technical
Report DD/81/02 and CERN Report 81-03, CERN, 1981

• W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Statistical Methods in
Experimental Physics. North-Holland, 1971

Reliability of Minuit Error Estimates
Minuit always carries around its own current estimates of the parameter errors, which it
will print out on request, no matter how accurate they are at any given point in the execution.
For example, at initialization, these estimates are just the starting step sizes as specified by
the user. After a HESSE step, the errors are usually quite accurate, unless there has been a
problem. Minuit, when it prints out error values, also gives some indication of how reliable
it thinks they are. For example, those marked CURRENT GUESS ERROR are only working
values not to be believed, and APPROXIMATE ERROR means that they have been calculated
but there is reason to believe that they may not be accurate.

If no mitigating adjective is given, then at least Minuit believes the errors are accurate,
although there is always a small chance that Minuit has been fooled. Some visible signs
that Minuit may have been fooled are:

• Warning messages produced during the minimization or error analysis
• Failure to find new minimum
• Value of EDM too big (estimated Distance to Minimum)
• Correlation coefficients exactly equal to zero, unless some parameters are known to be

uncorrelated with the others
• Correlation coefficients very close to one (greater than 0.99). This indicates both an

exceptionally difficult problem, and one which has been badly parameterized so that
individual errors are not very meaningful because they are so highly correlated

• Parameter at limit. This condition, signaled by a Minuit warning message, may make
both the function minimum and parameter errors unreliable. See the discussion above
‘Getting the right parameter errors with limits'

The best way to be absolutely sure of the errors, is to use ``independent'' calculations and
compare them, or compare the calculated errors with a picture of the function. Theoretically,
the covariance matrix for a ``physical'' function must be positive-definite at the minimum,
although it may not be so for all points far away from the minimum, even for a well-
determined physical problem. Therefore, if MIGRAD reports that it has found a non-positive-
definite covariance matrix, this may be a sign of one or more of the following:

A non-physical region
On its way to the minimum, MIGRAD may have traversed a region which has unphysical
behavior, which is of course not a serious problem as long as it recovers and leaves such a
region.

An underdetermined problem
If the matrix is not positive-definite even at the minimum, this may mean that the solution is
not well-defined, for example that there are more unknowns than there are data points, or

June 2003 v3.05 Fitting Histograms 73

that the parameterization of the fit contains a linear dependence. If this is the case, then
Minuit (or any other program) cannot solve your problem uniquely. The error matrix will
necessarily be largely meaningless, so the user must remove the under determinedness by
reformulating the parameterization. Minuit cannot do this itself.

Numerical inaccuracies
It is possible that the apparent lack of positive-definiteness is in fact only due to excessive
round off errors in numerical calculations in the user function or not enough precision. This is
unlikely in general, but becomes more likely if the number of free parameters is very large,
or if the parameters are badly scaled (not all of the same order of magnitude), and
correlations are also large. In any case, whether the non-positive-definiteness is real or only
numerical is largely irrelevant, since in both cases the error matrix will be unreliable and the
minimum suspicious.

An ill-posed problem
For questions of parameter dependence, see the discussion above on positive-definiteness.
Possible other mathematical problems are the following:

Excessive numerical round off

Be especially careful of exponential and factorial functions which get big very quickly and
lose accuracy.

Starting too far from the solution

The function may have unphysical local minima, especially at infinity in some variables.

June 2003 v3.05 A Little C++ 75

6 A Little C++

This chapter introduces you to some useful insights into C++, to allow you to use of the
most advanced features in ROOT. It is in no case a full course in C++.

Classes, Methods and Constructors
C++ extends C with the notion of class. If you’re used to structures in C, a class is a
struct that is a group of related variables, which is extended with functions and routines
specific to this structure (class). What is the interest? Consider a struct that is defined
this way:

struct Line {
 float x1;
 float y1;
 float x2;
 float y2;
}

This structure represents a line to be drawn in a graphical window. (x1,y1) are the
coordinates of the first point, (x2,y2) the coordinates of the second point.

In standard C, if you want to effectively draw such a line, you first have to define a structure
and initialize the points (you can try this):

Line firstline;
firstline.x1 = 0.2;
firstline.y1 = 0.2;
firstline.x2 = 0.8;
firstline.y2 = 0.9;

This defines a line going from the point (0.2,0.2) to the point (0.8,0.9). To draw this
line, you will have to write a function, say LineDraw(Line l) and call it with your object
as argument:

LineDraw(firstline);

In C++, we would not do that. We would instead define a class like this:

class TLine {
 Double_t x1;
 Double_t y1;
 Double_t x2;
 Double_t y2;
 TLine(int x1, int y1, int x2, int y2);
 void Draw();
}

Here we added two functions, that we will call methods or member functions, to the TLine
class. The first method is used for initializing the line objects we would build. It is called a
constructor. The second one is the Draw method itself.

76 A Little C++ June 2003 v3.05

Therefore, to build and draw a line, we have to do:

TLine l(0.2,0.2,0.8,0.9);
l.Draw();

The first line builds the object l by calling its constructor. The second line calls the
TLine::Draw() method of this object. You don’t need to pass any parameters to this
method since it applies to the object l, which knows the coordinates of the line. These are
internal variables x1, y1, x2, y2 that were initialized by the constructor.

Inheritance and Data Encapsulation
Inheritance

We’ve defined a TLine class that contains everything necessary to draw a line. If we want
to draw an arrow, is it so different from drawing a line? We just have to draw a triangle at
one end. It would be very inefficient to define the class TArrow from scratch. Fortunately,
inheritance allows a class to be defined from an existing class. We would write something
like:

class TArrow : public TLine {
 int ArrowHeadSize;
 void Draw();
 void SetArrowSize(int arrowsize);
}

The keyword "public" will be explained later. The class TArrow now contains everything
that the class TLine does, and a couple of things more, the size of the arrowhead and a
function that can change it. The Draw method of TArrow will draw the head and call the
draw method of TLine. We just have to write the code for drawing the head!

Method Overriding

Giving the same name to a method (remember: method = member function of a class) in
the child class (TArrow) as in the parent (TLine) doesn't give any problem. This is called
overriding a method. Draw in TArrow overrides Draw in TLine. There is no possible
ambiguity since, when one calls the Draw() method; this applies to an object which type is
known. Suppose we have an object l of type TLine and an object a of type TArrow.
When you want to draw the line, you do:

l.Draw()

Draw() from TLine is called. If you do:

a.Draw()

Draw() from TArrow is called and the arrow a is drawn.

Data Encapsulation

We have seen previously the keyword "public". This keyword means that every name
declared public is seen by the outside world. This is opposed to "private" that means only
the class where the name was declared private could see this name. For example, suppose
we declare in TArrow the variable ArrowHeadSize private.

private:
 int ArrowHeadSize;

Then, only the methods (i.e. member functions) of TArrow will be able to access this
variable. Nobody else will see it. Even the classes that we could derive from TArrow will
not see it. On the other hand, if we declare the method Draw() as public, everybody will be

June 2003 v3.05 A Little C++ 77

able to see it and use it. You see that the character public or private doesn't depend of the
type of argument. It can be a data member, a member function, or even a class.

For example, in the case of TArrow, the base class TLine is declared as public:

class TArrow : public TLine { ...

This means that all methods of TArrow will be able to access all methods of TLine, but
this will be also true for anybody in the outside world. Of course, this is true provided that
TLine accepts the outside world to see its methods/data members. If something is
declared private in TLine, nobody will see it, not even TArrow members, even if TLine is
declared as a public base class.

What if TLine is declared "private" instead of "public"? Well, it will behave as any
other name declared private in TArrow: only the data members and methods of TArrow
will be able to access TLine, its methods and data members, nobody else.

This may seem a little bit confusing and readers should read a good C++ book if they want
more details. Especially since, besides public and private, a member can be protected.

Usually, one puts private the methods that the class uses internally, like some utilities
classes, and that the programmer doesn’t want to be seen in the outside world.

With "good" C++ practice (which we have tried to use in ROOT), all data members of a
class are private. This is called data encapsulation and is one of the strongest advantages
of Object Oriented Programming (OOP). Private data members of a class are not visible,
except to the class itself. So, from the outside world, if one wants to access those data
members, one should use so called "getters" and "setters" methods, which are special
methods used only to get or set the data members. The advantage is that if the
programmers want to modify the inner workings of their classes, they can do so without
changing what the user sees. The user doesn’t even have to know that something has
changed (for the better, hopefully).

For example, in our TArrow class, we would have set the data member ArrowHeadSize
private. The setter method is SetArrowSize(), we don’t need a getter method:

class TArrow : public TLine {

private:
 int ArrowHeadSize;

public:
 void Draw();
 void SetArrowSize(int arrowsize);
}

To define an arrow object you call the constructor. This will also call the constructor of
TLine, which is the parent class of TArrow, automatically. Then we can call any of the line
or arrow public methods such as SetArrowSize and Draw.

root[] TArrow *myarrow = new TArrow(1,5,89,124);
root[] myarrow->SetArrowSize(10);
root[] myarrow->Draw();

Creating Objects on the Stack and Heap
To explain how objects are created on the stack and on the heap we will use the Quad
class. You can find the definition in $ROOTSYS/tutorials/Quad.h and Quad.cxx.

The Quad class has four methods. The constructor and destructor, Evaluate that
evaluates ax**2 + bx +c, and Solve which solves the quadratic equation
ax**2 + bx +c = 0.

78 A Little C++ June 2003 v3.05

Quad.h:

class Quad {
 public:
 Quad(Float_t a, Float_t b, Float_t c);
 ~Quad();
 Float_t Evaluate(Float_t x) const;
 void Solve() const;
 private:
 Float_t fA;
 Float_t fB;
 Float_t fC;
};

Quad.cxx:

#include <iostream.h>
#include <math.h>
#include "Quad.h"

Quad::Quad(Float_t a, Float_t b, Float_t c) {
 fA = a;
 fB = b;
 fC = c;
}

Quad::~Quad() {
 cout << "deleting object with coeffts: "
 << fA << "," << fB << "," << fC << endl;
}

Float_t Quad::Evaluate(Float_t x) const {
 return fA*x*x + fB*x + fC;
}

void Quad::Solve() const {
 Float_t temp = fB*fB - 4.*fA*fC;
 if (temp > 0.) {
 temp = sqrt(temp);
 cout << "There are two roots: "
 << (-fB - temp) / (2.*fA)
 << " and "
 << (-fB + temp) / (2.*fA)
 << endl;
 } else {
 if (temp == 0.) {
 cout << "There are two equal roots: "
 << -fB / (2.*fA) << endl;
 } else {
 cout << "There are no roots" << endl;
 }
 }
}

Let's first look how we create an object. When we create an object by

root[] Quad my_object(1.,2.,-3.);

We are creating an object on the stack. A FORTRAN programmer may be familiar with the
idea; it's not unlike a local variable in a function or subroutine. Although there are still a few
old timers who don't know it, FORTRAN is under no obligation to save local variables once
the function or subroutine returns unless the SAVE statement is used. If not then it is likely
that FORTRAN will place them on the stack and they will "pop off" when the RETURN
statement is reached.

June 2003 v3.05 A Little C++ 79

To give an object more permanence it has to be placed on the heap.

root[] .L Quad.cxx
root[] Quad *my_objptr = new Quad(1.,2.,-3.);

The second line declares a pointer to Quad called my_objptr. From the syntax point of
view, this is just like all the other declarations we have seen so far, i.e. this is a stack
variable. The value of the pointer is set equal to new Quad(1.,2.,-3.);

new, despite its looks, is an operator and creates an object or variable of the type that
comes next, Quad in this case, on the heap. Just as with stack objects it has to be
initialized by calling its constructor. The syntax requires that the argument list follow the
type. This one statement has brought two items into existence, one on the heap and one on
the stack. The heap object will live until the delete operator is applied to it.

There is no FORTRAN parallel to a heap object; variables either come or go as control
passes in and out of a function or subroutine, or, like a COMMON block variables, live for
the lifetime of the program. However, most people in HEP who use FORTRAN will have
experience of a memory manager and the act of creating a bank is a good equivalent of a
heap object. For those who know systems like ZEBRA, it will come as a relief to learn that
objects don't move, C++ does not garbage collect, so there is never a danger that a pointer
to an object becomes invalid for that reason. However, having created an object, it is the
user's responsibility to ensure that it is deleted when no longer needed, or to pass that
responsibility onto to some other object. Failing to do that will result in a memory leak, one
of the most common and most hard-to-find C++ bugs.

To send a message to an object via a pointer to it, you need to use the "->" operator e.g.:

root[] my_objptr->Solve();

Although we chose to call our pointer my_objptr, to emphasize that it is a pointer, heap
objects are so common in an object-oriented program that pointer names rarely reflect the
fact - you have to be careful that you know if you are dealing with an object or its pointer!
Fortunately, the compiler won't tolerate an attempt to do something like:

root[] my_objptr.Solve();

Although this is a permitted by the CINT shortcuts, it is one that you are strongly advised
not to follow!

As we have seen, heap objects have to be accessed via pointers, whereas stack objects
can be accessed directly. They can also be accessed via pointers:

root[] Quad stack_quad(1.,2.,-3.);
root[] Quad *stack_ptr = &stack_quad;
root[] stack_ptr->Solve();

Here we have a Quad pointer that has been initialized with the address of a stack object.
Be very careful if you take the address of stack objects. As we shall see soon, they get
deleted automatically, which could leave you with an illegal pointer. Using it will corrupt and
may well crash the program!

It is time to look at the destruction of objects. A destructor is a special C++ function that
releases resources for (or destroy) an object of a class. It is opposite of a constructor that
create the object of a class when is called. The compiler will provide a destructor that does
nothing if none is provided. We will add one to our Quad class so that we can see when it
gets called.

The destructor is named by the class but with the prefix ~ which is the C++ one's
complement i.e. bit wise complement, and hence has destruction overtones! We declare it
in the .h file and define it in the .cxx file. It does not do much except print out that it has
been called (still a useful debug technique despite today's powerful debuggers!).

80 A Little C++ June 2003 v3.05

Now run root, load the Quad class and create a heap object:

root[] .L Quad.cxx
root[] Quad *my_objptr = new Quad(1.,2.,-3.);

To delete the object:

root[] delete my_objptr;
root[] my_objptr = 0;

You should see the print out from its destructor. Setting the pointer to zero afterwards isn't
strictly necessary (and CINT does it automatically), but the object is no more accessible,
and any attempt to use the pointer again will, as has already been stated, cause grief.

So much for heap objects, but how do stack objects get deleted? In C++ a stack object is
deleted as soon as control leaves the innermost compound statement that encloses it. So it
is singularly futile to do something like:

root[] { Quad my_object(1.,2.,-3.); }

CINT does not follow this rule; if you type in the above line you will not see the destructor
message. As explained in the Script lesson, you can load in compound statements, which
would be a bit pointless if everything disappeared as soon as it was loaded! Instead, to
reset the stack you have to type:

root[] gROOT->Reset();

This sends the Reset message via the global pointer to the ROOT object, which, amongst
its many roles, acts as a resource manager. Start ROOT again and type in the following:

root[] .L Quad.cxx
root[] Quad my_object(1.,2.,-3.);
root[] Quad *my_objptr = new Quad(4.,5.,-6.);
root[] gROOT->Reset();

You will see that this deletes the first object but not the second. We have also painted
ourselves into a corner, as my_objptr was also on the stack. This command will fail.

root[] my_objptr->Solve();

CINT no longer knows what my_objptr is. This is a great example of a memory leak; the
heap object exists but we have lost our way to access it. In general, this is not a problem. If
any object will outlive the compound statement in which it was created then it will be
pointed to by a more permanent pointer, which frequently is part of another heap object.
See Resetting the Interpreter Environment in the chapter CINT the C++ Interpreter.

June 2003 v3.05 CINT the C++ Interpreter 81

7 CINT the C++ Interpreter

The subject of this chapter is CINT, ROOT command line interpreter and script processor.
First, we explain what CINT is and why ROOT uses it. Then CINT as the command line
interpreter, the CINT commands, and CINT extensions to C++ are discussed. CINT as the
script interpreter is also explained and illustrated with several examples.

What is CINT?
CINT, which is pronounced ['sint], is a C++ interpreter. An interpreter takes a program,
in this case a C++ program, and carries it out by examining each instruction and in turn
executing the equivalent sequence of machine language. For example, an interpreter
translates and executes each statement in the body of a loop "n" times. It does not generate
a machine language program. This may not be a good example, because most interpreters
have become 'smart' about loop processing.

A compiler on the other hand, takes a program and makes a machine language executable.
Once compiled the execution is very fast, which makes a compiler best suited for the case
of "built once, run many times". For example, the ROOT executable is compiled
occasionally and executed many times. It takes anywhere from 1 to 45 minutes to compile
ROOT for the first time (depending on the CPU). Once compiled it runs very fast. On the
average, a compiled program runs ten times faster than an interpreted one.

Because it takes much time to compile, using a compiler is cumbersome for rapid
prototyping when one changes and rebuilds as often as every few minutes. An interpreter is
optimized for code that changes often and runs a few times, is the perfect tool for this.

Most of the time, an interpreter has a separate scripting language, such as Python, IDL, and
PERL, designed especially for interpretation, rather than compilation. However, the
advantage of having one language for both is that once the prototype is debugged and
refined, it can be compiled without translating the code to a compiled language.

CINT being a C++ interpreter is the tool for rapid prototyping and scripting in C++. It is a
stand-alone product developed by Masaharu Goto. It's executable comes with the standard
distribution of ROOT ($ROOTSYS/bin/cint), and it can also be installed separately
from: http://root.cern.ch/CINT.html

This page also has links to all the CINT documentation. The downloadable tar file contains
documentation, the CINT executable, and many demo scripts, which are not included in the
regular ROOT distribution.

Here is a list of CINT main features:

• Supports K&R-C, ANSI-C, and ANSI-C++

• CINT covers 80-90% of the K&R-C, ANSI-C and C++ language constructs. It supports
multiple inheritance, virtual function, function overloading, operator overloading, default
parameter, template, and much more. CINT is robust enough to interpret its own
source code. CINT is not designed to be a 100% ANSI/ISO compliant C++ language
processor. It is a portable scripting language environment, which is close enough to the
standard C++.

• Interprets Large C/C++ source code

82 CINT the C++ Interpreter June 2003 v3.05

• CINT can handle huge C/C++ source code, and loads source files quickly. It can
interpret its own, over 70,000 lines source code.

• Enables mixing Interpretation & Native Code
• Depending on the need for execution speed or the need for interaction, one can mix

native code execution and interpretation. "makeCINT" encapsulates arbitrary C/C++
objects as precompiled libraries. A precompiled library can be configured as a
dynamically linked library. Accessing interpreted code and precompiled code can be
done seamlessly in both directions.

• Provides a Single-Language solution
• CINT/makeCINT is a single-language environment. It works with any ANSI-C/C++

compiler to provide the interpreter environment on top of it.
• Simplifies C++
• CINT is meant to bring C++ to the non-software professional. C++ is simpler to use in

the interpreter environment. It helps the non-software professional (the domain expert)
to talk the same language as the software counterpart.

• Provides RTTI and a Command Line
• CINT can process C++ statements from command line, dynamically define/erase class

definition and functions, load/unload source files and libraries. Extended Run Time
Type Identification is provided, allowing you to explore unthinkable way of using C++.

• Has a Built-in Debugger and Class Browser
• CINT has a built-in debugger to debug complex C++ code. A text based class browser

is part of the debugger.
• Is Portable
• CINT works on number of operating systems: HP-UX, Linux, SunOS, Solaris, AIX,

Alpha-OSF, IRIX, FreeBSD, NetBSD, NEC EWS4800, NewsOS, BeBox, WindowsNT,
Windows9x, MS-DOS, MacOS, VMS, NextStep, Convex.

The ROOT Command Line Interface
Start up a ROOT session by typing ROOT at the system prompt.

> root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 3.05/03 25 March 2003 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

FreeType Engine v2.1.3 used to render TrueType fonts.
Compiled for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.15.80, Mar 17 2003
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root[0]

June 2003 v3.05 CINT the C++ Interpreter 83

Now we create a TLine object:

root[] TLine l
root[] l.Print()
TLine X1=0.000000 Y1=0.000000 X2=0.000000 Y2=0.000000
root[] l.SetX1(10)
root[] l.SetY1(11)
root[] l.Print()
TLine X1=10.000000 Y1=11.000000 X2=0.000000 Y2=0.000000
root[] .g
...
0x4038f080 class TLine l , size=40
 0x0 protected: Double_t fX1 //X of 1st point
 0x0 protected: Double_t fY1 //Y of 1st point
 0x0 protected: Double_t fX2 //X of 2nd point
 0x0 protected: Double_t fY2 //Y of 2nd point
 0x0 private: static class TClass* fgIsA

Here we note:

• Terminating with ‘;‘ is not required (see the section ROOT/CINT Extensions to C++).
• Emacs style command line editing.
• Raw interpreter commands start with a dot (.).

root[] .class TLine
===
class TLine //A line segment
 size=0x28
List of base class-------------------------------
0x0 public: TObject //Basic ROOT object
0xc public: TAttLine //Line attributes
List of member variable--------------------------
Defined in TLine
0x0 protected: Double_t fX1 //X of 1st point
0x0 protected: Double_t fY1 //Y of 1st point
0x0 protected: Double_t fX2 //X of 2nd point
0x0 protected: Double_t fY2 //Y of 2nd point
0x0 private: static class TClass* fgIsA
List of member function--------------------------
Defined in TLine
filename line:size busy function type and name
(compiled) 0:0 0 public: class TLine TLine(void);
(compiled) 0:0 0 public: Double_t GetX1(void);
(compiled) 0:0 0 public: Double_t GetX2(void);
(compiled) 0:0 0 public: Double_t GetY1(void);
(compiled) 0:0 0 public: Double_t GetY2(void);
...
...
(compiled) 0:0 public: virtual void SetX1(Double_t x1);
(compiled) 0:0 public: virtual void SetX2(Double_t x2);
(compiled) 0:0 public: virtual void SetY1(Double_t y1);
(compiled) 0:0 public: virtual void SetY2(Double_t y2);
(compiled) 0:0 0 public: void ~TLine(void);
root[] l.Print(); > test.log
root[] l.Dump(); >> test.log
root[] ?

Here we see:

• Use .class as quick help and reference
• Unix like I/O redirection (; is required before >)
• Use ? to get help on all ``raw'' interpreter commands

84 CINT the C++ Interpreter June 2003 v3.05

Now let’s execute a multi-line command:

root[] {
end with '}'> TLine l;
end with '}'> for (int i = 0; i < 5; i++) {
end with '}'> l.SetX1(i);
end with '}'> l.SetY1(i+1);
end with '}'> l.Print();
end with '}'> }
end with '}'> }
TLine X1=0.000000 Y1=1.000000 X2=0.000000 Y2=0.000000
TLine X1=1.000000 Y1=2.000000 X2=0.000000 Y2=0.000000
TLine X1=2.000000 Y1=3.000000 X2=0.000000 Y2=0.000000
TLine X1=3.000000 Y1=4.000000 X2=0.000000 Y2=0.000000
TLine X1=4.000000 Y1=5.000000 X2=0.000000 Y2=0.000000
root[] .q

Here we note:

• A multi-line command starts with a { and ends with a }.
• Every line has to be correctly terminated with a ; (like in "real'' C++).
• All objects are created in global scope.
• There is no way to back up; you are better off writing a script.
• Use .q to exit root.

The ROOT Script Processor
ROOT script files contain pure C++ code. They can contain a simple sequence of
statements like in the multi command line example given above, but also arbitrarily complex
class and function definitions.

Un-named Scripts
Let’s start with a script containing a simple list of statements (like the multi-command line
example given in the previous section). This type of script must start with a { and end with a
}and is called an un-named script. Assume the file is called script1.C

{
#include <iostream.h>

 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<< endl;
}

To execute the stream of statements in script1.C do:

root[] .x script1.C

This loads the contents of file script1.C and executes all statements in the interpreter's
global scope. One can re-execute the statements by re-issuing ".x script1.C" (since
there is no function entry point). Scripts are searched for in the Root.MacroPath as
defined in your .rootrc file. To check which script is being executed use:

root[] .which script1.C
/home/rdm/root/./script1.C

June 2003 v3.05 CINT the C++ Interpreter 85

Named Scripts
Let’s change the un-named script to a named script. Copy the file script1.C to
script2.C and add a function statement. Like this:

#include <iostream.h>

int main()
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i= 101;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}

Notice that no surrounding { } are required in this case. To execute function main() in
script2.C do:

root[] .L script2.C // load script in memory
root[] main() // execute entry point main
 Hello
 x = 3 y = 5 i = 101
(int)0
root[] main() // execute main() again
 Hello
 x = 3 y = 5 i = 101
(int)0
root[] .func // list all functions known by CINT
filename line:size busy function type and name
...
script2.C 4:9 0 public: int main();

The last command shows that main() has been loaded from file script2.C, that the
function main() starts on line 4 and is 9 lines long.

Notice that once a function has been loaded it becomes part of the system just like a
compiled function.

Now we copy file script2.C to script3.C and change the function name from main()
to script3(int j = 10):

#include <iostream.h>

int script3(int j = 10)
{
 cout << " Hello" << endl;
 float x = 3.;
 float y = 5.;
 int i = j;
 cout <<" x = "<<x<<" y = "<<y<<" i = "<<i<<endl;
 return 0;
}

To execute script3() in script3.C type:

root[] .x script3.C(8)

This loads the contents of file script3.C and executes entry point script3(8).

Note that the above only works when the filename (minus extension) and function entry
point are both the same.

86 CINT the C++ Interpreter June 2003 v3.05

Function script3() can still be executed multiple times:

root[] script3()
 Hello
 x = 3 y = 5 i = 10
(int)0
root[] script3(33)
 Hello
 x = 3 y = 5 i = 33
(int)0

In a named script, the objects created on the stack are deleted when the function exits. For
example, this scenario is very common. You create a histogram in a named script on the
stack. You draw the histogram, but when the function exits the canvas is empty and the
histogram disappeared.

To avoid histogram from disappearing you can create it on the heap (by using new). This
will leave the histogram object intact, but the pointer in the named script scope will be
deleted.

Since histograms (and trees) are added to the list of objects in the current directory, you can
always retrieve them to delete them if needed.

root[] TH1F *h = (TH1F*)gDirectory->Get("myHist");

or

root[] TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

In addition, histograms and trees are automatically deleted when the current directory is
closed. This will automatically take care of the clean up. See chapter Input/Output.

Executing a Script from a Script
You may want to execute a script conditionally inside another script. To do it you need to
call the interpreter and you can do that with TROOT::ProcessLine().

Here is an example from $ROOTSYS/tutorials/cernstaff.C that calls a script to build
the root file if it does not exist:

void cernstaff()
{
 if (gSystem->AccessPathName("cernstaff.root")) {
 gROOT->ProcessLine(".x cernbuild.C");
 }
...

ProcessLine takes a parameter which is a pointer to an int or to a
TInterpreter::EErrorCode to let you access the CINT error code after an attempt to
interpret. This will contain the CINT error as defined in enum
TInterpreter::EErrorCode.

Resetting the Interpreter Environment
Variables created on the command line and in un-named scripts are in the interpreter's
global scope, which makes the variables created in un-named scripts available on the
command line event after the script is done executing. This is the opposite of a named script
where the stack variables are deleted when the function in which they are defined has
finished execution.

When running an un-named script over again and this is frequently the case since un-named
scripts are used to prototype, one should reset the global environment to clear the variables.
This is done by calling gROOT->Reset(). It is good practice, and you will see this in the

June 2003 v3.05 CINT the C++ Interpreter 87

examples, to begin an un-named script with gROOT->Reset(). It clears the global scope to
the state just before executing the previous script (not including any logon scripts).

The gROOT->Reset() calls the destructor of the objects if the object was created on the
stack. If the object was created on the heap (via new) it is not deleted, but the variable is no
longer associated with it. Creating variables on the heap in un-named scripts and calling
gROOT->Reset() without you calling the destructor explicitly will cause a memory leak.

This may be surprising, but it follows the scope rules. For example, creating an object on
the heap in a function (in a named script) without explicitly deleting it will also cause a
memory leak. Since when exiting the function only the stack variables are deleted.

The code below shows gROOT->Reset() calling the destructor for the stack variable, but
not for the heap variable. In the end, neither variable is available, but the memory for the
heap variable is not released.

Here is an example:

root[] gDebug = 1
(const int)1
root[] TFile stackVar("stack.root","RECREATE")
TKey Writing 86 bytes at address 64 for ID= stack.root Title=
root[] TFile *heapVar = new TFile("heap.root","RECREATE")
TKey Writing 84 bytes at address 64 for ID= heap.root Title=

We turn on Debug to see what the subsequent calls are doing. Then we create two
variables, one on the stack and one on the heap

root[] gROOT->Reset()
TKey Writing 48 bytes at address 150 for ID= stack.root Title=
TKey Writing 54 bytes at address 198 for ID= stack.root Title=
TFile dtor called for stack.root
TDirectory dtor called for stack.root

When we call gROOT->Reset(), CINT tells us that the destructor is called for the stack
variable, but it doesn't mention the heap variable.

root[] stackVar
Error: No symbol stackVar in current scope FILE:/var/tmp/faaa01jWe_cint LINE:1
*** Interpreter error recovered ***
root[] heapVar
Error: No symbol heapVar in current scope FILE:/var/tmp/gaaa01jWe_cint LINE:1
*** Interpreter error recovered ***

Neither variable is available in after the call to reset.

root[] gROOT->FindObject("stack.root")
(class TObject*)0x0
root[] gROOT->FindObject("heap.root")
(class TObject*)0x106bfb30

The object on the stack is deleted and shows a null pointer when we do a FindObject.
However, the heap object is still around and taking up memory.

88 CINT the C++ Interpreter June 2003 v3.05

A Script Containing a Class Definition
Lets create a small class TMyClass and a derived class TChild. The virtual method
TMyClass::Print() is overridden in TChild. Save this in file called script4.C.

#include <iostream.h>
class TMyClass {
private:
 float fX; //x position in centimeters
 float fY; //y position in centimeters
public:
 TMyClass() { fX = fY = -1; }
 virtual void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }
};

void TMyClass::Print() const // parent print method
{
 cout << "fX = " << fX << ", fY = " << fY << endl;
}

class TChild : public TMyClass {
public:
 void Print() const;
};
void TChild::Print() const // child print metod
{
 cout << "This is TChild::Print()" << endl;
 TMyClass::Print();
}

To execute script4.C do:

root[] .L script4.C
root[] TMyClass *a = new TChild
root[] a->Print()
This is TChild::Print()
fX = -1, fY = -1
root[] a->SetX(10)
root[] a->SetY(12)
root[] a->Print()
This is TChild::Print()
fX = 10, fY = 12
root[] .class TMyClass
===
class TMyClass
 size=0x8 FILE:script4.C LINE:3
List of base class-----------------------------------
List of member variable------------------------------
Defined in TMyClass
0x0 private: float fX
0x4 private: float fY
List of member function------------------------------
Defined in TMyClass
filename line:size busy function type and name
script4.C 16:5 0 public: class TMyClass TMyClass(void);
script4.C 22:4 0 public: void Print(void);
script4.C 12:1 0 public: void SetX(float x);
script4.C 13:1 0 public: void SetY(float y);
root[] .q

As you can see an interpreted class behaves just like a compiled class.

June 2003 v3.05 CINT the C++ Interpreter 89

There are some limitations for a class created in a script:

1. They cannot inherit from TObject. Currently the interpreter cannot patch the virtual
table of compiled objects to reference interpreted objects.

2. Because the I/O is encapsulated in TObject and a class defined in a script can not
inherit from TObject, it can not be written to a ROOT file.

For ways to add a class with a shared library and with ACLiC, see the chapter: "Adding a
Class"

Debugging Scripts
A powerful feature of CINT is the ability to debug interpreted functions by means of setting
breakpoints and being able to single step through the code and print variable values on the
way. Assume we have script4.C still loaded, we can then do:

root[] .b TChild::Print
Break point set to line 26 script4.C
root[] a.Print()

26 TChild::Print() const
27 {
28 cout << "This is TChild::Print()" << endl;
FILE:script4.C LINE:28 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
This is TChild::Print()

29 MyClass::Print();
FILE:script4.C LINE:29 cint> .s

16 MyClass::Print() const
17 {
18 cout << "fX = " << fX << ", fY = " << fY << endl;
FILE:script4.C LINE:18 cint> .p fX
(float)1.000000000000e+01
FILE:script4.C LINE:18 cint> .s

311 operator<<(ostream& ostr,G__CINT_ENDL& i) {return(endl(ostr));
FILE:iostream.h LINE:311 cint> .s
}
fX = 10, fY = 12

19 }

30 }

2 }
root[] .q

90 CINT the C++ Interpreter June 2003 v3.05

Inspecting Objects
An object of a class inheriting from TObject can be inspected, with the Inspect method.
The TObject::Inspect method creates a window listing the current values of the objects
members. For example, this is a picture of TFile.

root[] TFile f("staff.root")
root[] f.Inspect()

You can see the pointers are in red and can be clicked on to follow the pointer to the object.
For example, here we clicked on fKeys, the list of keys in memory.

If you clicked on fList, the list of objects in memory and there were none, no new canvas
would be shown. On top of the page are the navigation buttons to see the previous and next
screen.

June 2003 v3.05 CINT the C++ Interpreter 91

ROOT/CINT Extensions to C++
In the next example, we demonstrate three of the most important extensions ROOT/CINT
makes to C++. Start ROOT in the directory $ROOTSYS/tutorials (make sure to have
first run ".x hsimple.C"):

root[] f = new TFile("hsimple.root")
(class TFile*)0x4045e690
root[] f.ls()
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py ps px
 KEY: THProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
root[] hpx.Draw()
NULL
Warning in <MakeDefCanvas>: creating a default canvas with name c1
root[] .q

The first command shows the first extension; the declaration of f may be omitted when
"new" is used. CINT will correctly create f as pointer to object of class TFile.

The second extension is shown in the second command. Although f is a pointer to TFile
we don't have to use the pointer de-referencing syntax "->" but can use the simple "."
notation.

The third extension is more important. In case CINT cannot find an object being referenced,
it will ask ROOT to search for an object with an identical name in the search path defined by
TROOT::FindObject(). If ROOT finds the object, it returns CINT a pointer to this object
and a pointer to its class definition and CINT will execute the requested member function.
This shortcut is quite natural for an interactive system and saves much typing. In this
example, ROOT searches for hpx and finds it in simple.root.

The fourth is shown below. There is no need to put a semicolon at the end of a line. The
difference between having it and leaving it off is that when you leave it off the return value of
the command will be printed on the next line. For example:

root[] 23+5 // no semicolon prints the return value
(int)28
root[] 23+5; // semicolon no return value is printed
root[]

Be aware that these extensions do not work when the interpreter is replaced by a compiler.
Your code will not compile, hence when writing large scripts, it is best to stay away from
these shortcuts. It will save you from having problems compiling your scripts using a real
C++ compiler.

ACLiC - The Automatic Compiler of Libraries
for CINT

Instead of having CINT interpret your script there is a way to have your scripts compiled,
linked and dynamically loaded using the C++ compiler and linker. The advantage of this is
that your scripts will run with the speed of compiled C++ and that you can use language
constructs that are not fully supported by CINT. On the other hand, you cannot use any
CINT shortcuts (see CINT extensions) and for small scripts, the overhead of the compile/link
cycle might be larger than just executing the script in the interpreter.

ACLiC will build a CINT dictionary and a shared library from your C++ script, using the
compiler and the compiler options that were used to compile the ROOT executable. You do
not have to write a makefile remembering the correct compiler options, and you do not
have to exit ROOT.

92 CINT the C++ Interpreter June 2003 v3.05

Usage
Before you can compile your interpreted script you need to add include statements for the
classes used in the script. Once you did that, you can build and load a shared library
containing your script. To load it, use the .L command and append the file name with a "+".

root[] .L MyScript.C+
root[] .files
…
*file="/home/./MyScript_C.so"

The + option generates the shared library and naming it by taking the name of the file
"filename" but replacing the dot before the extension by an underscore and by adding the
shared library extension for the current platform.

For example on most platforms, hsimple.cxx will generate hsimple_cxx.so.

If we execute a .files command we can see the newly created shared library is in the list of
loaded files.

The + command rebuild the library only if the script or any of the files it includes are newer
than the library. When checking the timestamp, ACLiC generates a dependency file which
name is the same as the library name, just replacing the 'so' extension by the extension ’d’.
For example on most platforms, hsimple.cxx will generate hsimple_cxx.d.

To ensure that the shared library is rebuilt you can use the ++ syntax:

root[] .L MyScript.C++

To build, load, and execute the function with the same name as the file you can use the .x
command. This is the same as executing a named script. You can have parameters and
use .x or .X. The only difference is you need to append a + or a ++.

root[] .x MyScript.C+ (4000)
Creating shared library /home/./MyScript_C.so

You can select whether the script in compiled with debug symbol or with optimization by
appending the letter 'g' or 'O' after the '+' or '++'. Without the specification the script is
compiled with the same level of debugging symbol and optimization as the currently running
ROOT executable.

For example:

root[] .L MyScript.C++g

will compile MyScript.C with debug symbol; usually this means giving the -g option to
compiler.

root[] .L MyScript.C++O

will compile MyScript.C with optimizations; usually this means giving the -O option to
compiler. The syntax:

root[] .L MyScript.C++

is using the default optimization level. The initial default is to compile with the same level of
optimization as the root executable itself. The default can be changed by:

root[] gSystem->SetAclicMode(TSystem::kDebug);
root[] gSystem->SetAclicMode(TSystem::kOpt);

June 2003 v3.05 CINT the C++ Interpreter 93

Note that the commands:

root[] .L MyScript.C+g
root[] .L MyScript.C+O

respectively compile MyScript.C with debug and optimization if the library does not exist
yet; they will not change the debug and the optimization level if the library already exist and
it is up to date.

To use ACLiC from compiled code or from inside another macro, we recommend using
TROOT::ProcessLine().

For example, in one script you can use ACLiC to compile and load another script.

gROOT->ProcessLine("MyScript.C+")
gROOT->ProcessLine("MyScript.C++")

Setting the Include Path
You can get the include path by typing:

root[] .include

You can append to the include path by typing:

root[] .include $HOME/mypackage/include

In a script you can set the include path:

gSystem->SetIncludePath(" -I$HOME/mypackage/include ")

The $ROOTSYS/include directory is automatically appended to the include path, so you
don't have to worry about including it, however if you have already added a path, this
command will overwrite it.

To add library that should be used during linking of the shared library use something like:

TString libs = gSystem->GetLinkedLibs();
libs.Append("-L/my/path -lanylib");
gSystem->SetLinkedLibs(libs.Data());

This is especially useful for static libraries. For shared libraries you can also simply load
them before trying to compile the script:

gSystem->Load("mydir/mylib");

You can direct what is added to the dictionary generated by ACLiC in two ways. The
simplest way is to add at the end of script (i.e. after the symbols have been defined)
something like:

#if defined(__MAKECINT__)
#pragma link C++ class MyOtherClass;
#endif

In ROOT 3.05/03 and above, the default behavior of rootcint is to not link in (i.e. generate
the dictionary for) any of the symbols. In particular this means that the lines:

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

are now, in the general case, unnecessary.

94 CINT the C++ Interpreter June 2003 v3.05

This also means that linking the instantiation of a class template:

#pragma link C++ class mytemplate<int>;

ONLY links this specific class. In previous versions of ROOT, depending on many factors,
this might also have included the linking of many other instantiation of class template used
directly or indirectly by 'mytemplate'.

A typical case would have been to rely on:

#pragma link C++ class vector<MyClass>;

to also induce the generation of the iterators. You now need to explicitly request them.
Another advantage of the change is that now, if you omit the 'pragma link off' line from your
linkdef file, you can actually sprinkle the 'pragma link C++ class' across as many of you
header as file as you need.

See the documentation of rootcint for details how pragma can be used.

You can also write this portion of code in a file name MyScript_linkdef.h where the
suffix '_linkdef' is the prefix defined by the key ‘ACLiC.Linkdef‘ in the currently
used resource file (usually $ROOTSYS/etc/system.rootrc or .rootrc) and the prefix
is the name of your script.

ACLiC uses the directive fMakeSharedLibs to create the shared library. If loading the
shared library fails, it tries to output a list of missing symbols by creating an executable (on
some platforms like OSF, this does not HAVE to be an executable) containing the script. It
uses the directive fMakeExe to do so. For both directives, before passing them to
TSystem::Exec(), it expands the variables $SourceFiles, $SharedLib,
$LibName, $IncludePath, $LinkedLibs, $ExeName and $ObjectFiles. See
SetMakeSharedLib() for more information on those variables.

NOTE: You should not call ACLiC with a script that has a function called main(). When
ACLiC calls rootcint with a function called main it tries to add every symbol it finds while
parsing the script and the header files to the dictionary. This includes the system header files
and the ROOT header files. This will result in duplicate entries at best and crashes at worst,
because some classes in ROOT need special attention before they can be added to the
dictionary.

When the file being passed to ACLiC is on a read only file system, ACLiC warns the user
and creates the library in a temporary directory:

root [0] .L readonly/t.C++
Warning in <ACLiC>: /scratch/aclic/subs/./readonly is not writeable!
Warning in <ACLiC>: Output will be written to /tmp
Info in <TUnixSystem::ACLiC>: creating shared library
/tmp//scratch/aclic/subs/./readonly/t_C.so

To select the temporary directory ACLiC looks at $TEMP, $TEMP_DIR, $TEMPDIR,
$TMP, $TMPDIR, $TMP_DIR or uses /tmp (or C:/).

Also, a new interface TSystem::Get/SetBuildDir is introduced to let the user select an
alternative 'root' for the building of the ACLiC libraries.

For the filename /full/path/name/macro.C, the library is created as
'fBuildDir'/full/path/name/macro_C.so.

Also, the ACLiC linkdef does NOT contain anymore pragma link off. This means, that you
can now steer the dictionary generation from within the script itself. However beware of
multiple inclusions!

ACLiC will now obey ALL pragma link C++ it sees!

June 2003 v3.05 CINT the C++ Interpreter 95

Intermediate Steps and Files
ACLiC executes two steps and a third one if needed. These are:

• Calling rootcint to create a CINT dictionary. rootcint is a ROOT specific version
of makecint, CINT generic dictionary generator.

• Calling the compiler to build the shared library from the script
• If there are errors, it calls the compiler to build a dummy executable to clearly report

unresolved symbols.

ACLiC makes a shared library with a CINT dictionary containing the classes and functions
declared in the script. It also adds the classes and functions declared in included files with
the same name as the script file and any of the following extensions: .h, .hh, .hpp, .hxx,
.hPP, .hXX. This means that, by default, you cannot combine scripts from different files into
one library by using #include statements; you will need to compile each script separately.
In a future release, we plan to add the global variables declared in the script to the
dictionary also. If you are curious about the specific calls, you can raise the ROOT debug
level:

gDebug = 3

ACLiC will print the three steps.

Moving between Interpreter and Compiler
The best way to develop portable scripts is to make sure you can always run them with
both, the interpreter and with ACLiC. To do so, do not use the CINT extensions and
program around the CINT limitations. When it is not possible or desirable to program
around the CINT limitations, you can use the C preprocessor symbols defined for CINT and
rootcint.

The preprocessor symbol __CINT__ is defined for both CINT and rootcint. The symbol
__MAKECINT__ is only defined in rootcint.

Use !defined(__CINT__) || defined(__MAKECINT__) to bracket code that needs
to be seen by the compiler and rootcint, but will be invisible to the interpreter.

Use !defined(__CINT__) to bracket code that should be seen only by the compiler and
not by CINT or rootcint.

For example, the following will hide the declaration and initialization of the array gArray
from both CINT and rootcint.

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#endif

Because ACLiC calls rootcint to build a dictionary, the declaration of gArray will not be
included in the dictionary, and consequently, gArray will not be available at the command
line even if ACLiC is used. CINT and rootcint will ignore all statements between the
"#if !defined (__CINT__)" and "#endif".

If you want to use gArray in the same script as its declaration, you can do so. However, if
you want use the script in the interpreter you have to bracket the usage of gArray between
#if's, since the definition is not visible.

If you add the following preprocessor statements:

#if !defined(__CINT__)
int gArray[] = { 2, 3, 4};
#elif defined(__MAKECINT__)
int gArray[];
#endif

gArray will be visible to rootcint but still not visible to CINT. If you use ACLiC, gArray
will be available at the command line and be initialized properly by the compiled code.

96 CINT the C++ Interpreter June 2003 v3.05

We recommend you always write scripts with the needed include statements. In most
cases, the script will still run with the interpreter. However, a few header files are not
handled very well by CINT.

These types of headers can be included in interpreted and compiled mode:

• The subset of standard C/C++ headers defined in $ROOTSYS/cint/include.
• Headers of classes defined in a previously loaded library (including ROOT own). The

defined class must have a name known to ROOT (i.e. a class with a ClassDef).

A few headers will cause problems when they are included in interpreter mode, because
they are already included by the interpreter itself. In general, the interpreter needs to know
whether to use the interpreted or compiled version. The mode of the definition needs to
match the mode of the reference.

Here are the cases that need to be excluded in interpreted mode, but included for
rootcint. Bracket these with:

!defined(__CINT__) || defined(__MAKECINT__)

• All CINT headers, see $ROOTSYS/cint/inc
• Headers with classes named other than the file name. For example: Rtypes.h and

GuiTypes.h.
• Headers with a class defined in libraries before the library is loaded. For example:

having #include "TLorentzVector.h before
gSystem->Load("libPhysics"). This will also cause problems when compiling the
script, but a clear error message will be given. With the interpreter it may core dump.
Bracket these type of include statements with #if !defined (__CINT__), this will
print an error in both modes.

Hiding header files from rootcint that are necessary for the compiler but optional for the
interpreter can lead to a subtle but fatal error. For example:

#ifndef __CINT__
#include "TTree.h"
#else
class TTree;
#endif

class subTree : public TTree {
};

In this case, rootcint does not have enough information about the TTree class to
produce the correct dictionary file. If you try this, rootcint and compiling will be error free,
however, instantiating a subTree object from the CINT command line will cause a fatal
error.

In general it is recommended to let rootcint see as many header files as possible.

June 2003 v3.05 Object Ownership 97

8 Object Ownership

An object has ownership of another object if it has permission to delete it. Usually
ownership is held by a collection or a parent object such as a pad.

To prevent memory leaks and multiple attempts to delete an object, you need to know
which objects are owned by ROOT and which are owned by you.

The following rules apply to the ROOT classes.

• Histograms, trees, and event lists created by the user are owned by current directory
(gDirectory). When the current directory is closed or deleted the objects it owns are
deleted also.

• The TROOT master object (gROOT) has several collections of objects. Objects that are
members of these collections are owned by gROOT (see the paragraph "Ownership by
the Master TROOT Object (gROOT)" below).

• Objects created by another object, for example the function object (e.g.TF1) created by
the TH1::Fit method is owned by the histogram.

• An object created by DrawCopy methods, is owned by the pad it is drawn in.

If an object fits none of these cases, the user has ownership. The next paragraphs describe
each rule and user ownership in more detail.

Ownership by Current Directory (gDirectory)
When a histogram, tree, or event list (TEventList) is created, it is added to the list of
objects in the current directory by default. You can get the list of objects in a directory and
retrieve a pointer to a specific object with the GetList method. This example retrieves a
histogram.

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory. It
looks in memory, and is implemented in all ROOT collections.

You can change the directory of a histogram, tree, or event list with the SetDirectory
method. Here we use a histogram for an example, but the same applies to trees and event
lists.

h->SetDirectory(newDir)

You can also remove a histogram from a directory by using SetDirectory(0). Once a
histogram is removed from the directory, it will not be deleted when the directory is closed.
It is now your responsibility to delete this histogram once you have finished with it.

To change the default that automatically adds the histogram to the current directory, you
can call the static function:

TH1::AddDirectory(kFALSE);

98 Object Ownership June 2003 v3.05

All histograms created here after will not be added to the current directory. In this case, you
own all histogram objects and you will need to delete them and clean up the references.

You can still set the directory of a histogram by calling SetDirectory once it has been
created as described above.

Note that, when a file goes out of scope or is closed all objects on its object list are deleted.

Ownership by the Master TROOT Object (gROOT)
The master object gROOT, maintains several collections of objects. For example, a canvas
is added to the collection of canvases and it is owned by the canvas collection.

TSeqCollection* fFiles List of files (TFile)
TSeqCollection* fMappedFiles List of memory mapped
 files (TMappedFile)
TSeqCollection* fSockets List of network sockets
 (TSocket and TServerSocket)
TSeqCollection* fCanvases List of canvases (TCanvas)
TSeqCollection* fStyles List of styles (TStyle)
TSeqCollection* fFunctions List of analytic functions
 (TF1, TF2, TF3)
TSeqCollection* fTasks List of tasks (TTask)
TSeqCollection* fColors List of colors (TColor)
TSeqCollection* fGeometries List of geometries (?)
TSeqCollection* fBrowsers List of browsers (TBrowser)
TSeqCollection* fSpecials List of special objects
TSeqCollection* fCleanups List of recursiveRemove
 collections

These collections are also displayed in the root
folder of the Object Browser. Most of these
collections are self explanatory. The special cases
are the collections of specials and cleanups.

The Collection of Specials
This collection contains objects of the following
classes: TCut, TMultiDimFit,
TPrincipal, TChains. In addition it contains
the gHtml object, gMinuit objects, and the
array of contours graphs (TGraph) created when
calling the Draw method of a histogram with the
"CONT, LIST" option.

Access to the Collection
Contents

The current content for the collection listed above can be accessed with the corresponding
gROOT->GetListOf method (for example
gROOT->GetListOfCanvases). In addition,
gROOT->GetListOfBrowsables returns a collection of all objects visible on the left side
panel in the browser (see the image of the Object Browser above).

June 2003 v3.05 Object Ownership 99

Ownership by Other Objects
When an object is created by another, the creating object is the owner of the one it created.
For example:

myHisto->Fit("gaus")

The call to Fit copies the global TF1 Gaussian function and attaches the copy to the
histogram. When the histogram is deleted, the copy is deleted also.

When a pad is deleted or cleared, all objects in the pad with the kCanDelete bit set are
automatically deleted. Currently the objects created by the DrawCopy methods, have the
kCanDelete bit set and are therefore owned by the pad.

Ownership by the User
The user owns all objects not described in one of the above cases. TObject has two bits,
kCanDelete and kMustCleanup, that influence how an object is managed (in
TObject::fBits). These are in an enumeration in TObject.h. To set these bits do:

MyObject->SetBit(kCanDelete)
MyObject->SetBit(kMustCleanup)

The bits can be reset and tested with the TObject::ResetBit and
TObject::TestBit methods.

The kCanDelete Bit
The gROOT collections (see above) own their members and will delete them regardless of
the kCanDelete bit. In all other collections, when the collection Clear method is called
(i.e. TList::Clear()), members with the kCanDelete bit set, are deleted and
removed from the collection. If the kCanDelete bit is not set, the object is only removed
from the collection but not deleted.

If a collection Delete (TList::Delete()) method is called, all objects in the collection
are deleted without considering the kCanDelete bit.

It is important to realize that deleting the collection (i.e. delete MyCollection), DOES NOT
delete the members of the collection. If the user specified MyCollection->SetOwner()
the collection owns the objects and delete MyCollection will delete all its members.

 Otherwise you need to:

// delete all member objects in the collection
MyCollection->Delete();

// and delete the collection object
delete MyCollection;

Note that kCanDelete is automatically set by the DrawCopy method and it can be set for
any object by the user.

For example, all graphics primitives must be managed by the user. If you want TCanvas to
delete the primitive you created you have to set the kCanDelete bit.

The kCanDelete bit setting is displayed with TObject::ls(). The last number is either
1 or 0 and is the kCanDelete bit.

100 Object Ownership June 2003 v3.05

root[] TCanvas MyCanvas("MyCanvas")
root[] MyCanvas.Divide(2,1)
root[] MyCanvas->cd(MyCanvas_1)
root[] hstat.Draw() // hstat is an existing TH1F
root[] MyCanvas->cd(MyCanvas_2)
root[] hstat.DrawCopy() // DrawCopy sets the kCanDelete bit
(class TH1*)0x88e73f8
root[] MyCanvas.ls()
Canvas Name=MyCanvas …
 TCanvas … Name= MyCanvas …
 TPad … Name= MyCanvas_1 …
 TFrame …
 OBJ: TH1F hstat Event Histogram : 0
 TPaveText … title
 TPaveStats … stats
 TPad … Name= MyCanvas_2 …
 TFrame …
 OBJ: TH1F hstat Event Histogram : 1
 TPaveText … title
 TPaveStats … stats

The kMustCleanup Bit
When the kMustCleanup bit is set, the object destructor will remove the object and its
references from all collections in the clean up collection (gROOT::fCleanups).

An object can be in several collections, for example if an object is in a browser and on two
canvases. If the kMustCleanup bit is set, it will automatically be removed from the
browser and both canvases when the destructor of the object is called.

kMustCleanup is set

• When an object is added to a pad (or canvas) in TObject::AppendPad.
• When an object is added to a TBrowser with TBrowser::Add.
• When an object is added to a TFolder with TFolder::Add.
• When creating an inspector canvas with TInspectCanvas::Inspector
• When creating a TCanvas.
• When painting a frame for a pad, the frame's kMustCleanup is set in

TPad::PaintPadFrame

The user can add his own collection to the collection of clean ups, to take advantage of the
automatic garbage collection.

For example:

// create two list
TList *myList1, *myList2;

// add both to of clean ups
gROOT->GetListOfCleanUps()->Add(myList1);
gROOT->GetListOfCleanUps()->Add(myList2);

// assuming myObject is in myList1 and myList2, when calling:
delete myObject;

// the object is deleted from both lists

June 2003 v3.05 Graphics and the Graphical User Interface 101

9 Graphics and the Graphical
User Interface

Graphical capabilities of ROOT range from 2D objects (lines, polygons, arrows) to various
plots, histograms, and 3D graphical objects. In this chapter, we are going to focus on
principals of graphics and 2D objects. Plots and histograms are discussed in a chapter of
their own.

Drawing Objects
In ROOT, most objects derive from a base class TObject. This class has a virtual method
Draw() so all objects are supposed to be able to be "drawn". The basic whiteboard on
which an object is drawn is called a canvas (defined by the class TCanvas). If several
canvases are defined, there is only one active at a time. One draws an object in the active
canvas by using the statement:

object.Draw()

This instructs the object "object" to draw itself. If no canvas is opened, a default one
(named "c1") is instantiated and is drawn.

root[] TLine a(0.1,0.1,0.6,0.6)
root[] a.Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

The first statement defines a line and the second one draws it. A default canvas is drawn
since there was no opened one.

Interacting with Graphical Objects
When an object is drawn, one can interact with it. For example, the line drawn in the
previous paragraph may be moved or transformed. One very important characteristic of
ROOT is that transforming an object on the screen will also transform it in memory. One
actually interacts with the real object, not with a copy of it on the screen. You can try for
instance to look at the starting X coordinate of the line:

root[] a.GetX1()
(double)1.000000000e-1

X1 is the x value of the starting coordinate given in the definition above.

Now move it interactively by clicking with the left mouse button in the line's middle and try to
do again:

102 Graphics and the Graphical User Interface June 2003 v3.05

root[] a.GetX1()
(Double_t)1.31175468483816005e-01

You do not obtain the same result as before, the coordinates of 'a' have changed. As said,
interacting with an object on the screen changes the object in memory.

Moving, Resizing and Modifying Objects
Changing the graphic objects attributes can be done with the GUI or programmatically.
First, let's see how it is done in the GUI.

The Left Mouse Button
As was just seen moving or resizing an object is done with the left mouse button. The
cursor changes its shape to indicate what may be done:

Point the object or one part of it:

Rotate:

Resize (exists also for the other directions):

Enlarge (used for text):

Move:

Here are some examples of

Moving: Resizing:

Rotating:

With C++ Statements (Programmatically)
How would one move an object in a script? Since there is a tight correspondence between
what is seen on the screen and the object in memory, changing the object changes it on the
screen. For example, try to do:

root[] a.SetX1(0.9)

June 2003 v3.05 Graphics and the Graphical User Interface 103

This should change one of the coordinates of our line, but nothing happens on the screen.
Why is that? In short, the canvas is not updated with each change for performance
reasons. See the sub section on: "Updating the Pad" in the next section.

Selecting Objects

The Middle Mouse Button
Objects in a canvas, as well as in a pad, are stacked on top of each other in the order they
were drawn. Some objects may become “active” objects, which mean they are reordered to
be on top of the others. To interactively make an object "active", you can use the middle
mouse button. In case of canvases or pads, the border becomes highlighted when it is
active.

With C++ Statements (Programmatically)
Frequently we want to draw in different canvases or pads. By default, the objects are drawn
in the active canvas. To activate a canvas you can use the "TPad::cd()" method.

root[] c1->cd()

Context Menus: the Right Mouse Button
The context menus are a way to interactively call certain methods of an object. When
designing a class, the programmer can add methods to the context menu of the object by
making minor changes to the header file.

Using Context Menus
On a ROOT canvas, you can right-click on any object and see the context menu for it. The
script hsimple.C draws a histogram. The image below shows the context menus for some
of the objects on the canvas. Next picture shows that drawing a simple histogram involves
as many as seven objects. When selecting a method from the context menu and that
method has options, the user will be asked for numerical values or strings to fill in the
option. For example, TAxis::SetTitle will prompt you for a string to use for the axis
title.

104 Graphics and the Graphical User Interface June 2003 v3.05

Structure of the Context Menus
The curious reader will have noticed that each entry in the context menu corresponds to a
method of the class.

Look for example to the menu named TAxis::xaxis. xaxis is the name of the object
and TAxis the name of its class. If we look at the list of TAxis methods, for example in
http://www.root.ch/root/html/TAxis.html , we see the methods SetTimeDisplay() and
UnZoom(), which appear also in the context menu.

There are several divisions in the context menu, separated by lines. The top division is a list
of the class methods; the second division is a list of the parent class methods. The
subsequent divisions are the methods other parent classes in case of multiple inheritance.

For example, see the TPaveText::title context menu. A TPaveText inherits from
TAttLine, which has the method SetLineAttributes().

Adding Context Menus for a Class
For a method to appear in the context menu of the object it has to be marked by
// *MENU* in the header file. Below is the line from TAttLine.h that adds the
SetLineAttribute method to the context menu.

virtual void SetLineAttributes(); // *MENU*

Nothing else is needed, since CINT knows the classes and their methods. It takes
advantage of that to create the context menu on the fly when the object is clicking on.

If you click on an axis, ROOT will ask the interpreter what are the methods of the TAxis
and which ones are set for being displayed in a context menu.

Now, how does the interpreter know this? Remember, when you build a class that you want
to use in the ROOT environment, you use rootcint that builds the so-called stub
functions and the dictionary. These functions and the dictionary contain the knowledge of
the used classes. To do this, rootcint parses all the header files.

ROOT has defined some special syntax to inform CINT of certain things, this is done in the
comments so that the code still compiles with a C++ compiler.

For example, you have a class with a Draw() method, which will display itself. You would
like a context menu to appear when on clicks on the image of an object of this class. The
recipe is the following:

1. The class has to contain the ClassDef/ClassImp macros
2. For each method you want to appear in the context menu, put a comment after the

declaration containing *MENU* or *TOGGLE* depending on the behavior you
expect. One usually uses Set methods (setters).

 For example:

class MyClass : public TObject
{
private :
 int fV1; // first variable
 double fV2; // second variable
public :
 int GetV1() {return fV1;}
 double GetV2() {return fV2;}
 void SetV1(int x1) { fV1 = x1;} // *MENU*
 void SetV2(double d2) { fV2 = d2;} // *MENU*
 void SetBoth(int x1, double d2) {fV1 = x1; fV2 = d2;}
 ClassDef (MyClass,1)
}

 The *TOGGLE* comment is used to toggle a boolean data field. In that case, it is
 safe to call the data field fMyBool where MyBool is the name of the setter
 SetMyBool. Replace MyBool with your own boolean variable.

June 2003 v3.05 Graphics and the Graphical User Interface 105

3. You can specify arguments and the data members in which to store the
arguments.

 For example:

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fV1}

This statement is in the comment field, after the *MENU*. If there is more than one
argument, these arguments are separated by commas, where fX1 and fY2 are data fields in
the same class.

void SetXXX(Int_t x1, Float_t y2); //*MENU* *ARGS={x1=>fX1,y2=>fY2}

If the arguments statement is present, the option dialog displayed when selecting
SetXXXfield will show the values of variables. We indicate to the system which argument
corresponds to which data member of the class.

Executing Events when a Cursor Passes on Top of an Object
This paragraph is for class designers. When a class is designed, it is often desirable to
include drawing methods for it. We will have a more extensive discussion about this, but
drawing an object in a canvas or a pad consists in "attaching" the object to that pad. When
one uses object.Draw(), the object is NOT painted at this moment. It is only attached to
the active pad or canvas.

Another method should be provided for the object to be painted, the Paint() method. This
is all explained in the next paragraph.

As well as Draw() and Paint(), other methods may be provided by the designer of the
class. When the mouse is moved or a button pressed/released, the TCanvas function
named HandleInput() scans the list of objects in all it's pads and for each object calls
some standard methods to make the object react to the event (mouse movement, click or
whatever).

The second one is DistanceToPrimitive(px,py). This function computes a
"distance" to an object from the mouse position at the pixel position (px,py, see definition
at the end of this paragraph) and returns this distance in pixel units. The selected object will
be the one with the shortest computed distance. To see how this works, select the "Event
Status" item in the canvas "Options" menu. ROOT will display one status line showing
the picked object. If the picked object is, for example, a histogram, the status line indicates
the name of the histogram, the position x,y in histogram coordinates, the channel number
and the channel content.

It is nice for the canvas to know what the closest object from the mouse is, but it's even
nicer to be able to make this object react. The third standard method to be provided is
ExecuteEvent(). This method actually does the event reaction.

Its prototype is where px and py are the coordinates at which the event occurred, except if
the event is a key press, in which case px contains the key code.

void ExecuteEvent(Int_t event, Int_t px, Int_t py);

Where event is the event that occurs and is one of the following (defined in Buttons.h):

kNoEvent, kButton1Down, kButton2Down, kButton3Down,
kKeyDown, kButton1Up, kButton2Up, kButton3Up,
kButton1Motion, kButton2Motion, kButton3Motion, kKeyPress,
kButton1Locate, kButton2Locate, kButton3Locate, kKeyUp,
kButton1Double, kButton2Double, kButton3Double, kMouseMotion,
kMouseEnter, kMouseLeave

We hope the names are self-explanatory.

106 Graphics and the Graphical User Interface June 2003 v3.05

Designing an ExecuteEvent method is not very easy, except if one wants very basic
treatment. We will not go into that and let the reader refer to the sources of classes like
TLine or TBox. Go and look at their ExecuteEvent method!

We can nevertheless give some reference to the various actions that may be performed.
For example, one often wants to change the shape of the cursor when passing on top of an
object. This is done with the SetCursor method:

gPad->SetCursor(cursor)

The argument cursor is the type of cursor. It may be:

kBottomLeft, kBottomRight, kTopLeft, kTopRight, kBottomSide,
kLeftSide, kTopSide, kRightSide, kMove, kCross,
kArrowHor, kArrowVer, kHand, kRotate, kPointer,
kArrowRight, kCaret, kWatch

They are defined in TVirtualX.h and again we hope the names are self-explanatory. If
not, try them by designing a small class. It may derive from something already known like
TLine.

Note that the ExecuteEvent() functions may in turn; invoke such functions for other
objects, in case an object is drawn using other objects. You can also exploit at best the
virtues of inheritance. See for example how the class TArrow (derived from TLine) use or
redefine the picking functions in its base class.

The last comment is that mouse position is always given in pixel units in all these standard
functions. px=0 and py=0 corresponds to the top-left corner of the canvas. Here, we have
followed the standard convention in windowing systems. Note that user coordinates in a
canvas (pad) have the origin at the bottom-left corner of the canvas (pad). This is all
explained in the paragraph "Coordinate system of a pad".

Graphical Containers: Canvas and Pad
We have talked a lot about canvases, which may be seen as windows. More generally, a
graphical entity that contains graphical objects is called a Pad. A Canvas is a special kind
of Pad. From now on, when we say something about pads, this also applies to canvases.
A pad (class TPad) is a graphical container in the sense it contains other graphical objects
like histograms and arrows. It may contain other pads (sub-pads) as well. More technically,
each pad has a linked list of pointers to the objects it holds.

Drawing an object is nothing more than adding its pointer to this list. Look for example at the
code of TH1::Draw(). It is merely ten lines of code. The last statement is AppendPad().
This statement calls a method of TObject that just adds the pointer of the object, here a
histogram, to the list of objects attached to the current pad. Since this is a TObject’s
method, every object may be "drawn", which means attached to a pad.

June 2003 v3.05 Graphics and the Graphical User Interface 107

We can illustrate this by the following figure.

The image corresponding to this structure:

Pad1
Arrow

Text

Subpad
Histogram

Label

Polyline

When is the painting done then? The answer is: when needed. Every object that derives
from TObject has a Paint() method. It may be empty, but for graphical objects, this
routine contains all the instructions to effectively paint it in the active pad. Since a Pad has
the list of objects it owns, it will call successively the Paint() method of each object, thus
re-painting the whole pad on the screen. If the object is a sub-pad, its Paint() method will
call the Paint() method of the objects attached, recursively calling Paint() for all the
objects.

The Global Pad: gPad
When an object is drawn, it is always in the so-called active pad. For every day use, it is
comfortable to be able to access the active pad, whatever it is. For that purpose, there is a
global pointer, called gPad. It is always pointing to the active pad. If you want to change the
fill color of the active pad to blue but you don't know its name, do this.

root[] gPad->SetFillColor(38)

To get the list of colors, go to the paragraph "Color and color palettes" or if you have an
opened canvas, click on the View menu, selecting the Colors item.

Finding an Object in a Pad
Now that we have a pointer to the active pad, gPad and that we know this pad contains
some objects, it is sometimes interesting to access one of those objects. The method
GetPrimitive() of TPad, i.e. TPad::GetPrimitive(const char* name) does
exactly this. Since most of the objects that a pad contains derive from TObject, they have
a name. The following statement will return a pointer to the object myobjectname and put
that pointer into the variable obj. As you see, the type of returned pointer is (TObject*).

root[] obj = gPad->GetPrimitive("myobjectname")
(class TObject*)0x1063cba8

Even if your object is something more complicated, like a histogram TH1F, this is normal. A
function cannot return more than one type. So the one chosen was the lowest common
denominator to all possible classes, the class from which everything derives, TObject.
How do we get the right pointer then? Simply do a cast of the function output that will
transform the output (pointer) into the right type. For example if the object is a
TPaveLabel:

root[] obj = (TPaveLabel*)(gPad->GetPrimitive("myobjectname"))
(class TPaveLabel*)0x1063cba8

This works for all objects deriving from TObject. However, a question remains. An object
has a name if it derives from TNamed, not from TObject. For example, an arrow (TArrow)

108 Graphics and the Graphical User Interface June 2003 v3.05

doesn't have a name. In that case, the "name" is the name of the class. To know the name
of an object, just click with the right button on it. The name appears at the top of the context
menu. In case of multiple unnamed objects, a call to GetPrimitve("className")
returns the instance of the class that was first created. To retrieve a later instance you can
use GetListOfPrimitives(), which returns a list of all the objects on the pad. From the
list you can select the object you need.

Hiding an Object
Hiding an object in a pad can be made by removing it from the list of objects owned by that
pad. This list is accessible by the GetListOfPrimitives() method of TPad. This
method returns a pointer to a TList. Suppose we get the pointer to the object, we want to
hide, call it obj (see paragraph above). We get the pointer to the list:

root[] li = gPad->GetListOfPrimitives()

Then remove the object from this list:

root[] li->Remove(obj)

The object will disappear from the pad as soon as the pad is updated (try to resize it for
example).

If one wants to make the object reappear:

root[] obj->Draw()

Caution, this will not work with composed objects, for example many histograms drawn on
the same plot (with the option "same"). There are other ways! Try to use the method
described here for simple objects.

The Coordinate Systems of a Pad
Three coordinate systems may be used in a TPad: pixel coordinates, normalized
coordinates (NDC), and user coordinates.

NDC coordinates

(0,0)

(0,1)

(1,0)

User coordinates

(0,0)

Pixel coordinates

(0,0)

The User Coordinate System
The most common is the user coordinate system. Most methods of TPad use the user
coordinates, and all graphic primitives have their parameters defined in terms of user
coordinates. By default, when an empty pad is drawn, the user coordinates are set to a
range from 0 to 1 starting at the lower left corner. At this point they are equivalent of the
NDC coordinates (see below). If you draw a high level graphical object, such as a
histogram or a function, the user coordinates are set to the coordinates of the histogram.
Therefore, when you set a point it will be in the histogram coordinates

For a newly created blank pad, one may use TPad::Range to set the user coordinate
system. This function is defined as:

void Range(float x1,float y1,float x2,float y2)

The arguments x1, x2 defines the new range in the x direction, and the y1, y2 define
the new range in the y-direction.

June 2003 v3.05 Graphics and the Graphical User Interface 109

root[] TCanvas MyCanvas ("MyCanvas")
root[] gPad->Range(-100,-100,100,100)

This will set the active pad to have both coordinates to go from -100 to 100, with the center
of the pad at (0,0). You can visually check the coordinates by viewing the status bar in the
canvas. To display the status bar select Options:Event Status in the canvas menu.

The Normalized Coordinate System (NDC)
Normalized coordinates are independent of the window size and of the user system. The
coordinates range from 0 to 1 and (0, 0) corresponds to the bottom-left corner of the pad.
Several internal ROOT functions use the NDC system (3D primitives, PostScript, log scale
mapping to linear scale). You may want to use this system if the user coordinates are not
known ahead of time.

The Pixel Coordinate System
The least common is the pixel coordinate system, used by functions such as
DistanceToPrimitive() and ExecuteEvent(). Its primary use is for cursor position,
which is always given in pixel coordinates. If (px,py) is the cursor position, px=0 and py=0
corresponds to the top-left corner of the pad, which is the standard convention in windowing
systems.

Using NDC for a particular Object
Most of the time, you will be using the user coordinate system. But sometimes, you will
want to use NDC. For example, if you want to draw text always at the same place over a
histogram, no matter what the histogram coordinates are. There are two ways to do this.
You can set the NDC for one object or may convert NDC to user coordinates. Most
graphical objects offer an option to be drawn in NDC. For instance, a line (TLine) may be
drawn in NDC by using DrawLineNDC(). A latex formula or a text may use
TText::SetNDC() to be drawn in NDC coordinates.

Converting between Coordinates Systems
There are a few utility functions in TPad to convert from one system of coordinates to
another. In the following table, a point is defined by (px,py) in pixel coordinates;
(ux,uy) in user coordinates, (ndcx,ndcy) in NDC coordinates.

Conversion Methods of TPad Returns

Pixel to User

PixeltoX(px)

PixeltoY(py)

PixeltoXY(px,py,&ux,&uy)

double

double

changes ux,uy

NDC to Pixel
UtoPixel(ndcx)

VtoPixel(ndcy)

int

int

User to Pixel

XtoPixel(ux)

YtoPixel(uy)

XYtoPixel(ux,uy,&px,&py)

int

int

changes px,py

Dividing a Pad into Sub-pads
Dividing a pad into sub pads in order for instance to draw a few histograms, may be done in
two ways. The first is to build pad objects and to draw them into a parent pad, which may
be a canvas. The second is to automatically divide a pad into horizontal and vertical sub
pads.

110 Graphics and the Graphical User Interface June 2003 v3.05

Creating a Single Sub-pad
The simplest way to divide a pad is to build sub-pads in it. However, this forces the user to
explicitly indicate the size and position of those sub-pads. Suppose we want to build a sub-
pad in the active pad (pointed by gPad). First, we build it, using a TPad constructor:

root[] spad1 = new TPad("spad1","The first subpad",.1,.1,.5,.5)

One gives the coordinates of the lower left point (0.1, 0.1) and of the upper right one (0.5,
0.5). These coordinates are in NDC. This means that they are independent of the user
coordinates system, in particular if you have already drawn for example a histogram in the
mother pad.

The only thing left is to draw the pad:

root[] spad1->Draw()

If you want more sub-pads, you have to repeat this procedure as many times as necessary.

Dividing a Canvas into Sub-Pads
The manual way of dividing a pad into sub-pads is sometimes very tedious. There is a way
to automatically generate horizontal and vertical sub-pads inside a given pad.

root[] pad1->Divide(3,2)

If pad1 is a pad then, it will divide the pad into 3 columns of 2 sub-pads:

The generated sub-pads get names pad1_i where i is 1 to nxm. In our case pad1_1,
pad1_2... pad1_6.

The names pad1_1 etc… correspond to new variables in CINT, so you may use them as
soon as the pad->Divide() was executed. However, in a compiled program, one has to
access these objects. Remember that a pad contains other objects and that these objects
may, themselves be pads. So we can use the GetPrimitive() method of TPad:

TPad* pad1_1 = (TPad*)(pad1->GetPrimitive("pad1_1"))

June 2003 v3.05 Graphics and the Graphical User Interface 111

One question remains. In case one does an automatic divide, how can one set the default
margins between pads? This is done by adding two parameters to Divide(), which are
the margins in x and y:

root[] pad1->Divide(3,2,0.1,0.1)

The margins are here set to 10% of the parent pad width.

Updating the Pad
For performance reasons, a pad is not updated with every change. For example, changing
the coordinates of the pad does not automatically redraw it. Instead, the pad has a "bit-
modified" that triggers a redraw.

This bit is automatically set by:

1. Touching the pad with the mouse. For example resizing it with the mouse.

2. Finishing the execution of a script.

3. Adding a new primitive or modifying some primitives for example the name and
title of an object.

You can also set the "bit-modified" explicitly with the Modified method:

// the pad has changed
root[] pad1->Modified()
// recursively update all modified pads:
root[] c1->Update()

A subsequent call to TCanvas->Update() scans the list of sub-pads and repaints the
pads declared modified.

In compiled code or in a long macro, you may want to access an object created during the
paint process. To do so, you can force the painting with a TCanvas::Update(). For
example a TGraph creates a histogram (TH1) to paint itself. In this case the internal
histogram obtained with TGraph::GetHistogram() is created only after the pad is
painted. The pad is painted automatically after the script is finished executing or if you force
the painting with TPad::Modified followed by a TCanvas::Update.

Note that it is not necessary to call TPad::Modified after a call to Draw(). The "bit-
modified" is set automatically by Draw().

A note about the "bit-modified" in sub pads: when you want to update a sub pad in your
canvas, you need to call pad->Modified rather than canvas->Modified, and follow it
with a canvas->Update. If you use canvas->Modified, followed by a call to
canvas->Update, the sub pad has not been declared modified and it will not be updated.

Also note that a call to pad->Update where pad is a sub pad of canvas, calls
canvas->Update and recursively updates all the pads on the canvas.

Making a Pad Transparent
As we will see in the paragraph "Fill attributes", a fill style (type of hatching) may be set for
a pad.

root[] pad1->SetFillStyle(istyle)

This is done with the SetFillStyle method where istyle is a style number, defined in
"Fill attributes".

A special set of styles allows handling of various levels of transparency. These are styles
number 4000 to 4100, 4000 being fully transparent and 4100 fully opaque.

So, suppose you have an existing canvas with several pads. You create a new pad
(transparent) covering for example the entire canvas. Then you draw your primitives in this
pad. The same can be achieved with the graphics editor.

112 Graphics and the Graphical User Interface June 2003 v3.05

For example:

root[] .x tutorials/h1draw.C
root[] TPad *newpad=new TPad("newpad","Transparent pad,0,0,1,1);
root[] newpad.SetFillStyle(4000);
root[] newpad.Draw();
root[] newpad.cd();
root[] // create some primitives, etc

Setting the Log Scale is a Pad Attribute
Setting the scale to logarithmic or linear is an attribute of the pad, not the axis or the
histogram. The scale is an attribute of the pad because you may want to draw the same
histogram in linear scale in one pad and in log scale in another pad.

Frequently, we see several histograms on top of each other in the same pad. It would be
very inconvenient to set the scale attribute for each histogram in a pad. Furthermore, if the
logic was in the histogram class (or each object), one would have to test the scale setting in
each Paint method of all objects.

If you have a pad with a histogram, a right-click on the pad, outside of the histograms frame
will convince you. The SetLogx(), SetLogy() and SetLogz() methods are there. As
you see, TPad defines log scale for the two directions x and y plus z if you want to draw a
3D representation of some function or histogram.

The way to set log scale in the x direction for the active pad is:

root[] gPad->SetLogx(1)

To reset log in the z direction:

root[] gPad->SetLogz(0)

If you have a divided pad, you need to set the scale on each of the sub-pads. Setting it on
the containing pad does not automatically propagate to the sub-pads. Here is an example
of how to set the log scale for the x-axis on a canvas with four sub-pads:

root[] TCanvas MyCanvas("MyCanvas","My Canvas")
root[] MyCanvas->Divide(2,2)
root[] MyCanvas->cd(1)
root[] gPad->SetLogx()
root[] MyCanvas->cd(2)
root[] gPad->SetLogx()
root[] MyCanvas->cd(3)
root[] gPad->SetLogx()

WaitPrimitive method
When the TPad::WaitPrimitive() is called with no arguments, it will wait until a double
click or any key pressed is executed in the canvas. A call to gSystem->Sleep(10) has
been added in the loop to avoid consuming at all the CPU. This new option is convenient
when executing a macro. By adding statements like:

canvas->WaitPrimitive();

you can monitor the progress of a running macro, stop it at convenient places with the
possibility to interact with the canvas and resume the execution with a double click or a key
press.

June 2003 v3.05 Graphics and the Graphical User Interface 113

Locking the Pad
You can make the TPad non-editable. Then no new objects can be added, and the existing
objects and the pad can not be changed with the mouse or programmatically.

TPad::SetEditable(kFALSE)

By default the TPad is editable.

Graphical Objects
In this paragraph, we describe the various simple 2D graphical objects defined in ROOT.
Usually, one defines these objects with their constructor and draws them with their Draw()
method. Therefore, the examples will be very brief. Most graphical objects have line and fill
attributes (color, width) that will be described in “Graphical objects attributes”.

If the user wants more information, the class names are given and he may refer to the
online developer documentation. This is especially true for functions and methods that set
and get internal values of the objects described here.

By default 2D graphical objects are created in User Coordinates with (0,0) in the lower left
corner.

Lines, Arrows, and Geometrical Objects

Line: Class TLine
The simplest graphical object is a line. It is implemented in the TLine class. The
constructor is:

TLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

The arguments x1, y1, x2, y2 are the coordinates of the first and second point. This
constructor may be used as in:

root[] l = new TLine(0.2,0.2,0.8,0.3)
root[] l->Draw()

Arrows: Class TArrow
Different arrow formats as shown in the next picture are available.

Once an arrow is drawn on the screen, one can:

• click on one of the edges and move this edge.
• click on any other arrow part to move the entire arrow.

The constructor is:

TArrow(Double_t x1,Double_t y1,Double_t x2,Double_t y2,
 Float_t arrowsize,Option_t *option)

114 Graphics and the Graphical User Interface June 2003 v3.05

It defines an arrow between points x1,y1 and x2,y2. The arrow size is in percentage of the
pad height.

The options are the following:

option = ">"

option = "<"

option = "|>"

option = "<|"

option = "<>"

option = "<|>"

If FillColor == 0, draw open triangle else draw full triangle with fill color. If ar is an arrow
object, fill color is set with:

ar.SetFillColor(icolor);

Where icolor is the color defined in “Color and color palettes”.

The opening angle between the two sides of the arrow is 60 degrees. It can be changed
with ar–>SetAngle(angle), where angle is expressed in degrees.

Poly-line: Class TPolyLine
A poly-line is a set of joint segments. It is defined by a set of N points in a 2D space. Its
constructor is:

TPolyLine(Int_t n,Double_t* x,Double_t* y,Option_t* option)

Where n is the number of points, and x and y are arrays of n elements with the coordinates
of the points. TPolyLine can be used by it self, but is also a base class for other objects,
such as curly arcs.

Circles, Ellipses: Class TEllipse
Ellipse is a general ellipse that can be truncated and rotated. An ellipse is defined by its
center (x1,y1) and two radii r1 and r2. A minimum and maximum angle may be
specified (phimin, phimax). The picture below illustrates different types of ellipses:

The Ellipse may be rotated with an angle theta. The attributes of the outline line and of the
fill area are described in “Graphical objects attributes”

June 2003 v3.05 Graphics and the Graphical User Interface 115

The constructor of a TEllipse object is:

TEllipse(Double_t x1,Double_t y1,Double_t r1,Double_t r2,
 Double_t phimin,Double_t phimax,Double_t theta)

An ellipse may be created with a statement like:

root[] e = new TEllipse(0.2,0.2,0.8,0.3)
root[] e->Draw()

Rectangles: Classes TBox and TWbox
A rectangle is defined by the class TBox since it is a base class for many different higher-
level graphical primitives. A box is defined by its bottom left coordinates x1, y1 and its top
right coordinates x2, y2.

The constructor is:

TBox(Double_t x1,Double_t y1,Double_t x2,Double_t y2)

It may be used as in:

root[] b = new TBox(0.2,0.2,0.8,0.3)
root[] b->Draw()

A TWbox is a rectangle (TBox) with a border size and a border mode:

The attributes of the outline line and of the fill area are described in “Graphical Objects
Attributes”

One Point, or Marker: Class TMarker
A marker is a point with a fancy shape! The possible markers are the following:

One marker is build via the constructor:

TMarker(Double_t x,Double_t y,Int_t marker)

The parameters x and y are the coordinates of the marker and marker is the type, shown
above. Suppose ma is a valid marker. One can set the size of the marker with
ma->SetMarkerSize(size), where size is the desired size.

116 Graphics and the Graphical User Interface June 2003 v3.05

The available sizes are:

It can be specified sizes smaller than 1.

Set of Points: Class TPolyMarker
A TPolyMaker is defined by an array on N points in a 2D space. At each point x[i],
y[i] a marker is drawn. The list of marker types is shown in the previous paragraph.

The marker attributes are managed by the class TAttMarker and are described in
“Graphical objects attributes”

The constructor for a TPolyMarker is:

TPolyMarker(Int_t n,Double_t *x,Double_t *y,Option_t *option)

Where x and y are arrays of coordinates for the n points that form the poly-marker.

Curly and Wavy Lines for Feynman Diagrams
This is a peculiarity of particle physics, but we do need sometimes to draw Feynman
diagrams. Our friends working in banking can skip this part.

A set of classes implements curly or wavy poly-lines typically used to draw Feynman
diagrams. Amplitudes and wavelengths may be specified in the constructors, via
commands or interactively from context menus. These classes are TCurlyLine and
TCurlyArc.

These classes make use of TPolyLine by inheritance; ExecuteEvent methods are
highly inspired from the methods used in TPolyLine and TArc.

The picture below has been generated by the tutorial feynman.C:

The constructor is:

TCurlyLine(Double_t x1,Double_t y1,Double_t x2,Double_t y2,
 Double_t wavelength, Double_t amplitude)

With the starting point (x1, y1), end point (x2, y2). The wave length and amplitude
are given in percent of the pad height.

June 2003 v3.05 Graphics and the Graphical User Interface 117

For TCurlyArc, the constructor is:

TCurlyArc(Double_t x1,Double_t y1,Double_t rad,Double_t phimin,
 Double_t phimax,Double_t wavelength,Double_t amplitude)

The center is (x1, y1) and the radius rad. The wave length and the amplitude are given
in percent of the line length, phimin and phimax, which are the starting and ending angle
of the arc, are given in degrees. Refer to $ROOTSYS/tutorials/feynman.C for the
script that built the picture above.

Text and Latex Mathematical Expressions
Text displayed in a pad may be embedded into boxes, called paves (such as
PaveLabels), or titles of graphs or many other objects but it can live a life of its own. All
text displayed in ROOT graphics is an object of class TText. For a physicist, it will be most
of the time a TLatex expression (which derives from TText). TLatex has been conceived
to draw mathematical formulae or equations. Its syntax is very similar to the Latex one in
mathematical mode.

Subscripts and Superscripts
Subscripts and superscripts are made with the _ and ^ commands. These commands can
be combined to make complicated subscript and superscript expressions. You may choose
how to display subscripts and superscripts using the 2 functions
SetIndiceSize(Double_t) and SetLimitIndiceSize(Int_t). Examples of what
can be obtained using subscripts and superscripts:

The expression Gives The expression Gives The expression Gives

x^{2y} yx 2

x^{y^{2}} 2yx x^{y}_{1} yx1

x_{2y} yx2
x^{y_{1}} 1yx x_{1}^{y} yx1

Fractions
Fractions denoted by the / symbol are made in the obvious way. The #frac command is
used for large fractions in displayed formula; it has two arguments: the numerator and the
denominator. For example, this equation is obtained by following expression.

1
2/

2 +
+

=
y

zyx

x=#frac{y+z/2}{y^{2}+1}

Roots
The #sqrt command produces the square ROOT of its argument; it has an optional first
argument for other roots.

Example: #sqrt{10} #sqrt[3]{10}

Delimiters
You can produce three kinds of proportional delimiters.

#[]{....} or "a la" Latex

#left[.....#right]: big square brackets

#{}{....} or #left{.....#right}: big curly brackets

#||{....} or #left|.....#right|: big absolute value symbol

#(){....} or #left(.....#right): big parenthesis

118 Graphics and the Graphical User Interface June 2003 v3.05

Greek Letters
The command to produce a lowercase Greek letter is obtained by adding # to the name of
the letter. For an uppercase Greek letter, just capitalize the first letter of the command
name.

#alpha #beta #gamma #delta #epsilon #zeta #eta #theta
#iota #kappa #lambda #mu #nu #xi #omicron #pi
#varpi #rho #sigma #tau #upsilon #phi #varphi #chi
#psi #omega #Gamma #Delta #Theta #Lambda #Xi #Pi
#Sigma #Upsilon #Phi #Psi #Omega

Changing Style in Math Mode
You can change the font and the text color at any moment using:

#font[font-number]{...} and #color[color-number]{...}

Mathematical Symbols
TLatex can make mathematical and other symbols. A few of them, such as + and >, are
produced by typing the corresponding keyboard character. Others are obtained with the
commands in the following table.

Accents, Arrows and Bars
Symbols in a formula are sometimes placed one above another. TLatex provides special
commands for doing this.

#hat{a} = hat
#check = inverted hat
#acute = acute
#grave = accent grave
#dot = derivative
#ddot = double derivative
#tilde = tilde
#slash = special sign. Draw a slash on top of the text between brackets for example
#slash{E}_{T} generates "Missing ET"
a

 Is obtained with #bar{a}
ar Is obtained with #vec{a}

June 2003 v3.05 Graphics and the Graphical User Interface 119

Example 1
The following script ($ROOTSYS/tutorials/latex.C)

{
 gROOT->Reset();
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(12);
 l.SetTextSize(0.04);
 l.DrawLatex(0.1,0.8,"1) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}_{0}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.6,"2) C(x) = d #sqrt{#frac{2}{#lambdaD}}
 #int^{x}cos(#frac{#pi}{2}t^{2})dt");
 l.DrawLatex(0.1,0.4,"3) R = |A|^{2} =
 #frac{1}{2}(#[]{#frac{1}{2}+C(V)}^{2}+
 #[]{#frac{1}{2}+S(V)}^{2})");
 l.DrawLatex(0.1,0.2,"4) F(t) = #sum_{i=
 -#infty}^{#infty}A(i)cos#[]{#frac{i}{t+i}}");
}

The script makes this picture:

Example 2
The following script ($ROOTSYS/tutorials/latex2.C):

{
 gROOT->Reset();
 TCanvas c1("c1","Latex",600,700);
 TLatex l;
 l.SetTextAlign(23);
 l.SetTextSize(0.1);
 l.DrawLatex(0.5,0.95,"e^{+}e^{-}#rightarrowZ^{0}
 #rightarrowI#bar{I}, q#bar{q}");
 l.DrawLatex(0.5,0.75,"|#vec{a}#bullet#vec{b}|=
 #Sigmaa^{i}_{jk}+b^{bj}_{i}");
 l.DrawLatex(0.5,0.5,"i(#partial_{#mu}#bar{#psi}#gamma^{#mu}
 +m#bar{#psi}=0
 #Leftrightarrow(#Box+m^{2})#psi=0");
 l.DrawLatex(0.5,0.3,"L_{em}=eJ^{#mu}_{em}A_{#mu} ,
 J^{#mu}_{em}=#bar{I}#gamma_{#mu}I
 M^{j}_{i}=#SigmaA_{#alpha}#tau^{#alphaj}_{i}");
}

120 Graphics and the Graphical User Interface June 2003 v3.05

The result is the following picture:

Example 3
The following script ($ROOTSYS/tutorials/latex3.C):

{
 gROOT->Reset();
 TCanvas c1("c1");
 TPaveText pt(.1,.5,.9,.9);
 pt.AddText("#frac{2s}{#pi#alpha^{2}}
 #frac{d#sigma}{dcos#theta} (e^{+}e^{-}
 #rightarrow f#bar{f}) = ");
 pt.AddText("#left| #frac{1}{1 - #Delta#alpha} #right|^{2}
 (1+cos^{2}#theta");
 pt.AddText("+ 4 Re #left{ #frac{2}{1 - #Delta#alpha} #chi(s)
 #[]{#hat{g}_{#nu}^{e}#hat{g}_{#nu}^{f}
 (1 + cos^{2}#theta) + 2 #hat{g}_{a}^{e}
 #hat{g}_{a}^{f} cos#theta) } #right}");
 pt.SetLabel("Born equation");
 pt.Draw();
}

The result is the following picture:

June 2003 v3.05 Graphics and the Graphical User Interface 121

Text in Labels and TPaves
Text displayed in a pad may be embedded into boxes, called paves, or may be drawn
alone. In any case, it is recommended to use a Latex expression, which is covered in the
previous paragraph. Using TLatex is valid whether the text is embedded or not. In fact,
you will use Latex expressions without knowing it since it is the standard for all the
embedded text.

A pave is just a box with a border size and a shadow option. The options common to all
types of paves and used when building those objects are the following:

option = "T" top frame

option = "B" bottom frame

option = "R" right frame

option = "L" left frame

option = "NDC" x1,y1,x2,y2 are given in NDC

option = "ARC" corners are rounded

We will see the practical use of these options in the description of the more functional
objects like TPaveLabels.

There are several categories of paves containing text:

TPaveLabel
TPaveLabels are panels containing one line of text. They are used for labeling. The
constructor is:

TPaveLabel(Double_t x1,Double_t y1,Double_t x2,Double_t y2,
 const char *label,Option_t *option)

Where (x1,y1) are the coordinates of the bottom left corner, (x2,y2) the coordinates of
the upper right corner. “label” is the text to be displayed and “option” is the drawing
option, described above. By default, the border size is 5 and the option is “br”.

If one wants to set the border size to some other value, one may use the method
SetBorderSize(). For example, suppose we have a histogram, which limits are (-
100,100) in the x direction and (0, 1000) in the y direction.

The following lines will draw a label in the center of the histogram, with no border. If one
wants the label position to be independent of the histogram coordinates, or user
coordinates, one can use the option “NDC”. See the paragraph about coordinate systems for
more information.

root[] pl = new TPaveLabel(-50,0,50,200,”Some text”)
root[] pl->SetBorderSize(0)
root[] pl->Draw()

Here are examples of what may be obtained:

122 Graphics and the Graphical User Interface June 2003 v3.05

TPaveText
A TPaveLabel can contain only one line of text. A TPaveText may contain several lines.
This is the only difference. This picture illustrates and explains some of the points of
TPaveText. Once a TPaveText is drawn, a line can be added or removed by brining up
the context menu with the mouse.

TPavesText
A TPavesText is a stack of text panels (see TPaveText). One can set the number of
stacked panels at building time. It has the following constructor:

TPavesText(Double_t x1,Double_t y1,Double_t x2,Double_t y2,
 Int_t npaves,Option_t* option)

By default, the number of stacked panels is 5 and option = “br”.

June 2003 v3.05 Graphics and the Graphical User Interface 123

Sliders
Sliders may be used for showing the evolution of a process or setting the limits of an
object’s value interactively. A TSlider object contains a slider box that can be moved or
resized.

Slider drawing options include the possibility to change the slider starting and ending
positions or only one of them. The current slider position can be retrieved via the functions
TSlider::GetMinimum() and TSlider::GetMaximum(). These two functions return
numbers in the range [0,1]. One may set a C expression to be executed when the mouse
button 1 is released. This is done with the TSlider::SetMethod() function. It is also
possible to reference an object. If no method or C expression has been set, and an object
is referenced (SetObject has been called), while the slider is being moved/resized, the
object ExecuteEvent function is called.

Let’s see an example using SetMethod. The script is called xyslider.C. You can find
this script in $ROOTSYS/tutorials.

{
 // Example of script featuring two sliders
 TFile *f = new TFile("hsimple.root");
 TH2F *hpxpy = (TH2F*)f->Get("hpxpy");
 TCanvas *c1 = new TCanvas("c1");
 TPad *pad = new TPad("pad","lego pad",0.1,0.1,0.98,0.98);
 pad->SetFillColor(33);
 pad->Draw();
 pad->cd();
 gStyle->SetFrameFillColor(42);
 hpxpy->SetFillColor(46);
 hpxpy->Draw("lego1");
 c1->cd();

 // Create two sliders in main canvas. When button1
 // of the mouse will be released, action.C will be called
 TSlider *xslider = new TSlider("xslider","x",.1,.02,.98,.08);
 xslider->SetMethod(".x action.C");

 TSlider *yslider = new TSlider("yslider","y",.02,.1,.06,.98);
 yslider->SetMethod(".x action.C");
}

The script that is executed when button 1 is released is the following (script action.C):

{
 Int_t nx = hpxpy->GetXaxis()->GetNbins();
 Int_t ny = hpxpy->GetYaxis()->GetNbins();
 Int_t binxmin = nx*xslider->GetMinimum();
 Int_t binxmax = nx*xslider->GetMaximum();
 hpxpy->GetXaxis()->SetRange(binxmin,binxmax);
 Int_t binymin = ny*yslider->GetMinimum();
 Int_t binymax = ny*yslider->GetMaximum();
 hpxpy->GetYaxis()->SetRange(binymin,binymax);
 pad->cd();
 hpxpy->Draw("lego1");
 c1->Update();
}

124 Graphics and the Graphical User Interface June 2003 v3.05

The canvas and the sliders created in the above script are shown in the picture below.

The second example uses SetObject (script xyslider.C). Same example as above but
using the SetMethod:

Myclass *obj = new Myclass();
// Myclass derived from TObject
xslider->SetObject(obj);
yslider->SetObject(obj);

When one of the sliders will be changed, Myclass::ExecuteEvent() will be called with
px=0 and py = 0.

Axis
The axis objects are automatically built by various high level objects such as histograms or
graphs. Once build, one may access them and change their characteristics. It is also
possible, for some particular purposes to build axis on their own. This may be useful for
example in the case one wants to draw two axis for the same plot, one on the left and one
on the right.

For historical reasons, there are two classes representing axis.

TAxis * axis is the axis object, which will be returned when calling the TH1::GetAxis()
method.

TAxis *axis = histo->GetXaxis()

Of course, you may do the same for Y and Z-axis.

The graphical representation of an axis is done with the TGaxis class. Instances of this
class are generated by the histogram classes and TGraph. This is internal and the user
should not have to see it.

Axis Title
The axis title is set, as with all named objects, by

axis->SetTitle("Whatever title you want");

When the axis is embedded into a histogram or a graph, one has to first extract the axis
object:

h->GetXaxis()->SetTitle("Whatever title you want")

June 2003 v3.05 Graphics and the Graphical User Interface 125

Axis Options and Characteristics
The axis options are most simply set with the styles. The available style options controlling
specific axis options are the following:

TAxis *axis = histo->GetXaxis();
axis->SetAxisColor(Color_t color = 1);
axis->SetLabelColor(Color_t color = 1);
axis->SetLabelFont(Style_t font = 62);
axis->SetLabelOffset(Float_t offset = 0.005);
axis->SetLabelSize(Float_t size = 0.04);
axis->SetNdivisions(Int_t n = 510, Bool_t optim = kTRUE);
axis->SetNoExponent(Bool_t noExponent = kTRUE);
axis->SetTickLength(Float_t length = 0.03);
axis->SetTitleOffset(Float_t offset = 1);
axis->SetTitleSize(Float_t size = 0.02);

The getters corresponding to the described setters are also available. Furthermore, the
general options, not specific to axis, as for instance SetTitleTextColor() are valid and
do have an effect on axis characteristics.

Setting the Number of Divisions
Use TAxis::SetNdivisions(ndiv, optim) to set the number of divisions for an
axis. The ndiv and optim are as follows:

• ndiv = N1 + 100*N2 + 10000*N3
o N1 = number of first divisions.
o N2 = number of secondary divisions.
o N3 = number of tertiary divisions.

• optim = kTRUE (default), the number of divisions will be optimized around the
specified value.

• optim = kFALSE, or n < 0, the axis will be forced to use exactly n divisions.

For example:

• ndiv = 0 : no tick marks.
• ndiv = 2 : 2 divisions, one tick mark in the middle of the axis.
• ndiv = 510 : 10 primary divisions, 5 secondary divisions
• ndiv = -10 : exactly 10 primary divisions

Zooming the Axis
You can use TAxis::SetRange or TAxis::SetRangeUser to zoom the axis.

TAxis::SetRange(Int_t binfirst,Int_t binlast)

The SetRange method parameters are bin numbers. They are not axis. For example if a
histogram plots the values from 0 to 500 and has 100 bins, SetRange(0,10) will cover
the values 0 to 50.

The parameters for SetRangeUser are user coordinates. If the start or end is in the middle
of a bin the resulting range is approximation. It finds the low edge bin for the start and the
high edge bin for the high.

TAxis::SetRangeUser(Axis_t ufirst,Axis_t ulast)

Both methods, SetRange and SetRangeUser are in the context menu of the axis and can
be used interactively.

Also, you can zoom an axis interactively: click on the axis on the start, drag the cursor to
the end, and release.

126 Graphics and the Graphical User Interface June 2003 v3.05

Drawing Axis Independently of Graphs or Histograms
An axis may be drawn independently of a histogram or a graph. This may be useful to draw
for example a supplementary axis for a graph. In this case, one has to use the TGaxis
class, the graphical representation of an axis. One may use the standard constructor for
this kind of objects:

TGaxis(Double_t xmin,Double_t ymin,Double_t xmax,Double_t ymax,
 Double_t wmin,Double_t wmax,Int_t ndiv = 510,Option_t* chopt,
 Double_t gridlength = 0)

The arguments xmin, ymin are the coordinates of the axis' start in the user coordinates
system, and xmax, ymax are the end coordinates. The arguments wmin and wmax are
the minimum (at the start) and maximum (at the end) values to be represented on the axis.
ndiv is the number of divisions (see above).

The options, given by the “chopt” string are the following:

• chopt = 'G': logarithmic scale, default is linear.
• chopt = 'B': Blank axis. Useful to superpose the axis.

Instead of the wmin,wmax arguments of the normal constructor, i.e. the limits of the axis,
the name of a TF1 function can be specified. This function will be used to map the user
coordinates to the axis values and ticks.

The constructor is the following:

TGaxis(Double_t xmin,Double_t ymin,Double_t xmax,Double_t ymax,
 const char* funcname,Int_t ndiv = 510,Option_t* chopt,
 Double_t gridlength = 0)

In such a way, it is possible to obtain exponential evolution of the tick marks position, or
even decreasing. In fact, anything you like.

Orientation of Tick Marks on Axis
Tick marks are normally drawn on the positive side of the axis, however, if xmin = xmax,
then negative.

• chopt = '+’: tick marks are drawn on Positive side. (Default)
• chopt = '-’: tick marks are drawn on the negative side.
• chopt = '+-’: tick marks are drawn on both sides of the axis.
• chopt = ‘U’: unlabeled axis, default is labeled.

Label Position
Labels are normally drawn on side opposite to tick marks. However,

chopt = '=': on Equal side.

The function TAxis::CenterLabels() sets the bit kCenterLabels and it is visible
from TAxis context menu. It centers the bin labels and it makes sense only when the
number of bins is equal to the number of tick marks. The class responsible for drawing the
axis TGaxis inherits this property.

Label Orientation
Labels are normally drawn parallel to the axis. However, if xmin = xmax, then they are
drawn orthogonal, and if ymin = ymax they are drawn parallel.

June 2003 v3.05 Graphics and the Graphical User Interface 127

Labels for Exponents
By default, an exponent of the form 10^N is used when the label values are either all very
small or very large. One can disable the exponent by calling:

TAxis::SetNoExponent(kTRUE)

Note that this option is implicitly selected if the number of digits to draw a label is less than
the fgMaxDigits global member. If you have set the property SetNoExponent in TAxis
(via TAxis::SetNoExponent), TGaxis will inherit this property. TGaxis is the class
responsible for drawing the axis. SetNoExponent is also available from the axis context
menu.

Number of Digits in Labels
TGaxis::fgMaxDigits is the maximum number of digits permitted for the axis labels
above which the notation with 10^N is used. By default fgMaxDigits is 5, to change it use
the TGaxis::SetMaxDigits method. For example to set fgMaxDigits to accept 6
digits and accept numbers like 900000 on an axis call:

TGaxis::SetMaxDigits(6)

fgMaxDigits must be greater than 0.

Tick Mark Label Position
Labels are centered on tick marks. However, if xmin = xmax, then they are right adjusted.

• chopt = 'R': labels are right adjusted on tick mark (default is centered)
• chopt = 'L': labels are left adjusted on tick mark.
• chopt = 'C': labels are centered on tick mark.
• chopt = 'M': In the Middle of the divisions.

Label Formatting
Blank characters are stripped, and then the label is correctly aligned. The dot, if last
character of the string, is also stripped. In the following, we have some parameters, like tick
marks length and characters height (in percentage of the length of the axis, in user
coordinates). The default values are as follows:

• Primary tick marks: 3.0 %
• Secondary tick marks: 1.5 %
• Third order tick marks: .75 %
• Characters height for labels: 4%
• Labels offset: 1.0 %

128 Graphics and the Graphical User Interface June 2003 v3.05

Stripping Decimals
Use the TStyle::SetStripDecimals to strip decimals when drawing axis labels. By
default, the option is set to true, and TGaxis::PaintAxis removes trailing zeros after the
dot in the axis labels, e.g. {0, 0.5, 1, 1.5, 2, 2.5, etc.}

TStyle::SetStripDecimals (Bool_t strip=kTRUE)

If this function is called with strip=kFALSE, TGaxis::PaintAxis() will draw labels
with the same number of digits after the dot, e.g. {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, etc.}

Optional Grid
chopt = 'W': cross-Wire

Axis Binning Optimization
By default, the axis binning is optimized.

• chopt = 'N': No binning optimization
• chopt = 'I': Integer labeling

Axis with Time Units
Histograms' axis can be defined as "time axis". To do that it is enough to activate the
SetTimeDisplay attribute on a given axis. If h is a histogram, it is done the following way:

h->GetXaxis()->SetTimeDisplay(1); // X axis is a time axis

Two parameters can be adjusted in order to define time axis: the time format and the time
offset.

Time Format
It defines the format of the labels along the time axis. It can be changed using the TAxis
method SetTimeFormat. The time format is the one used by the C function strftime().
It is a string containing the following formatting characters:

For the date:

• %a abbreviated weekday name
• %b abbreviated month name
• %d day of the month (01-31)
• %m month (01-12)
• %y year without century
• %Y year with century

For the time:

• %H hour (24-hour clock)
• %I hour (12-hour clock)
• %p local equivalent of AM or PM
• %M minute (00-59)
• %S seconds (00-61)
• %% %

The other characters are output as is. For example to have a format like dd/mm/yyyy one
should do:

h->GetXaxis()->SetTimeFormat("%d\/%m\/%Y");

If the time format is not defined, a default one will be computed automatically.

June 2003 v3.05 Graphics and the Graphical User Interface 129

Time Offset
This is a time in seconds in the UNIX standard UTC format (the universal time, not the local
one), defining the starting date of a histogram axis. This date should be greater than
01/01/95 and is given in seconds. There are three ways to define the time offset:

1. By setting the global default time offset:

TDatime da(2003,02,28,12,00,00);
gStyle->SetTimeOffset(da.Convert());

If no time offset is defined for a particular axis, the default time offset will be used. In the
example above, notice the usage of TDatime to translate an explicit date into the time in
seconds required by SetTimeFormat.

2. By setting a time offset to a particular axis:

TDatime dh(2001,09,23,15,00,00);
h->GetXaxis()->SetTimeOffset(dh.Convert());

3. Together with the time format using SetTimeFormat. The time offset can be specified
using the control character %F after the normal time format. %F is followed by the date in the
format: yyyy-mm-dd hh:mm:ss. Example:

h->GetXaxis()->SetTimeFormat("%d\/%m\/%y%F2000-02-28 13:00:01");

Notice that this date format is the same used by the TDatime function AsSQLString. If
needed, this function can be used to translate a time in seconds into a character string
which can be appended after %F. If the time format is not specified (before %F), the
automatic one will be used. The following example illustrates the various possibilities.

{
 gStyle->SetTitleH(0.08);
 TDatime da(2003,02,28,12,00,00);
 gStyle->SetTimeOffset(da.Convert());
 ct = new TCanvas("ct","Time on axis",0,0,600,600);
 ct->Divide(1,3);
 ht1 = new TH1F("ht1","ht1",30000,0.,200000.);
 ht2 = new TH1F("ht2","ht2",30000,0.,200000.);
 ht3 = new TH1F("ht3","ht3",30000,0.,200000.);
 for (Int_t i=1;i<30000;i++) {
 Float_t noise = gRandom->Gaus(0,120);
 ht1->SetBinContent(i,noise);
 ht2->SetBinContent(i,noise*noise);
 ht3->SetBinContent(i,noise*noise*noise);
 }
 ct->cd(1);
 ht1->GetXaxis()->SetLabelSize(0.06);
 ht1->GetXaxis()->SetTimeDisplay(1);
 ht1->GetXaxis()->SetTimeFormat("%d\/%m\/%y%F2000-02-2813:00:01");
 ht1->Draw();
 ct->cd(2);
 ht2->GetXaxis()->SetLabelSize(0.06);
 ht2->GetXaxis()->SetTimeDisplay(1);
 ht2->GetXaxis()->SetTimeFormat("%d\/%m\/%y");
 ht2->Draw();
 ct->cd(3);
 ht3->GetXaxis()->SetLabelSize(0.06);
 TDatime dh(2001,09,23,15,00,00);
 ht3->GetXaxis()->SetTimeDisplay(1);
 ht3->GetXaxis()->SetTimeOffset(dh.Convert());
 ht3->Draw();
}

130 Graphics and the Graphical User Interface June 2003 v3.05

The output is:

If a time axis has no specified time offset, the global time offset will be stored in the axis data
structure.

The histogram limits are in seconds. If wmin and wmax are the histogram limits, the time
axis will spread around the time offset value from TimeOffset+wmin to
TimeOffset+wmax. Until now all examples had a lowest value equal to 0. The following
example demonstrates how to define the histogram limits relatively to the time offset value.

{
 // Define the time offset as 2003, January 1st
 TDatime T0(2003,01,01,00,00,00);
 int X0 = T0.Convert();
 gStyle->SetTimeOffset(X0);

 // Define the lowest histogram limit as 2002,September 23rd
 TDatime T1(2002,09,23,00,00,00);
 int X1 = T1.Convert()-X0;

 // Define the highest histogram limit as 2003, March 7th
 TDatime T2(2003,03,07,00,00,00);
 int X2 = T2.Convert(1)-X0;

 TH1F * h1 = new TH1F("h1","test",100,X1,X2);

 TRandom r;
 for (Int_t i=0;i<30000;i++) {
 Double_t noise = r.Gaus(0.5*(X1+X2),0.1*(X2-X1));
 h1->Fill(noise);
 }

 h1->GetXaxis()->SetTimeDisplay(1);
 h1->GetXaxis()->SetLabelSize(0.03);
 h1->GetXaxis()->SetTimeFormat("%Y\/%m\/%d");
 h1->Draw();
}

June 2003 v3.05 Graphics and the Graphical User Interface 131

The output is:

Usually time axes are created automatically via histograms, but one may also want to draw
a time axis outside a "histogram context". Therefore it is useful to understand how TGaxis
works for such axis. The time offset can be defined using one of the three methods
described before. The time axis will spread around the time offset value. Actually it will go
from TimeOffset+wmin to TimeOffset+wmax where wmin and wmax are the minimum
and maximum values (in seconds) of the axis. Let's take again an example. Having defined
"2003, February 28 at 12h" we would like to see the axis a day before and a day after.

A TGaxis can be created the following way (a day has 86400 seconds):

TGaxis *axis = new TGaxis(x1,y1,x2,y2,-100000,150000,2405,"t");

the "t" option (in lower case) means it is a "time axis". The axis goes form 100000 seconds
before TimeOffset and 150000 seconds after.

So the complete macro is:

{
 c1 = new TCanvas("c1","Examples of TGaxis",10,10,700,500);
 c1->Range(-10,-1,10,1);

 TGaxis *axis = new TGaxis(-8,-0.6,8,-0.6,-100000,150000,2405,"t");
 axis->SetLabelSize(0.03);

 TDatime da(2003,02,28,12,00,00);
 axis->SetTimeOffset(da.Convert());
 axis->SetTimeFormat("%d\/%m\/%Y");
 axis->Draw();
}

The time format is specified with:

axis->SetTimeFormat("%d\/%m\/%Y");

The macro gives the following output:

Thanks to the TLatex directive #splitline it is possible to write the time labels on two
lines. In the previous example changing the SetTimeFormat line by:

axis->SetLabelOffset(0.02);
axis->SetTimeFormat("#splitline{%Y}{%d\/%m}");

will produce the following axis:

132 Graphics and the Graphical User Interface June 2003 v3.05

Axis: Example 1
To illustrate all what was said before, we can show two scripts. The first example creates
the following picture:

This script goes along with it:

{
 gROOT->Reset();
 c1 = new TCanvas("c1","Examples of Gaxis",10,10,700,500);
 c1->Range(-10,-1,10,1);

 TGaxis *axis1 = new TGaxis(-4.5,-0.2,5.5,-0.2,-6,8,510,"");
 axis1->SetName("axis1");
 axis1->Draw();
 TGaxis *axis2 = new TGaxis(4.5,0.2,5.5,0.2,0.001,10000,510,"G");
 axis2->SetName("axis2");
 axis2->Draw();

 TGaxis *axis3 = new TGaxis(-9,-0.8,-9,0.8,-8,8,50510,"");
 axis3->SetName("axis3");
 axis3->Draw();
 TGaxis *axis4 = new TGaxis(-7,-0.8,7,0.8,1,10000,50510,"G");
 axis4->SetName("axis4");
 axis4->Draw();

 TGaxis *axis5 = new TGaxis(-4.5,-6,5.5,-6,1.2,1.32,80506,"-+");
 axis5->SetName("axis5");
 axis5->SetLabelSize(0.03);
 axis5->SetTextFont(72);
 axis5->SetLabelOffset(0.025);
 axis5->Draw();

 TGaxis *axis6 = new TGaxis(-4.5,0.6,5.5,0.6,100,900,50510,"-");
 axis6->SetName("axis6");
 axis6->Draw();
 TGaxis *axis7 = new TGaxis(8,-0.8,8,0.8,0,9000,50510,"+L");
 axis7->SetName("axis7");
 axis7->SetLabelOffset(0.01);
 axis7->Draw();

// one can make axis top->bottom. However because of a problem,
// the two x values should not be equal
 TGaxis *axis8 = new TGaxis(6.5,0.8,6.499,-0.8,0,90,50510,"-");
 axis8->SetName("axis8");
 axis8->Draw();
}

June 2003 v3.05 Graphics and the Graphical User Interface 133

Axis: Example 2
The second example shows the use of the second form of the constructor, with axis ticks
position determined by a function TF1:

void gaxis3a()
{
 gStyle->SetOptStat(0);

 TH2F *h2 = new TH2F("h","Axes",2,0,10,2,-2,2);
 h2->Draw();

 TF1 *f1=new TF1("f1","-x",-10,10);
 TGaxis *A1 = new TGaxis(0,2,10,2,"f1",510,"-");
 A1->SetTitle("axis with decreasing values");
 A1->Draw();

 TF1 *f2=new TF1("f2","exp(x)",0,2);
 TGaxis *A2 = new TGaxis(1,1,9,1,"f2");
 A2->SetTitle("exponential axis");
 A2->SetLabelSize(0.03);
 A2->SetTitleSize(0.03);
 A2->SetTitleOffset(1.2);
 A2->Draw();

 TF1 *f3=new TF1("f3","log10(x)",0,800);
 TGaxis *A3 = new TGaxis(2,-2,2,0,"f3",505);
 A3->SetTitle("logarithmic axis");
 A3->SetLabelSize(0.03);
 A3->SetTitleSize(0.03);
 A3->SetTitleOffset(1.2);
 A3->Draw();
}

134 Graphics and the Graphical User Interface June 2003 v3.05

Axis: Example with Time Display

// strip chart example
void seism() {

 TStopwatch sw; sw.Start();
 //set time offset
 TDatime dtime;
 gStyle->SetTimeOffset(dtime.Convert());
 TCanvas *c1 = new TCanvas("c1","Time on axis",10,10,1000,500);
 c1->SetFillColor(42);
 c1->SetFrameFillColor(33);
 c1->SetGrid();

 Float_t bintime = 1;
 //one bin = 1 second. change it to set the time scale
 TH1F *ht = new TH1F("ht","The ROOT seism",10,0,10*bintime);
 Float_t signal = 1000;
 ht->SetMaximum(signal);
 ht->SetMinimum(-signal);
 ht->SetStats(0);
 ht->SetLineColor(2);
 ht->GetXaxis()->SetTimeDisplay(1);
 ht->GetYaxis()->SetNdivisions(520);
 ht->Draw();

 for (Int_t i=1;i<2300;i++) {
 //======= Build a signal : noisy damped sine ======
 Float_t noise = gRandom->Gaus(0,120);
 if (i > 700) noise += signal*sin((i-700.)*6.28/30)
 *exp((700.-i)/300.);
 ht->SetBinContent(i,noise);
 c1->Modified();
 c1->Update();
 gSystem->ProcessEvents();
 //canvas can be edited during the loop
 }

 printf("Real Time = %8.3fs,Cpu Time = %8.3fs\n",sw.RealTime()
 ,sw.CpuTime());
}

June 2003 v3.05 Graphics and the Graphical User Interface 135

Graphical Objects Attributes

Text Attributes
When a class contains text or derives from a text class, it needs to be able to set text
attributes like font type, size, and color. To do so, the class inherits from the TAttText
class (a secondary inheritance), which defines text attributes. TLatex and TText inherit
from TAttText.

Setting Text Attributes Interactively
When clicking on an object containing text, one of the last items in the context menu is
SetTextAttributes. Selecting it makes the following window appear:

This canvas allows you to set:

The text alignment Font Color Size

Setting Text Alignment
Text alignment may also be set by a method call. What is said here applies to all objects
deriving from TAttText, and there are many. We will take an example that may be
transposed to other types. Suppose "la" is a TLatex object. The alignment is set with:

root[] la->SetTextAlign(align)

The parameter align is a short describing the alignment:
align = 10*HorizontalAlign + VerticalAlign

136 Graphics and the Graphical User Interface June 2003 v3.05

For Horizontal alignment the following convention applies:

• 1 = left
• 2 = centered
• 3 = right

For Vertical alignment the following convention applies:

• 1 = bottom
• 2 = centered
• 3 = top

For example, align: 11 = left adjusted and bottom adjusted

 32 = right adjusted and vertically centered

Setting Text Angle
Use TAttText::SetTextAngle to set the text angle. The angle is the degrees of the
horizontal.

root[] la->SetTextAngle(angle)

Setting Text Color
Use TAttText::SetTextColor to set the text color. The color is the color index. The
colors are described in "Color and color palettes".

root[] la->SetTextColor(color)

Setting Text Font
Use TAttText::SetTextFont to set the font. The parameter font is the font code,
combining the font and precision: font = 10 * fontID + precision

root[] la->SetTextFont(font)

The table below lists the available fonts. The font IDs must be between 1 and 14. The
precision can be:

• Precision = 0 fast hardware fonts (steps in the size)

• Precision = 1 scalable and rotate-able hardware fonts (see below)

• Precision = 2 scalable and rotate-able hardware fonts

When precision 0 is used, only the original non-scaled system fonts are used.
The fonts have a minimum (4) and maximum (37) size in pixels. These fonts are fast and
are of good quality. Their size varies with large steps and they cannot be rotated.
Precision 1 and 2 fonts have a different behavior depending if True Type Fonts (TTF) are
used or not. If TTF are used, you always get very good quality scalable and rotate-able
fonts. However, TTF are slow. Precision 1 and 2 fonts have a different behavior for
PostScript in case of TLatex objects:

• With precision 1, the PostScript text uses the old convention (see TPostScript) for
some special characters to draw sub and superscripts or Greek text.

• With precision 2, the "PostScript" special characters are drawn as such. To draw sub
and superscripts it is highly recommended to use TLatex objects instead.

For example: font = 62 is the font with ID 6 and precision 2.

June 2003 v3.05 Graphics and the Graphical User Interface 137

The available fonts are:

Font ID X11 True Type name Is
italic

"boldness"

1 times-medium-i-normal "Times New Roman" Yes 4

2 times-bold-r-normal "Times New Roman" No 7

3 times-bold-i-normal "Times New Roman" Yes 7

4 helvetica-medium-r-normal "Arial" No 4

5 helvetica-medium-o-normal "Arial" Yes 4

6 helvetica-bold-r-normal "Arial" No 7

7 helvetica-bold-o-normal "Arial" Yes 7

8 courier-medium-r-normal "Courier New" No 4

9 courier-medium-o-normal "Courier New" Yes 4

10 courier-bold-r-normal "Courier New" No 7

11 courier-bold-o-normal "Courier New" Yes 7

12 symbol-medium-r-normal "Symbol" No 6

13 times-medium-r-normal "Times New Roman" No 4

14 "Wingdings" No 4

Here is an example of what the fonts look like:

This script makes the image of the different fonts:

{
 textc = new TCanvas("textc","Example of text",1);
 for (int i=1;i<15;i++) {
 cid = new char[8];
 sprintf(cid,"ID %d :",i);
 cid[7] = 0;

 lid = new TLatex(0.1,1-(double)i/15,cid);
 lid->SetTextFont(62);
 lid->Draw();
 l = new TLatex(.2,1-(double)i/15,"The quick brown fox is not here anymore")

 l->SetTextFont(i*10+2);
 l->Draw();
 }
}

138 Graphics and the Graphical User Interface June 2003 v3.05

How to use True Type Fonts
You can activate the True Type Fonts by adding the following line in your .rootrc file.

Unix.*.Root.UseTTFonts: true

You can check that you indeed use the TTF in your Root session. When the TTF is active,
you get the following message at the start of a session:

 "Free Type Engine v1.x used to render TrueType fonts."

You can also check with the command:

gEnv->Print()

Setting Text Size
Use TAttText::SetTextSize to set the text size.

root[] la->SetTextSize(size)

The size is the text size expressed in percentage of the current pad size.

The text size in pixels will be:

• If current pad is horizontal, the size in pixels = textsize * canvas_height
• If current pad is vertical, the size in pixels = textsize * canvas_width

Line Attributes
All classes manipulating lines have to deal with line attributes. This is done by using
secondary inheritance of the class TAttLine.

Setting Line Attributes Interactively
When clicking on an object being a line or having some line attributes, one of the last items
in the context menu is SetLineAttributes. Selecting it makes the following window
appear:

This canvas allows you to set:

The line color Style Width

June 2003 v3.05 Graphics and the Graphical User Interface 139

Setting Line Color
Line color may be set by a method call. What is said here applies to all objects deriving
from TAttLine, and there are many (histograms, plots). We will take an example that may
be transposed to other types. Suppose "li" is a TLine object. The line color is set with:

root[] li->SetLineColor(color)

The argument color is a color number. The colors are described in "Color and Color
Palettes"

Setting Line Style
Line style may be set by a method call. What is said here applies to all objects deriving
from TAttLine, and there are many (histograms, plots). We will take an example that may
be transposed to other types. Suppose "li" is a TLine object. The line style is set with:

root[] li->SetLineStyle(style)

The argument style is one of: 1=solid, 2=dash, 3=dash-dot, 4=dot-dot.

Setting Line Width
Line width may be set by a method call. What is said here applies to all objects deriving
from TAttLine, and there are many (histograms, plots). We will take an example that may
be transposed to other types. Suppose "li" is a TLine object. The line width is set with:

root[] li->SetLineWidth(width)

The width is the width expressed in pixel units.

Fill Attributes
Almost all graphics classes have a fill area somewhere. These classes have to deal with fill
attributes. This is done by using secondary inheritance of the class TAttFill.

Setting Fill Attributes interactively
When clicking on an object having a fill area, one of the last items
in the context menu is SetFillAttributes. Selecting it makes
the following window appear:

This canvas allows you to set:

gFillColor
Fill color may be set by a method call. What is said here applies to all objects deriving from
TAttFill, and there are many (histograms, plots). We will take an example that may be
transposed to other types. Suppose "h" is a TH1F (1 dim histogram) object. The histogram
fill color is set with:

root[] h->SetFillColor(color)

The color is a color number. The colors are described in "Color and color palettes"

The fill color The Style

140 Graphics and the Graphical User Interface June 2003 v3.05

Setting Fill Style
Fill style may be set by a method call. What is said here applies to all objects deriving from
TAttFill, and there are many (histograms, plots). We will take an example that may be
transposed to other types. Suppose "h" is a TH1F (1 dim histogram) object. The histogram
fill style is set with:

root[] h->SetFillStyle(style)

The convention for style is:

 0: hollow 4000 to 4100: transparency
1001: solid 4000 = fully transparent
2001: hatch style 4100 = fully opaque
3000 + pattern number: patterns

The various patterns are represented here:

Color and Color Palettes
At initialization time, a table of basic colors is generated when the first Canvas constructor
is called. This table is a linked list, which can be accessed from the gROOT object (see
TROOT::GetListOfColors()). Each color has an index and when a basic color is
defined, two "companion" colors are defined:

 - The dark version (color_index + 100)
 - The bright version (color_index + 150)

The dark and bright colors are used to give 3-D effects when drawing various boxes (see
TWbox, TPave, TPaveText, TPaveLabel, etc). If you have a black and white copy of
the manual, here are the basic colors and their indices:

1 = black
2 = red
3 = bright green
4 = bright blue
5 = yellow
6 = hot pink
7 = aqua
8 = green
9 = blue

 0 -> 9: basic colors
10 -> 19: shades of gray
20 -> 29: shades of brown
30 -> 39: shades of blue
40 -> 49: shades of red

June 2003 v3.05 Graphics and the Graphical User Interface 141

The list of currently supported basic colors (here dark and bright colors are not shown) are
shown. The color numbers specified in the basic palette, and the picture above, can be
viewed by selecting the item "Colors" in the "View" menu of the canvas toolbar. Other
colors may be defined by the user. To do this, one has to build a new TColor object:

TColor(Int_t color,Float_t r,Float_t g,Float_t b,const char* name)

One has to give the color number and the three Red, Green, Blue values, each being
defined from 0 (min) to 1(max). An optional name may be given. When built, this color is
automatically added to the existing list of colors. If the color number already exists, one has
to extract it from the list and redefine the RGB values. This may be done for example with:

root[] color=(TColor*)(gROOT->GetListOfColors()->At(index_color))
root[] color->SetRGB(r,g,b)

Where r, g and b go from 0 to 1 and index_color is the color number you wish to
change.

Color Palette (for Histograms)
Defining one color at a time may be tedious. The color palette is used by the histogram
classes (see Draw Options). For example, TH1::Draw("col") draws a 2-D histogram
with cells represented by a box filled with a color CI function of the cell content. If the cell
content is N, the color CI used will be the color number in colors[N]. If the maximum cell
content is > ncolors, all cell contents are scaled to ncolors. The current color palette
does not have a class or global object of it’s own. It is defined in the current style as an
array of color numbers. One may change the current palette with the method
TStyle::SetPalette(Int_t ncolors, Int_t* color_indexes).
By default, or if ncolors <= 0, a default palette (see above) of 50 colors is defined. The
colors defined in this palette are good for coloring pads, labels, and other graphic objects. If
ncolors > 0 and colors = 0, the default palette is used with a maximum of ncolors.
If ncolors == 1 && colors == 0, then a pretty palette with a spectrum
Violet->Red is created. It is recommended to use this pretty palette when drawing
lego(s), surfaces or contours. For example, to set the current palette to the “pretty” one do:

root[] gStyle->SetPalette(1)

A more complete example is shown below. It illustrates the definition of a custom palette.
You can adapt it to suit your needs. In case you use it for contour coloring, with the current
color/contour algorithm, always define two more colors than the number of contours.

void palette() { // Example of creating new colors (purples)
 const Int_t colNum = 10; // and defining of a new palette
 Int_t palette[colNum];
 for (Int_t i=0; i<colNum; i++) {
 // get the color and if it does not exist create it
 if (! gROOT->GetColor(230+i)){
 TColor *color = new TColor(230+i,1-(i/((colNum)*1.0)),0.3,0.5,"");
 } else {
 TColor *color = gROOT->GetColor(230+i);
 color->SetRGB(1-(i/((colNum)*1.0)),0.3,0.5);
 }
 palette[i] = 230+i;
 }
 gStyle->SetPalette(colNum,palette);
 TF2 *f2 = new TF2("f2","exp(-(x^2)-(y^2))",-3,3,-3,3);

 // two contours less than the number of colors in palette
 f2->SetContour(colNum-2);
 f2->Draw("cont");
}

142 Graphics and the Graphical User Interface June 2003 v3.05

The Graphical Editor

ROOT has a built-in graphics editor to draw and edit graphic
primitives starting from an empty canvas or on top of a picture (e.g.
histogram). The editor is started by selecting the “Editor” item in
the canvas “Edit” menu. A menu appears into an independent
window. You can create the following graphical objects:

An arc or circle: Click on the center of the arc, and then move the
mouse. A rubber band circle is shown. Click again with the left button
to freeze the arc.

A line or an arrow: Click with the left button at the point where you
want to start the arrow, then move the mouse and click again with the
left button to freeze the arrow.

A Diamond: Click with the left button and freeze again with the left
button. The editor draws a rubber band box to suggest the outline of
the diamond.

An Ellipse: Proceed like for an arc. You can grow/shrink the ellipse
by pointing to the sensitive points. They are highlighted. You can
move the ellipse by clicking on the ellipse, but not on the sensitive
points. If, with the ellipse context menu, you have selected a fill area
color, you can move a filled-ellipse by pointing inside the ellipse and
dragging it to its new position. Using the context menu, you can build
an arc of ellipse and tilt the ellipse.

A Pad: Click with the left button and freeze again with the left button.
The editor draws a rubber band box to suggest the outline of the pad.

A Pave Label: Proceed like for a pad. Type the text to be put in the
box. Then type a carriage return. The text will appear in the box.

A Pave Text or Paves Text: Proceed like for a pad. You can then click on the TPaveText
object with the right mouse button and select the option AddText.

A Poly Line: Click with the left button for the first point, move the moose, click again with
the left button for a new point. Close the poly-line with a double click. To edit one vertex
point, pick it with the left button and drag to the new point position.

A CurlyLine: Proceed as for the arrow/line. Once done, click with the third button to
change the characteristics of the curly line, like transform it to wave, change the
wavelength, etc…

A CurlyArc: Proceed like for the arrow/line. The first click is located at the position of the
center, the second click at the position of the arc beginning. Once done, one obtains a curly
ellipse, for which one can click with the third button to change the characteristics, like
transform it to wavy, change the wavelength, set the minimum and maximum angle to make
an arc that is not closed, etc…

A Text /Latex string: Click with the left button where you want to draw the text and then
type in the text terminated by carriage return. All TLatex expressions are valid. To move
the text or formula, point on it keeping the left mouse button pressed and drag the text to its
new position. You can grow/shrink the text if you position the mouse to the first top-third
part of the string, then move the mouse up or down to grow or shrink the text respectively. If
you position the mouse near the bottom-end of the text, you can rotate it.

A Marker: Click with the left button where to place the marker. The marker can be modified
by gStyle->SetMarkerStyle().

A Graphical Cut: Click with the left button on each point of a polygon delimiting the selected
area. Close the cut by double clicking on the last point. A TCutG object is created. It can b e
used as a selection for a TTree::Draw.

June 2003 v3.05 Graphics and the Graphical User Interface 143

You can get a pointer to this object with:

TCutG cut = (TCutG*)gPad->GetPrimitive("CUTG")

Once you are happy with your picture, you can select the Save as canvas.C item in the
canvas File menu. This will automatically generate a script with the C++ statements
corresponding to the picture. This facility also works if you have other objects not drawn
with the graphics editor (histograms for example).

Copy/Paste with DrawClone
You can make a copy of a canvas using TCanvas::DrawClonePad. This method is
unique to TCanvas. It clones the entire canvas to the active pad. There is a more general
method TObject::DrawClone, which all objects descendents of TObject, specifically all
graphic objects inherit. Below are two examples, one to show the use of DrawClonePad
and the other to show the use of DrawClone.

Example 1: TCanvas::DrawClonePad
In this example we will copy an entire canvas to a new one with DrawClonePad. Run the
script draw2dopt.C.

root[] .x tutorials/draw2dopt.C

This creates a canvas with 2D histograms. To make a copy of the canvas follow these
steps:

• Right-click on it to bring up the context menu
• Select DrawClonePad

This copies the entire canvas and all its sub-pads to a new canvas. The copied canvas is a
deep clone, and all the objects on it are copies and independent of the original objects. For
instance, change the fill on one of the original histograms, and the cloned histogram retains
its attributes. DrawClonePad will copy the canvas to the active pad; the target does not
have to be a canvas. It can also be a pad on a canvas.

Example 2: TObject::DrawClone
If you want to copy and paste a graphic object from one canvas or pad to another canvas or
pad, you can do so with DrawClone method inherited from TObject. The
TObject::DrawClone method is inherited by all graphics objects. In this example, we
create a new canvas with one histogram from each of the canvases from the script
draw2dopt.C.

1. Start a new ROOT session and execute the script draw2dopt.C
2. Select a canvas displayed by the script, and create a new canvas from the File menu

(c1).
3. Make sure that the target canvas (c1) is the active one by middle clicking on it. If you

do this step right after step 2, c1 will be active.
4. Select the pad with the first histogram you want to copy and paste.
5. Right click on it to show the context menu, and select DrawClone.
6. Leave the option blank and hit OK.

Repeat these steps for one histogram on each of the canvases created by the script, until
you have one pad from each type. If you wanted to put the same annotation on each of the
sub pads in the new canvas, you could use DrawClone to do so. Here we added the date
to each pad. The steps to this are:

1. Create the label in on of the pads with the graphics editor.
2. Middle-click on the target pad to make it the active pad
3. Use DrawClone method of the label to draw it in each of the other panels.

144 Graphics and the Graphical User Interface June 2003 v3.05

The option in the DrawClone method argument is the Draw option for a histogram or
graph. A call to TH1::DrawClone can clone the histogram with a different draw option.

Copy/Paste Programmatically
To copy and paste the four pads from the command line or in a script you would execute
the following statements:

root[] .x tutorials/draw2dopt.C
root[] TCanvas c1("c1","Copy Paste",200,200,800,600);
root[] surfaces->cd(1); // get the first pad
root[] TPad *p1 = gPad;
root[] lego->cd(2); // get the next pad
root[] TPad *p2 = gPad;
root[] cont->cd(3); // get the next pad
root[] TPad *p3 = gPad;
root[] c2h->cd(4); // get the next pad
root[] TPad *p4 = gPad;
root[] // draw the four clones
root[] c1->cd();
root[] p1->DrawClone();
root[] p2->DrawClone();
root[] p3->DrawClone();
root[] p4->DrawClone();

Note that the pad is copied to the new canvas in the same location as in the old canvas.
For example if you were to copy the third pad of surf to the top left corner of the target
canvas you would have to reset the coordinates of the cloned pad.

Legends
Legends for a graph are obtained with a TLegend object. This object points to markers,
lines, boxes, histograms, graphs and represent their marker, line, fill attributes. Any object
that has a marker or line or fill attribute may have an associated legend. A TLegend is a
panel with several entries (class TLegendEntry) and is created by the constructor

TLegend(Double_t x1,Double_t y1,Double_t x2,Double_t y2,
 const char *header, Option_t *option)

June 2003 v3.05 Graphics and the Graphical User Interface 145

The legend is defined with default coordinates, border size and option. x1,y1,x2,y2 are
the coordinates of the legend in the current pad (in NDC coordinates by default). The
default text attributes for the legend are:

• Alignment = 12 left adjusted and vertically centered
• Angle = 0 (degrees)
• Color = 1 (black)
• Size = calculate when number of entries is known
• Font = helvetica-medium-r-normal scalable font = 42, and bold = 62 for title

The title is a regular entry and supports TLatex. The default is no title (header = 0). The
options are the same as for TPave; by default, they are "brNDC". Once the legend box is
created, one has to add the text with the AddEntry() method:

TLegendEntry* TLegend::AddEntry(TObject *obj, const char *label,Option_t *option)

The parameters are:

• *obj: is a pointer to an object having marker, line, or fill attributes (for example a
 histogram, or graph)

• label: is the label to be associated to the object
• option:

o ”L” draw line associated with line attributes of obj if obj has them (inherits
from TAttLine)

o ”P” draw poly-marker associated with marker attributes of obj if obj has
them (inherits from TAttMarker)

o ”F” draw a box with fill associated with fill attributes of obj if obj has them
(inherits TAttFill)

One may also use the other form of AddEntry:

TLegendEntry* TLegend::AddEntry(const char *name,
 const char *label,Option_t *option)

where name is the name of the object in the pad. Other parameters are as in the previous
case. Here's an example of a legend created with TLegend

The legend part of this plot was created as follows:

146 Graphics and the Graphical User Interface June 2003 v3.05

leg = new TLegend(0.4,0.6,0.89,0.89);
leg->AddEntry(fun1,"One Theory","l");
leg->AddEntry(fun3,"Another Theory","f");
leg->AddEntry(gr,"The Data","p");
leg->Draw();

// oops we forgot the blue line... add it after
leg->AddEntry(fun2,"#sqrt{2#pi} P_{T} (#gamma) latex formula","f");

// and add a header (or "title") for the legend
leg->SetHeader("The Legend Title");
leg->Draw();

where fun1,fun2,fun3 and gr are pre-existing functions and graphs. You can edit the
TLegend by right clicking on it.

The PostScript Interface
To generate a PostScript (or encapsulated PostScript) file for a single image in a canvas,
you can:

Select the “Print PostScript“ item in the canvas “File“ menu. By default, a PostScript
file called canvas.ps is generated.

Click in the canvas area, near the edges, with the right mouse button and select the
“Print“ item. You can select the name of the PostScript file. If the file name is xxx.ps,
you will generate a PostScript file named xxx.ps. If the file name is xxx.eps, you
generate an encapsulated Postscript file instead. In your program (or script), you can type:

c1->Print("xxx.ps")

Or

c1->Print("xxx.eps")

This will generate a file of canvas pointed to by c1.

pad1->Print("xxx.ps")

This prints the picture in the pad pointed by pad1.

The TPad::Print method has a second parameter called option. Its value can be:

• 0 which is the default and is the same as "ps"
• "ps" a Postscript file is produced
• "eps" an Encapsulated Postscript file is produced
• "gif" a GIF file is produced
• "cxx" a C++ macro file is produced

You do not need to specify the second parameter; you can indicate by the filename
extension what format you want to save a canvas in (i.e. canvas.ps, canvas.gif,
canvas.C, etc).

The size of the PostScript picture, by default, is computed to keep the aspect ratio of the
picture on the screen, where the size along x is always 20 cm. You can set the size of the
PostScript picture before generating the picture with a command such as:

TPostScript myps("myfile.ps",111)
myps.Range(xsize,ysize);
object->Draw();
myps.Close();

June 2003 v3.05 Graphics and the Graphical User Interface 147

The first parameter in the TPostScript constructor is the name of the file. The second
parameter is the format option:
 111 - ps portrait
 112 - ps landscape
 113 - eps

You can set the default paper size with:

gStyle->SetPaperSize(xsize,ysize);

You can resume writing again in this file with myps.Open(). Note that you may have
several Post Script files opened simultaneously. Use
TPostScript::Text(x,y,"string") to add text to a postscript file. This method writes
the string in quotes into a PostScript file at position x, y in world coordinates.

Special Characters
The following characters have a special action on the PostScript file:

 `: Go to Greek
 ': Go to special
 ~: Go to Zapf Dingbats
 ? : Go to subscript
 ^: Go to superscript
 !: go to normal level of script
 &: Backspace one character
 #: End of Greek or of Zapf Dingbats

These special characters are printed as such on the screen. To generate one of these
characters on the PostScript file, you must escape it with the escape character "@". The use
of these special characters is illustrated in several scripts referenced by the TPostScript
constructor.

Multiple Pictures in a PostScript File: Case 1
The following script is an example illustrating how to open a PostScript file and draw
several pictures. The generation of a new PostScript page is automatic when
TCanvas::Clear is called by object->Draw().

{
 TFile f("hsimple.root");
 TCanvas c1("c1","canvas",800,600);

 //select PostScript output type
 Int_t type = 111; //portrait ps
 // Int_t type = 112; //landscape ps
 // Int_t type = 113; //eps

 //create a PostScript file and set the paper size
 TPostScript ps("test.ps",type);
 ps.Range(16,24); //set x,y of printed page

 //draw 3 histograms from file hsimple.root on separate pages
 hpx->Draw();
 c1.Update(); //force drawing in a script
 hprof->Draw();
 c1.Update();
 hpx->Draw("lego1");
 c1.Update();
 ps.Close();
}

148 Graphics and the Graphical User Interface June 2003 v3.05

Multiple Pictures in a PostScript File: Case 2
This example shows 2 pages. The canvas is divided. TPostScript::NewPage must be
called before starting a new picture. object->Draw does not clear the canvas in this case
because we clear only the pads and not the main canvas. Note that c1->Update must be
called at the end of the first picture.

{
 TFile *f1 = new TFile("hsimple.root");
 TCanvas *c1 = new TCanvas("c1");
 TPostScript *ps = new TPostScript("file.ps",112);
 c1->Divide(2,1); // picture 1
 ps->NewPage();
 c1->cd(1);
 hpx->Draw();
 c1->cd(2);
 hprof->Draw();
 c1->Update(); // picture 2
 ps->NewPage();
 c1->cd(1);
 hpxpy->Draw();
 c1->cd(2);
 ntuple->Draw("px");
 c1->Update();
 ps->Close(); // invoke PostScript viewer
 gSystem->Exec("gs file.ps");
}

Create or Modify a Style
All objects that can be drawn in a pad inherit from one or more attribute classes like
TAttLine, TAttFill, TAttText, TAttMarker. When the objects are created, their
default attributes are taken from the current style. The current style is an object of the class
TStyle and can be referenced via the global variable gStyle (in TStyle.h). See the
class TStyle for a complete list of the attributes that can be set in one style. ROOT
provides several styles called:

• "Default" The default style
• "Plain" The simple style (black and white)
• "Bold" Bolder lines
• "Video" Suitable for html output or screen viewing

The "Default" style is created by:

TStyle *default = new TStyle("Default","Default Style");

The "Plain" style can be used if you are working on a monochrome display or if you want to
get a "conventional" PostScript output. As an example, these are the instructions in the
ROOT constructor to create the "Plain" style.

TStyle *plain = new TStyle("Plain","Plain Style(no colors/fill areas)");
 plain->SetCanvasBorderMode(0);
 plain->SetPadBorderMode(0);
 plain->SetPadColor(0);
 plain->SetCanvasColor(0);
 plain->SetTitleColor(0);
 plain->SetStatColor(0);

June 2003 v3.05 Graphics and the Graphical User Interface 149

You can set the current style with:

gROOT->SetStyle(style_name);

You can get a pointer to an existing style with:

TStyle *style = gROOT->GetStyle(style_name);

You can create additional styles with:

TStyle *st1 = new TStyle("st1","my style");
st1->Set...
st1->cd(); // this becomes now the current style gStyle

In your rootlogon.C file, you can redefine the default parameters via statements like:

gStyle->SetStatX(0.7);
gStyle->SetStatW(0.2);
gStyle->SetLabelOffset(1.2);
gStyle->SetLabelFont(72);

Note that when an object is created, its attributes are taken from the current style. For
example, you may have created a histogram in a previous session and saved it in a file.
Meanwhile, if you have changed the style, the histogram will be drawn with the old
attributes. You can force the current style attributes to be set when you read an object from
a file by calling ForceStyle before reading the objects from the file.

gROOT->ForceStyle();

When you call gROOT->ForceStyle() and read an object from a ROOT file, the objects
method UseCurrentStyle is called. The attributes saved with the object are replaced by
the current style attributes. You call also call myObject->UseCurrentStyle() directly.
For example if you have a canvas or pad with your histogram or any other object, you can
force these objects to get the attributes of the current style with:

canvas->UseCurrentStyle();

The description of the style functions should be clear from the name of the TStyle setters
or getters. Some functions have an extended description, in particular:

• TStyle::SetLabelFont
• TStyle::SetLineStyleString: set the format of dashed lines.
• TStyle::SetOptStat
• TStyle::SetPalette to change the colors palette
• TStyle::SetTitleOffset
• TSTyle::SetOptDate(Int_t optdate) to support several date formats. If

optdate is non null, the current date/time will be printed in the canvas. The position of
the date string can be controlled by:

o optdate = 10*format + mode
o mode = 1 the date is printed in the bottom/left corner
o mode = 2 date is printed in the bottom/right corner
o mode = 3 date is printed in the top/right corner
o format = 0 (default) date has the format like:
 "Wed Sep 25 17:10:35 2002"
o format = 1 date has the format like: "2002-09-25"
o format = 2 date has the format like: "2002-09-25 17:10:35"

June 2003 v3.05 Folders and Tasks 151

10 Folders and Tasks

Folders
A TFolder is a collection of objects visible
and expandable in the ROOT object browser.
Folders have a name and a title and are
identified in the folder hierarchy by an "UNIX-
like" naming convention. The base of all
folders is //root. It is visible at the top of the
left panel in the browser. The browser shows
several folders under //root.

New folders can be added and removed
to/from a folder.

Why Use Folders?
One reason to use folders is to reduce class
dependencies and improve modularity. Each
set of data has a producer class and one or
many consumer classes. When using folders,
the producer class places a pointer to the
data into a folder, and the consumer class
retrieves a reference to the folder.

The consumer can access the objects in a
folder by specifying the path name of the
folder.

Here is an example of a folder's path name:

 //root/Event/Hits/TCP

One does not have to specify the full path
name. If the partial path name is unique, it will
find it; otherwise it will return the first
occurrence of the path.

The first diagram shows a system without
folders. The objects have pointers to each
other to access each other's data. Pointers
are an efficient way to share data between
classes. However, a direct pointer creates a
direct coupling between classes. This design
can become a very tangled web of
dependencies in a system with a large
number of classes.

152 Folders and Tasks June 2003 v3.05

In the second diagram a reference to the data is in the folder and the consumers refer
to the folder rather than each other to access the data. The naming and search service
provided by the ROOT folders hierarchy provides an alternative. It loosely couples the
classes and greatly enhances I/O operations. In this way, folders separate the data from
the algorithms and greatly improve the modularity of an application by minimizing the
class dependencies.

In addition, the folder hierarchy creates a picture of the data organization. This is useful
when discussing data design issues or when learning the data organization. The
example below illustrates this point.

How to Use Folders
Using folders means to build a hierarchy of folders, posting the reference to the data in
the folder by the producer, and creating a reference to the folder by the user.

Creating a Folder Hierarchy
To create a folder hierarchy you add the top folder of your hierarchy to //root. Then
you add a folder to an existing folder with the TFolder::AddFolder method. This
method takes two parameters: the name and title of the folder to be added. It returns a
pointer of the newly created folder.

June 2003 v3.05 Folders and Tasks 153

The code below creates the folder hierarchy shown in the browser.

{
// Add the top folder of my hierary to //root
TFolder *aliroot = gROOT->GetRootFolder()->AddFolder
 ("aliroot","aliroot top level folders");

// Add the hierarchy to the list of browsables
gROOT->GetListOfBrowsables()->Add(aliroot,"aliroot");

// Create and add the constants folder
TFolder *constants = aliroot->AddFolder
 ("Constants","Detector constants");
// Create and add the pdg folder to pdg
TFolder *pdg = constants->AddFolder("DatabasePDG","PDG database");
// Create and add the run folder
TFolder *run = aliroot->AddFolder("Run","Run dependent folders");
// Create and add the configuration folder to run
TFolder *configuration = run->AddFolder("Configuration",
 "Run configuration");

// Create and add the run_mc folder
TFolder *run_mc = aliroot->AddFolder("RunMC",
 "MonteCarlo run dependent folders");

// Create and add the configuration_mc folder to run_mc
TFolder *configuration_mc = run_mc->AddFolder("Configuration",
 "MonteCarlo run configuration");
}

In this macro, the folder is also added to the list of
browseable. This way, it is visible in the browser
on the top level.

Posting Data to a Folder (Producer)
A TFolder can contain other folders as shown
above or any TObject descendents. In general,
users will not post a single object to a folder, they
will store a collection or multiple collections in a
folder. For example, to add an array to a folder:

TObjArray *array;
run_mc->Add(array);

Reading Data from a Folder
(Consumer)
One can search for a folder or an object in a folder
using the TROOT::FindObjectAny method.
FindObjectAny analyzes the string passed as
its argument and searches in the hierarchy until it
finds an object or folder matching the name.

154 Folders and Tasks June 2003 v3.05

With FindObjectAny, you can give the full path name, or the name of the folder. If
only the name of the folder is given, it will return the first instance of that name.

conf = (TFolder*)gROOT->FindObjectAny("/aliroot/Run/Configuration");
// or
conf =(TFolder*)gROOT->FindObjectAny("Configuration");

A string-based search is time consuming. If the retrieved object is used frequently or
inside a loop, you should save a pointer to the object as a class data member. Use the
naming service only in the initialization of the consumer class. When a folder is deleted,
any reference to it in the parent or other folder is deleted also.
By default, a folder does not own the object it contains. You can overwrite that with
TFolder::SetOwner. Once the folder is the owner of its contents, the contents are
deleted when the folder is deleted. Some ROOT objects are automatically added to the
folder hierarchy. For example, the following folders exist on start up:

//root/ROOT Files with the list of open Root files
//root/Classes with the list of active classes
//root/Geometries with active geometries
//root/Canvases with the list of active canvases
//root/Styles with the list of graphics styles
//root/Colors with the list of active colors

For example, if a file myFile.root is added to the list of files, one can retrieve a
pointer to the corresponding TFile object with a statement like:

TFile *myFile = (TFile*)gROOT->FindObjectAny("/ROOTFiles/myFile.root");
//or
TFile *myFile = (TFile*)gROOT->FindObjectAny("myFile.root");

Tasks
Tasks can be organized into a hierarchy and displayed in the browser. The TTask class
is the base class from which the tasks are derived. To give task functionality, you need
to subclass the TTask class and override the Exec method. An example of TTask
subclasses is $ROOTSYS/tutorials/MyTasks.cxx. The script that creates a task
hierarchy and adds it to the browser is $ROOTSYS/tutorials/tasks.C. Here is a
part of MyTasks.cxx that shows how to subclass from TTask.

// A set of classes deriving from TTask see macro tasks.C. The Exec
// function of each class prints one line when it is called.
#include "TTask.h"

class MyRun : public TTask {
public:
 MyRun() { ; }
 MyRun(const char *name,const char *title);
 virtual ~MyRun() { ; }
 void Exec(Option_t *option="");
 ClassDef(MyRun,1) // Run Reconstruction task
};

class MyEvent : public TTask {
public:
 MyEvent() { ; }
 MyEvent(const char *name,const char *title);
 virtual ~MyEvent() { ; }
 void Exec(Option_t *option="");
 ClassDef(MyEvent,1) // Event Reconstruction task
};

June 2003 v3.05 Folders and Tasks 155

Later in MyTasks.cxx, we can see examples of the constructor and overridden Exec()
method:

ClassImp(MyRun)
MyRun::MyRun(const char *name,const char *title):TTask(name,title)
{
...
}
void MyRun::Exec(Option_t *option)
{
 printf("MyRun executing\n");
}

Each TTask derived class may contain other TTasks that can be executed recursively.
In this way, a complex program can be dynamically built and executed by invoking the
services of the top level task or one of its subtasks. The constructor of TTask has two
arguments: the name and the title. This script creates the task defined above, and
creates a hierarchy of tasks.

// Show the tasks in a browser. To execute a Task, select
// “ExecuteTask” in the context menu see also other functions in the
// TTask context menu, such as:
// -setting a breakpoint in one or more tasks
// -enabling/disabling one task, etc
void tasks()
{
 gROOT->ProcessLine(".L MyTasks.cxx+");

 TTask *run = new MyRun("run","Process one run");
 TTask *event = new MyEvent("event","Process one event");
 TTask *geomInit = new MyGeomInit("geomInit",
 "Geometry Initialisation");
 TTask *matInit = new MyMaterialInit("matInit",
 "MaterialsInitialisation");
 TTask *tracker = new MyTracker("tracker","Tracker manager");
 TTask *tpc = new MyRecTPC("tpc","TPC Reconstruction");
 TTask *its = new MyRecITS("its","ITS Reconstruction");
 TTask *muon = new MyRecMUON("muon","MUON Reconstruction");
 TTask *phos = new MyRecPHOS("phos","PHOS Reconstruction");
 TTask *rich = new MyRecRICH("rich","RICH Reconstruction");
 TTask *trd = new MyRecTRD("trd","TRD Reconstruction");
 TTask *global = new MyRecGlobal("global","Global Reconstruction");

 // Create a hierarchy by adding sub tasks
 run->Add(geomInit);
 run->Add(matInit);
 run->Add(event);
 event->Add(tracker);
 event->Add(global);
 tracker->Add(tpc);
 tracker->Add(its);
 tracker->Add(muon);
 tracker->Add(phos);
 tracker->Add(rich);
 tracker->Add(trd);

 // Add the top level task
 gROOT->GetListOfTasks()->Add(run);
 // Add the task to the browser
 gROOT->GetListOfBrowsables()->Add(run);
 new TBrowser;
}

156 Folders and Tasks June 2003 v3.05

Note that the first line loads the class definitions in MyTasks.cxx with ACLiC. ACLiC builds
a shared library and adds the classes to the CINT dictionary (see "How to Add a Class with
ACLiC" in the chapter "Adding a Class").

To execute a TTask, you call the ExecuteTask method. ExecuteTask will
recursively call:

• the TTask::Exec method of the derived class
• TTask::ExecuteTasks to execute for each task the list of its subtasks.

If the top level task is added to the list of ROOT browseable objects, the tree of tasks
can be seen in the ROOT browser. To add it to the browser, get the list of browseable
objects first and add it to the collection.

gROOT->GetListOfBrowsables()->Add(run);

The first parameter of the Add method is a pointer to a TTask, the second parameter is
the string to show in the browser. If the string is left out, the name of the task is used.

After executing the script above the browser will look like this.

Execute and Debug Tasks
The browser can be used to start a task, set break points at the beginning of a task or
when the task has completed. At a breakpoint, data structures generated by the
execution up this point may be inspected asynchronously and then the execution can
be resumed by selecting the "Continue" function of a task.

 A task may be active or inactive (controlled by TTask::SetActive). When a task is
inactive, its sub tasks are not executed. A task tree may be made persistent, saving the
status of all the tasks.

June 2003 v3.05 Input/Output 157

11 Input/Output

This chapter covers the saving and reading of objects to and from ROOT files. It begins
with an explanation of the physical layout of a ROOT file. It includes a discussion on
compression, and file recovery. Then we explain the logical file, the class TFile and its
methods. We show how to navigate in a file, how to save objects and read them back.
We also include a discussion on Streamers. Streamers are the methods responsible
to capture an objects current state to save it to disk or send it over the network. At the
end of the chapter is a discussion on the two specialized ROOT files: TNetFile and
TWebFile.

The Physical Layout of ROOT Files
A ROOT file is like a UNIX file directory. It can contain directories and objects organized
in unlimited number of levels. It also is stored in machine independent format (ASCII,
IEEE floating point, Big Endian byte ordering).

To look at the physical layout of a ROOT file, we first create one. This example creates
a ROOT file and 15 histograms, fills each histogram with 1000 entries from a Gaussian
distribution, and writes them to the file.

{
 char name[10], title[20];
 // Create an array of Histograms
 TObjArray Hlist(0);
 // create a pointer to a histogram
 TH1F* h;
 // make and fill 15 histograms
 // and add them to the object array
 for (Int_t i = 0; i < 15; i++) {
 sprintf(name,"h%d",i);
 sprintf(title,"histo nr:%d",i);
 h = new TH1F(name,title,100,-4,4);
 Hlist.Add(h);
 h->FillRandom("gaus",1000);
 }
 // open a file and write the array to the file
 TFile f("demo.root","recreate");
 Hlist->Write();
 f.Close();
}

The example begins with a call to the TFile constructor. TFile is the class describing
the ROOT file. In the next section, when we discuss the logical file structure, we will
cover TFile in detail. You can also see that the file has the extension ".root", this
convention is encouraged, and however ROOT does not depend on it.

158 Input/Output June 2003 v3.05

The last line of the example closed the file. To view its contents it needs to be opened
again, and once opened we can view the contents in the ROOT Object browser by
creating a TBrowser object.

root[] TFile f("demo.root")
root[] TBrowser browser;

In the browser, we can see the 15 histograms we created.

Once we have the TFile object, we can call the TFile::Map() method to view the
physical layout. The output of Map() prints the date/time, the start address of the
record, the number of bytes in the record, the class name of the record, and the
compression factor.

root[] f.Map()
20010404/092347 At:64 N=84 TFile
20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51
20010404/092347 At:905 N=378 TH1F CX = 2.50
20010404/092347 At:1283 N=376 TH1F CX = 2.52
20010404/092347 At:1659 N=374 TH1F CX = 2.53
20010404/092347 At:2033 N=390 TH1F CX = 2.43
20010404/092347 At:2423 N=380 TH1F CX = 2.49
20010404/092347 At:2803 N=380 TH1F CX = 2.49
20010404/092347 At:3183 N=385 TH1F CX = 2.46
20010404/092347 At:3568 N=374 TH1F CX = 2.53
20010404/092347 At:3942 N=382 TH1F CX = 2.49
20010404/092347 At:4324 N=380 TH1F CX = 2.50
20010404/092347 At:4704 N=387 TH1F CX = 2.45
20010404/092347 At:5091 N=382 TH1F CX = 2.49
20010404/092347 At:5473 N=381 TH1F CX = 2.49
20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41
20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

We see the fifteen histograms (TH1F's) with the first one starting at byte 148. We also
see an entry TFile. You may notice that the first entry starts at byte 64. The first 64
bytes are taken by the file header.

June 2003 v3.05 Input/Output 159

The File Header
This table shows the file header information:

File Header Information

Byte Value Name Description

1 -> 4 "root" Root file identifier

5 -> 8 fVersion File format version

9 -> 12 fBEGIN Pointer to first data record

13 -> 16 fEND Pointer to first free word at the EOF

17 -> 20 fSeekFree Pointer to FREE data record

21 -> 24 fNbytesFree Number of bytes in FREE data record

25 -> 28 nfree Number of free data records

29 -> 32 fNbytesName Number of bytes in TNamed at creation time

33 -> 33 fUnits Number of bytes for file pointers

34 -> 37 fCompress Zip compression level

The first four bytes of the file header contain the string "root" which identifies a file as a
ROOT file. Because of this identifier, ROOT is not dependent on the ".root"
extension. It is still a good idea to use the extension, just for us to recognize them
easier.

The nfree and value is the number of free records. A ROOT file has a maximum size
of 2 gigabytes. This variable along with FNBytesFree keeps track of the free space in
terms of records and bytes. This count also includes the deleted records, which are
available again.

The Top Directory Description
The 84 bytes after the file header contain the top directory description, including the
name, the date and time it was created, and the date and time of the last modification.

20010404/092347 At:64 N=84 TFile

The Histogram Records
What follows are the 15 histograms, in records of variable length.

20010404/092347 At:148 N=380 TH1F CX = 2.49
20010404/092347 At:528 N=377 TH1F CX = 2.51
…

The first four bytes of each record is an integer holding the number of bytes in this
record. A negative number flags the record as deleted, and makes the space available
for recycling in the next write. The rest of bytes in the header contain all the information
to uniquely identify a data block on the file. This is followed by the object data.

160 Input/Output June 2003 v3.05

This table explains the values in each individual record:

Record Information

Byte Value Name Description

1 -> 4 Nbytes Length of compressed object (in bytes)

5 -> 6 Version TKey version identifier

7 -> 10 ObjLen Length of uncompressed object

11 -> 14 Datime Date and time when object was written to file

15 -> 16 KeyLen Length of the key structure (in bytes)

17 -> 18 Cycle Cycle of key

19 -> 22 SeekKey Pointer to record itself (consistency check)

23 -> 26 SeekPdir Pointer to directory header

27 lname Number of bytes in the class name

28->… ClassName Object Class Name

...->… lname Number of bytes in the object name

...->… Name lName bytes with the name of the object

...->… lTitle Number of bytes in the object title

...->... Title Title of the object

-----> DATA Data bytes associated to the object

You see a reference to TKey. It is explained in detail in the next section.

The Class Description List (StreamerInfo List)
The histogram records are followed by the StreamerInfo list of class descriptions.
The list contains the description of each class that has been written to file.

20010404/092347 At:5854 N=2390 StreamerInfo CX = 3.41

The class description is recursive, because to fully describe a class, its ancestors and
object data members have to be described also.

In demo.root, the class description list contains the description for:

• TH1F
• all classes in the TH1F inheritance tree
• all classes of the object data members
• all classes in the object data members' inheritance tree.

This description is implemented by the TStreamerInfo class, and is often referred to
as simply StreamerInfo. You can print a file's StreamerInfolist with the
TFile::ShowStreamerInfo method. Below is an example of the output. Only the
first line of each class description is shown. The demo.root example contains only
TH1F objects. Here we see the recursive nature of the class description; it contains the
StreamerInfoof all the classes needed to describe TH1F.

June 2003 v3.05 Input/Output 161

root[] f.ShowStreamerInfo()
StreamerInfo for class: TH1F, version=1
 BASE TH1 offset=0 type= 0 1-Dim histogram base class
 BASE TArrayF offset=0 type= 0 Array of floats

StreamerInfo for class: TH1, version=3
 BASE TNamed offset=0 type=67 The basis for named object(name,title)
 BASE TAttLine offset=0 type=0 Line attributes
 BASE TAttFill offset=0 type=0 Fill area attributes
 BASE TAttMarker offset=0 type=0 Marker attributes
 Int_t fNcells offset=0 type=3 number bins(1D),cells(2D)+U/Overflows
 TAxis fXaxis offset=0 type=61 X axis descriptor
 TAxis fYaxis offset=0 type=61 Y axis descriptor
 TAxis fZaxis offset=0 type=61 Z axis descriptor
 Short_t fBarOffset offset=0 type=2 (1000*offset) for barcharts or legos
 Short_t fBarWidth offset=0 type=2 (1000*width) for bar charts or legos
 Stat_t fEntries offset=0 type=8 Number of entries
 Stat_t fTsumw offset=0 type=8 Total Sum of weights
 Stat_t fTsumw2 offset=0 type=8 Total Sum of squares of weights
 Stat_t fTsumwx offset=0 type=8 Total Sum of weight*X
 Stat_t fTsumwx2 offset=0 type=8 Total Sum of weight*X*X
 Double_t fMaximum offset=0 type=8 Maximum value for plotting
 Double_t fMinimum offset=0 type=8 Minimum value for plotting
 Double_t fNormFactor offset=0 type=8 Normalization factor
 TArrayD fContour offset=0 type=62 Array to display contour levels
 TArrayD fSumw2 offset=0 type=62 Array of sum of squares of weights
 TString fOption offset=0 type=65 histogram options
 TList* fFunctions offset=0 type=63 ->Pointer to list of functions
 (fits and user)
StreamerInfo for class: TNamed, version=1
…
StreamerInfo for class: TAttLine, version=1
…
StreamerInfo for class: TAttFill, version=1
…
StreamerInfo for class: TAttMarker, version=1
…
StreamerInfo for class: TArrayF, version=1
…
StreamerInfo for class: TArray, version=1
…
StreamerInfo for class: TAxis, version=6
…
StreamerInfo for class: TAttAxis, version=4
…

ROOT allows a class to have multiple versions, and each version has its own
description in form of a StreamerInfo. Above you see the class name and version
number. The StreamerInfolist has only one description for each class/version
combination it encountered. The file can have multiple versions of the same class, for
example objects of old and new versions of a class can be in the same file. The
StreamerInfois described in detail in the section on Streamers.

The List of Keys and the List of Free Blocks
The last three entries on the output of TFile::Map() are the list of keys, the list of
free segments, and the address where the data ends.. When a file is closed, it writes a
linked list of keys at the end of the file. This is what we see in the second to last entry.
In our example, the list of keys is stored in 732 bytes beginning at byte# 8244.

20010404/092347 At:8244 N=732 KeysList
20010404/092347 At:8976 N=53 FreeSegments
20010404/092347 At:9029 N=1 END

The second to last entry is a list of free segments. In our case, this starts 8976 and is
not very long, only 53 bytes, since we have not deleted any objects. The last entry is the
address of the last byte in the file.

162 Input/Output June 2003 v3.05

File Recovery
A file may become corrupted or it may be impossible to write it to disk and close it
properly. For example if the file is too large and exceeds the disk quota, or the job
crashes or a batch job reaches its time limit before the file can be closed. In these
cases, it is imperative to recover and retain as much information as possible. ROOT
provides an intelligent and elegant file recovery mechanism using the redundant
directory information in the record header.

If the file is not closed due to for example exceed the time limit, and it is opened again,
it is scanned and rebuilt according to the information in the record header. The recovery
algorithm reads the file and creates the saved objects in memory according to the
header information. It then rebuilds the directory and file structure. If the file is opened in
write mode, the recovery makes the correction on disk when the file is closed; however
if the file is opened in read mode, the correction can not be written to disk. You can also
explicitly invoke the recovery procedure by calling the TFile::Recover() method.
You must be aware of the 2GB size limit before you attempt a recovery. If the file has
reached this limit, you cannot add more data. You can still recover the directory
structure, but you cannot save what you just recovered to the file on disk. Here we
interrupted and aborted the previous ROOT session, causing the file not to be closed.
When we start a new session and attempt to open the file, it gives us an explanation
and status on the recovery attempt.

root[] TFile f("demo.root")
Warning in <TFile::TFile>: file demo.root probably not closed, trying to
recover successfully recovered 15 keys

The Logical ROOT File: TFile and TKey
We saw that the TFile::Map() method reads the file sequentially and prints
information about each record while scanning the file. It is not feasible to only support
sequential access and hence ROOT provides random or direct access, i.e. reading a
specified object at a time. To do so, TFile keeps a list of TKeys, which is essentially
an index to the objects in the file. The TKey class describes the record headers of
objects in the file. For example, we can get the list of keys and print them. To find a
specific object on the file we can use the TFile::Get() method.

root[] TFile f("demo.root")
root[] f.GetListOfKeys()->Print()
TKey Name = h0, Title = histo nr:0, Cycle = 1
TKey Name = h1, Title = histo nr:1, Cycle = 1
TKey Name = h2, Title = histo nr:2, Cycle = 1
TKey Name = h3, Title = histo nr:3, Cycle = 1
TKey Name = h4, Title = histo nr:4, Cycle = 1
TKey Name = h5, Title = histo nr:5, Cycle = 1
TKey Name = h6, Title = histo nr:6, Cycle = 1
TKey Name = h7, Title = histo nr:7, Cycle = 1
TKey Name = h8, Title = histo nr:8, Cycle = 1
TKey Name = h9, Title = histo nr:9, Cycle = 1
TKey Name = h10, Title = histo nr:10, Cycle = 1
TKey Name = h11, Title = histo nr:11, Cycle = 1
TKey Name = h12, Title = histo nr:12, Cycle = 1
TKey Name = h13, Title = histo nr:13, Cycle = 1
TKey Name = h14, Title = histo nr:14, Cycle = 1
root[] TH1F *h9 = (TH1F*)f.Get("h9");

The TFile::Get() finds the TKey object with name "h9". Using the TKey info it will
import in memory the object in the file at the file address #3352 (see the output from the
TFile::Map above). This is done by the Streamer method that is covered in detail in
a later section.

June 2003 v3.05 Input/Output 163

Since the keys are available in a TList of TKeys we can iterate over the list of keys:

{
 TFile f("demo.root");
 TIter next(f.GetListOfKeys());
 TKey *key;
 while ((key=(TKey*)next())) {
 printf("key: %s points to an object of class: %s at %d\n",
 key->GetName(),
 key->GetClassName(),key->GetSeekKey());
 }
}

The output of this script is:

root[] .x iterate.C
key: h0 points to an object of class: TH1F at 150
key: h1 points to an object of class: TH1F at 503
key: h2 points to an object of class: TH1F at 854
key: h3 points to an object of class: TH1F at 1194
key: h4 points to an object of class: TH1F at 1539
key: h5 points to an object of class: TH1F at 1882
key: h6 points to an object of class: TH1F at 2240
key: h7 points to an object of class: TH1F at 2582
key: h8 points to an object of class: TH1F at 2937
key: h9 points to an object of class: TH1F at 3293
key: h10 points to an object of class: TH1F at 3639
key: h11 points to an object of class: TH1F at 3986
key: h12 points to an object of class: TH1F at 4339
key: h13 points to an object of class: TH1F at 4694
key: h14 points to an object of class: TH1F at 5038

In addition to the list of keys, TFile also keeps two other lists: TFile::fFree is a TList
of free blocks used to recycle freed up space in the file. ROOT tries to find the best free
block. If a free block matches the size of the new object to be stored, the object is written in
the free block and this free block is deleted from the list. If not, the first free block bigger than
the object is used. TFile::fListHead contains a sorted list (TSortedList) of objects in
memory. The diagram below illustrates the logical view of the TFile and TKey.

164 Input/Output June 2003 v3.05

Viewing the Logical File Contents
TFile is a descendent of TDirectory, which means it behaves like a TDirectory.
We can list the contents, print the name, and create subdirectories. In a ROOT session,
you are always in a directory and the directory you are in is called the current directory
and is stored in the global variable gDirectory. Let's look at a more detailed example
of a ROOT file and its role as the current directory. First, we create a ROOT file by
executing a sample script.

root[] .x $ROOTSYS/tutorials/hsimple.C

Now you should have hsimple.root in your directory. The file was closed by the
script so we have to open it again to work with it. We open the file with the intent to
update it, and list its contents.

root[] TFile f ("hsimple.root","UPDATE")
root[] f.ls()
TFile** hsimple.root
TFile* hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

It shows the two lines starting with TFile followed by four lines starting with the word
"KEY". The four keys tell us that there are four objects on disk in this file. The syntax of
the listing is:

KEY: <class> <variable>;<cycle number> <title>

For example, the first line in the list means there is an object in the file on disk, called
hpx. It is of the class TH1F (one-dimensional histogram of floating numbers). The
object's title is "This is the px distribution".

If the line starts with OBJ, the object is in memory. The <class> is the name of the
ROOT class (T-something). The <variable> is the name of the object. The cycle number
along with the variable name uniquely identifies the object. The <title> is the string given
in the constructor of the object as title.

This picture shows a TFile with five objects in the top directory (kObjA;1,
kObjA;2, kObjB;1, kObjC;1 and kObjD;1). ObjA is on file twice with two
different cycle numbers. It also shows four objects in memory (mObjE, mObjeF,
mObjM, mObjL). It also shows several subdirectories.

June 2003 v3.05 Input/Output 165

The Current Directory
When you create a TFile object, it becomes the current directory. Therefore, the last
file to be opened is always the current directory. To check your current directory you
can type:

root[] gDirectory->pwd()
Rint:/

This means that the current directory is the ROOT session (Rint). When you create a
file, and repeat the command the file becomes the current directory.

root[] TFile f1("AFile1.root");
root[] gDirectory->pwd()
AFile1.root:/

If you create two files, the last becomes the current directory.

root[] TFile f2("AFile2.root");
root[] gDirectory->pwd()
AFile2.root:/

To switch back to the first file, or to switch to any file in general, you can use the
TDirectory::cd method. The next command changes the current directory back to
the first file.

root[] f1.cd();
root[] gDirectory->pwd()
AFile1.root:/

Note that even if you open the file in "READ" mode, it still becomes the current
directory. CINT also offers a shortcut for gDirectory->pwd() and
gDirectory->ls(), you can type:

root[] .pwd
AFile1.root:/
root[] .ls
TFile** AFile1.root
TFile* AFile1.root

To return back to the home directory where we were before:

root[] gROOT->cd()
(unsigned char)1
root[] gROOT->pwd()
Rint:/

Objects in Memory and Objects on Disk
The TFile::ls() method has an option to list the objects on disk ("-d") or the objects
in memory ("-m"). If no option is given it lists both, first the objects in memory, then the
objects on disk. For example:

root[] TFile *f = new TFile("hsimple.root");
root[] gDirectory->ls("-m")
TFile** hsimple.root
 TFile* hsimple.root

Remember that gDirectory is the current directory and at this time is equivalent to
"f". This correctly states that no objects are in memory.

166 Input/Output June 2003 v3.05

The next command lists the objects on disk in the current directory.

root[] gDirectory->ls("-d")
TFile** hsimple.root
 TFile* hsimple.root
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple

To bring an object from disk into memory, we have to use it or "Get" it explicitly. When
we use the object, ROOT gets it for us. Any reference to hprof will read it from the file.
For example drawing hprof will read it from the file and create an object in memory.
Here we draw the profile histogram, and then we list the contents.

root[] hprof->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TProfile hprof Profile of pz versus px : 0
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple

We now see a new line that starts with OBJ. This means that an object of class
TProfile, called hprof has been added in memory to this directory. This new hprof
in memory is independent from the hprof on disk. If we make changes to the hprof in
memory, they are not propagated to the hprof on disk. A new version of hprof will be
saved once we call Write.

You may wonder why hprof is added to the objects in the current directory. hprof is
of the class TProfile that inherits from TH1D, which inherits from TH1. TH1 is the
basic histogram. All histograms and trees are created in the current directory (also see
"Histograms and the Current Directory"). The reference to "all histograms" includes
objects of any class descending directly or indirectly from TH1. Hence, our TProfile
hprof is created in the current directory f.There was another side effect when we
called the TH1::Draw method. CINT printed this statement:

<TCanvas::MakeDefCanvas>: created default TCanvas with name c1

It tells us that a TCanvas was created and it named it c1. This is where ROOT is being
nice, and it creates a canvas for drawing the histogram if no canvas was named in the
draw command, and if no active canvas exists.

The newly created canvas, however, is NOT listed in the contents of the current
directory. Why is that? The canvas is not added to the current directory, because by
default ONLY histograms and trees are added to the object list of the current directory.
Actually, TEventList objects are also added to the current directory, but at this time,
we don't have to worry about those. If the canvas is not in the current directory then
where is it? Because it is a canvas, it was added to the list of canvases. This list can be
obtained by the command gROOT->GetListOfCanvases()->ls(). The ls() will
print the contents of the list. In our list, we have one canvas called c1. It has a TFrame,
a TProfile, and a TPaveStats.

root[] gROOT->GetListOfCanvases()->ls()
Canvas Name=c1 Title=c1
Option=TCanvas fXlowNDC=0 fYlowNDC=0 fWNDC=1 fHNDC=1
Name= c1 Title= c1
Option=TFrame X1= -4.000000 Y1=0.000000 X2=4.000000 Y2=19.384882
 OBJ: TProfile hprof Profile of pz versus px : 0
 TPaveText X1=-4.900000 Y1=20.475282 X2=-0.950000 Y2=21.686837 title
 TPaveStats X1=2.800000 Y1=17.446395 X2=4.800000 Y2=21.323371 stats

June 2003 v3.05 Input/Output 167

Lets proceed with our example and draw one more histogram, and we see one more
OBJ entry.

root[] hpx->Draw()
root[] f->ls()
TFile** hsimple.root
 TFile* hsimple.root
 OBJ: TProfile hprof Profile of pz versus px : 0
 OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY:f TNtuple ntuple;1 Demo ntuple

TFile::ls() loops over the list of objects in memory and the list of objects on disk. In
both cases, it calls the ls() method of each object. The implementation of the ls
method is specific to the class of the object, all of these objects are descendants of
TObject and inherit the TObject::ls() implementation. The histogram classes are
descendants of TNamed that in turn is a descent of TObject. In this case,
TNamed::ls() is executed, and it prints the name of the class, and the name and title
of the object. Each directory keeps a list of its objects in the memory. You can get this
list by TDirectory::GetList. To see the lists in memory contents you can:

root[]f->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Since the file f is the current directory (gDirectory), this will yield the same result:

root[] gDirectory->GetList()->ls()
OBJ: TProfile hprof Profile of pz versus px : 0
OBJ: TH1F hpx This is the px distribution : 0

Saving Histograms to Disk
At this time, the objects in memory (OBJ) are identical to the objects on disk (KEY).
Let's change that by adding a fill to the hpx we have in memory.

root[] hpx->Fill(0)

Now the hpx in memory is different from the histogram (hpx) on disk. Only one version
of the object can be in memory, however, on disk we can store multiple versions of the
object. The TFile::Write method will write the list of objects in the current directory
to disk. It will add a new version of hpx and hprof.

root[] f->Write()
root[] f->ls()
TFile** hsimple.root
 TFile* hsimple.root
 OBJ: TProfile hprof Profile of pz versus px : 0
 OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;2 This is the px distribution
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;2 Profile of pz versus px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple

The TFile::Write method wrote the entire list of objects in the current directory to
the file. You see that it added two new keys: hpx;2 and hprof;2 to the file. Unlike
memory, a file is capable of storing multiple objects with the same name. Their cycle
number, the number after the semicolon, differentiates objects on disk with the same
name.

168 Input/Output June 2003 v3.05

This picture shows the file before and after the call to Write.

If you wanted to save only hpx to the file, but not the entire list of objects, you could use
the TH1::Write method of hpx:

root[] hpx->Write()

A call to obj->Write without any parameters will call obj->GetName() to find the
name of the object and use it to create a key with the same name. You can specify a
new name by giving it as a parameter to the Write method.

root[] hpx->Write("newName")

If you want to re-write the same object, with the same key, use the overwrite option.

root[] hpx->Write("",TObject::kOverwrite)

If you give a new name and use the kOverwrite, the object on disk with the matching
name is overwritten if such an object exists. If not, a new object with the new name will
be created.

root[] hpx->Write("newName",TObject::kOverwrite)

The Write method did not affect the objects in memory at all. However, if the file is
closed, the directory is emptied and the objects on the list are deleted.

root[] f->Close()
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root

In the code snipped above you can see that the directory is now empty. If you followed
along so far, you can see that c1 which was displaying hpx is now blank. Furthermore,
hpx no longer exists.

root[] hpx->Draw()
Error: No symbol hpx in current scope

This is important to remember, do not close the file until you are done with the objects
or any attempt to reference the objects will fail.

June 2003 v3.05 Input/Output 169

Histograms and the Current Directory
When a histogram is created, it is added by default to the list of objects in the current
directory. You can get the list of histograms in a directory and retrieve a pointer to a
specific histogram.

h = (TH1F)gDirectory->Get("myHist");

or

TH1F *h = (TH1F*)gDirectory->GetList()->FindObject("myHist");

The method TDirectory::GetList() returns a TList of objects in the directory.
You can change the directory of a histogram with the SetDirectory method.

h->SetDirectory(newDir)

If the parameter is 0, the histogram is no longer associated with a directory.

h->SetDirectory(0)

Once a histogram is removed from the directory, it will no longer be deleted when the
directory is closed. It is now your responsibility to delete this histogram object once you
are finished with it.

To change the default that automatically adds the histogram to the current directory,
you can call the static function:

TH1::AddDirectory(kFALSE);

In this case, you will need to do all the bookkeeping for all the created histograms.

Saving Objects to Disk
In addition to histograms and trees, you can save any object in a ROOT file. To save a
canvas to the ROOT file you can use TDirectory::Write.

root[] TFile *f = new TFile("hsimple.root","UPDATE")
root[] hpx->Draw()
<TCanvas::MakeDefCanvas>: created default TCanvas with name c1
root[] c1->Write()
root[] f->ls()
TFile** hsimple.root
TFile* hsimple.root
OBJ: TH1F hpx This is the px distribution : 0
 KEY: TH1F hpx;2 This is the px distribution
 KEY: TH1F hpx;1 This is the px distribution
 KEY: TH2F hpxpy;1 py vs px
 KEY: TProfile hprof;2 Profile of pz versus px
 KEY: TProfile hprof;1 Profile of pz versus px
 KEY: TNtuple ntuple;1 Demo ntuple
 KEY: TCanvas c1;1 c1

Saving Collections to Disk
All collection classes inherit from TCollection and hence inherit the
TCollection::Write method. When you call TCollection::Write() each
object in the container is written individually into its own key in the file. To write all
objects into one key you can specify the name of the key and use the
TObject::kSingleKey option.

170 Input/Output June 2003 v3.05

For example:

root[] TList * list = new TList;
root[] TNamed * n1, * n2;
root[] n1 = new TNamed("name1","title1");
root[] n2 = new TNamed("name2","title2");
root[] list->Add(n1);
root[] list->Add(n2);
root[] list->Write("list",TObject::kSingleKey);

A TFile Object Going Out of Scope
There is another important point to remember about TFile::Close and
TFile::Write. When a variable is declared on the stack in a function such as in the
code below, it will be deleted when it goes out of scope.

void foo() { TFile f("AFile.root","RECREATE"); }

As soon as the function foo has finished executing, the variable f is deleted. When a
TFile object is deleted an implicit call to TFile::Close is made. This will save only
the file descriptor to disk. It contains: the file header, the StreamerInfo list, the key
list, the free segment list, and the end address (see "The Physical Layout of ROOT
Files").

A TFile::Close does not make a call to Write, which means that the objects in
memory will not be saved in the file.

You need to explicitly call TFile::Write() to save the object in memory to file before
the exit of the function.

void foo() {
 TFile f("AFile.root","RECREATE");
 … stuff …
 f->Write();
}

To prevent an object in a function from being deleted when it goes out of scope, you
can create it on the heap instead of on the stack. This will create a TFile object f, that
is available on a global scope, and it will still be available when exiting the function.

void foo() {
 TFile *f = new TFile("AFile.root","RECREATE");
}

Retrieving Objects from Disk
If you have a ROOT session running, please quit and start fresh.

We saw that multiple versions of an object with the same name can be in a ROOT file.
In our example, we saved a modified histogram hpx to the file, which resulted in two
hpx's uniquely identified by the cycle number: hpx;1 and hpx;2. The question is how
we do retrieve the right version of hpx.

When opening the file and using hpx, CINT retrieves the one with the highest cycle
number.

To read the hpx;1 into memory, rather than the hpx:2 we would get by default, we
have to explicitly get it and assign it to a variable.

root[] TFile *f1 = new TFile("hsimple.root")
root[] TH1F *hpx1 = (TH1F*)f1->Get("hpx;1")
root[] hpx1->Draw()

June 2003 v3.05 Input/Output 171

Subdirectories and Navigation
The TDirectory class lets you organize its contents into subdirectories, and TFile
being a descendent of TDirectory inherits this ability. Here is an example of a ROOT
file with multiple subdirectories as seen in the ROOT browser.

Creating Subdirectories
To add a subdirectory to a file use TDirectory::mkdir. The example below opens
the file for writing and creates a subdirectory called "Wed011003". Listing the contents
of the file shows the new directory in the file and the TDirectory object in memory.

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] f->mkdir("Wed011003")
(class TDirectory*)0x1072b5c8
root[] f->ls()
TFile** AFile.root
TFile* AFile.root
 TDirectory* Wed011003 Wed011003
 KEY: TDirectory Wed011003;1 Wed011003

Navigating to Subdirectories
We can change the current directory by navigating into the subdirectory, and after
changing directory; we can see that gDirectory is now "Wed011003".

root[] f->cd("Wed011003")
root[] gDirectory->pwd()
AFile.root:/Wed011003

In addition to gDirectory we have gFile, another global that points to the current
file. In our example, gDirectory points to the subdirectory, and gFile points to the
file (i.e. the files' top directory).

root[] gFile->pwd()
AFile.root:/

Use cd() without any arguments to return to the file's top directory.

root[] f->cd()
AFile.root:/

Change to the subdirectory again, and create a histogram. It is added to the current
directory, which is the subdirectory "Wed011003".

root[] f->cd("Wed011003")
root[] TH1F *histo=new TH1F("histo","histo",10,0,10);
root[] gDirectory->ls()
TDirectory* Wed011003 Wed011003
 OBJ: TH1F histo histo : 0

If you are in a subdirectory and you would like to have a pointer to the file containing the
subdirectory, you can do so:

root[] gDirectory->GetFile()

If you are in the top directory gDirectory is the same as gFile. We write the file to
save the histogram on disk, to show you how to retrieve it later.

172 Input/Output June 2003 v3.05

root[] f->Write()
root[] gDirectory->ls()
TDirectory* Wed011003 Wed011003
 OBJ: TH1F histo histo : 0
 KEY: TH1F histo;1 histo

When retrieving an object from a subdirectory, you can navigate to the subdirectory first
or give it the path name relative to the file. The read object is created in memory in the
current directory. In this first example, we get histo from the top directory and the
object will be in the top directory.

root[] TH1 *h = (TH1*)f->Get("Wed011003/histo;1")

If file is written, a copy of histo will be in the top directory. This is an effective way to
copy an object from one directory to another. In contrast, in the code box below, histo
will be in memory in the subdirectory because we changed the current directory.

root[] f->cd("Wed011003");
root[] TH1 *h = (TH1*)gDirectory->Get("histo;1")

Note that there is no warning if the retrieving was not successful. You need to explicitly
check the value of h, and if it is null, the object could not be found. For example, if you did
not give the path name the histogram cannot be found and the pointer to h is null:

root[] TH1 *h =(TH1*)gDirectory->Get("Wed011003/histo;1")
root[] h
(class TH1*)0x10767de0
root[] TH1 *h = (TH1*)gDirectory->Get("histo;1")
root[] h
(class TH1*)0x0

Removing Subdirectories
To remove a subdirectory you need to use TDirectory::Delete. There is no
TDirectory::rmdir. The Delete method takes a string containing the variable name
and cycle number as a parameter.

void Delete(const char *namecycle)

The namecycle string has the format name;cycle.

The next are some rules to remember:

• name = * means all, but don't remove the subdirectories
• cycle = * means all cycles (memory and file)
• cycle = "" means apply to a memory object
• cycle = 9999 also means apply to a memory object
• namecycle = "" means the same as namecycle ="T*"
• namecycle = T* delete subdirectories

For example to delete a directory from a file, you must specify the directory cycle

root[] f->Delete("Wed011003;1")

Some other examples of namecycle format are:

• foo: delete the object named foo from memory
• foo;1: delete the cycle 1 of the object named foo from the file
• foo;*: delete all cycles of foo from the file and also from memory
• *;2: delete all objects with cycle number 2 from the file
• *;*: delete all objects from memory and from the file
• T*;*: delete all objects from memory and from the file including all

 subdirectories

June 2003 v3.05 Input/Output 173

Streamers
To follow the discussion on Streamers, you need to know what a simple data type is.
A variable is of a simple data type if it cannot be decomposed into other types.
Examples of simple data types are longs, shorts, floats, and chars. In contrast, a
variable is of a composite data type if it can be decomposed. For example, classes,
structures, and arrays are composite types. Simple types are also called primitive types,
basic types, and CINT sometimes calls them fundamental types.

When we say, "writing an object to a file", we actually mean writing the current values of
the data members. The most common way to do this is to decompose (also called the
serialization of) the object into its data members and write them to disk. The
decomposition is the job of the Streamer. Every class with ambitions to be stored in a
file has a Streamer that decomposes it and "streams" its members into a buffer.

The methods of the class are not written to the file, it contains only the persistent data
members.

To decompose the parent classes, the Streamer calls the Streamer of the parent
classes. It moves up the inheritance tree until it reaches an ancestor without a parent.

To serialize the object data members it calls their Streamer. They in turn move up
their own inheritance tree and so forth.

The simple data members are written to the buffer directly. Eventually the buffer
contains all simple data members of all the classes that make up this particular object.

Streaming Pointers
An object pointer data member presents a challenge to the streaming software. If the object
pointed to is saved every time it could create circular dependencies and consume large
amounts of disk space. The network of references must be preserved on disk and recreated
upon reading the file.

When ROOT encounters a pointer data member it calls the Streamer of the object and
labels it with a unique object identifier. The object identifier is unique for one I/O operation. If
there is another reference to the object in the same I/O operation, the first object only
referenced by its ID, it is not saved again. When reading the file, the object is rebuilt and the
references recalculated. In this way, the network of pointers and their objects is rebuilt and
ready to use the same way it was used before it was persistent.

Automatically Generated Streamers
A Streamer usually calls other Streamers: the Streamer of its parents and data
members. This architecture depends on all classes having Streamers, because
eventually they will be called. To ensure that a class has a Streamer, rootcint
automatically creates one in the ClassDef macro which is defined in
$ROOTSYS/include/Rtypes.h. ClassDef defines several methods for any class,
and one of them is the Streamer. The automatically generated Streamer is complete
and can be used as long as no customization is needed.

174 Input/Output June 2003 v3.05

The Event class is defined in $ROOTSYS/test/Event.h. Looking at the class
definition, we find that it inherits from TObject. It is a simple example of a class with
diverse data members.

class Event : public TObject {
private:
 TDirectory *fTransient; //! current directory
 Float_t fPt; //! transient value
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr; //|| don't split
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
…

The Event class is added to the CINT dictionary by the rootcint utility. This is the
rootcint statement in the $ROOTSYS/test/Makefile:

@rootcint -f EventDict.cxx -c Event.h EventLinkDef.h

The EventDict.cxx file contains the automatically generated Streamer for Event:

void Event::Streamer(TBuffer &R__b)
{
 // Stream an object of class Event.
 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

When writing an Event object, TClass::WriteBuffer is called. WriteBuffer
writes the current version number of the Event class, and its contents into the buffer
R__b. The Streamer calls TClass::ReadBuffer when reading an Event object.
The ReadBuffer method reads the information from buffer R__b into the Event
object.

Transient Data Members (//!)
To prevent a data member from being written to the file, insert a "!" as the first character
after the comment marks. For example, in this version of Event, the fPt and fTransient
data members are not persistent.

class Event : public TObject {
private:
 TDirectory *fTransient; //! current directory
 Float_t fPt; //! transient value
…

June 2003 v3.05 Input/Output 175

The Pointer to Objects (//->)
The string "->" in the comment field of the members *fH and *fTracks instruct the
automatic Streamer to assume these will point to valid objects and the Streamer of
the objects can be called rather than the more expensive R__b << fH .

TClonesArray *fTracks; //->
TH1F *fH; //->

Variable Length Array
When the Streamer comes across a pointer to a simple type, it assumes it is an
array. Somehow, it has to know how many elements are in the array to reserve enough
space in the buffer and write out the appropriate number of elements. This is done in
the class definition. For example:

class Event : public TObject {
private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
…
 Float_t *fClosestDistance; //[fNvertex]

The array fClosestDistance is defined as a pointer of floating point numbers. A
comment mark (//) , and the number in square brackets tell the Streamer the length of
the array for this object. In general the syntax is:

<simple type> *<name> //[<length>]

The length cannot be an expression. If a variable is used, it needs to be an integer data
member of the class. It must be defined ahead of its use, or in a base class.

Prevent Splitting (//||)
If you want to prevent a data member from being split when writing it to a tree, append
the characters || right after the comment string. This only makes sense for object data
members. For example:

EventHeader fEvtHdr; //|| do not split the header

Streamers with Special Additions
Most of the time you can let rootcint generate a Streamer for you. However if you
want to write your own Streamer you can do so.

For some classes, it may be necessary to execute some code before or after the read
or write block in the automatic Streamer. For example after the execution of the read
block, one can initialize some non persistent members.

There are two reasons why you would need to write your own Streamer. If you have a
complex STL container type data member that is not yet supported by ROOT, or if you
have a non-persistent data member that you want to initialize to a value depending on
the read data members. In addition, the automatic Streamer does not support C-
structures. It is best to convert the structure to a class definition.

First, you need to tell rootcint not to build a Streamer for you. The input to the
rootcint command (in the makefile) is a list of classes in a LinkDef.h file. For
example, the list of classes for Event is listed in $ROOTSYS/test/EventLinkDef.h.
The "-" at the end of the class name tells rootcint not to generate a Streamer.

176 Input/Output June 2003 v3.05

In the example, you can see the Event class is the only one for which rootcint is
instructed not to generate a Streamer .

#ifdef __CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class EventHeader+;
#pragma link C++ class Event-;
#pragma link C++ class HistogramManager+;
#pragma link C++ class Track+;

#endif
#pragma link C++ class EventHeader+;

The "+" sign tells rootcint to use the new Streamer system introduced in ROOT
3.0. The following is an example of a customized Streamer for Event. The
Streamer takes a TBuffer as a parameter, and first checks to see if this is a case of
reading or writing the buffer.

void Event::Streamer(TBuffer &R__b)
{
 if (R__b.IsReading()) {
 Event::Class()->ReadBuffer(R__b, this);
 fTransient = gDirectory; //save current directory
 fPt= TMath::Sqrt(fPx*fPx + fPy*fPy + fPz*fPz);
 } else {
 Event::Class()->WriteBuffer(R__b, this);
 }
}

Writing Objects
The Streamer decomposes the objects into data members and writes them to a buffer.
It does not write the buffer to a file, it simply populates a buffer with bytes representing
the object. This allows us to write the buffer to a file or do anything else we could do
with the buffer. For example, we can write it to a socket to send it over the network. This
is beyond the scope of this chapter, but it is worthwhile to emphasize the need and
advantage of separating the creation of the buffer from its use. Let's look how a buffer is
written to a file.

A class needs to inherit from TObject or use TDirectory->Write(obj) to be
saved to disk. However, a class that is a data member of another class does not have
to inherit from TObject; it only has to have a Streamer. EventHeader is an example
of such a case.

The TObject::Write method does the following:

1. Creates a TKey object in the current directory
2. Creates a TBuffer object which is part of the newly created TKey
3. Fills the TBuffer with a call to the class::Streamer method
4. Creates a second buffer for compression, if needed
5. Reserves space by scanning the TFree list. At this point, the size of the buffer

is known.
6. Writes the buffer to the file
7. Releases the TBuffer part of the key

In other words, the TObject::Write calls the Streamer method of the class to build
the buffer. The buffer is in the key and the key is written to disk. Once written to disk the
memory consumed by the buffer part is released. The key part of the TKey is kept. The

June 2003 v3.05 Input/Output 177

key consumes about 60 bytes, where the buffer since it contains the object data can be
very large. This is a diagram of a streamed TH1F in the buffer:

Ignore Object Streamers
You can instruct your class to ignore the TObject Streamer with the
MyClass->Class::IgnoreObjectStreamer method. When the class
kIgnoreTObjectStreamer bit is set (by calling the IgnoreTObjectStreamer
method), the automatically generated Streamer will not call TObject::Streamer,
and the TObject part of the class is not streamed to the file. This is useful in case you
do not use the TObject fBits and fUniqueID data members. You gain space on
the file, and you do not loose functionality if you do not use the fBits and fUniqueID
(see the section on TObject on the use of fBits and fUniqueID).

Streaming a TClonesArray
When writing a TClonesArray it bypasses by default the Streamer of the member
class and uses a more efficient internal mechanism to write the members to the file.
You can override the default and specify that the member class Streamer is used by
setting the TClonesArray::BypassStreamer bit to false:

TClonesArray *fTracks;
fTracks->BypassStreamer(kFALSE); // use the member Streamer

When the kBypassStreamer bit is set, the automatically generated Streamer can
call TClass::WriteBuffer directly. Bypassing the Streamer improves the
performance when writing/reading the objects in the TClonesArray. However, the
drawback is: when a TClonesArray is written with split=0 bypassing the
Streamer, the StreamerInfo of the class in the array being optimized, one cannot
later use the TClonesArray with split>0.

For example, there is a problem with the following scenario:

1- a class Foo has a TClonesArray of Bar objects

2- the Foo object is written with split=0 to Tree T1.
In this case the StreamerInfo for the class Bar is created in optimized mode
in such a way that data members of the same type are written as an array
improving the I/O performance.

3- in a new program, T1 is read and a new Tree T2 is created with the object
Foo in split>1.

When the T2 branch is created, the StreamerInfo for the class Bar is created with
no optimization (mandatory for the split mode). The optimized Bar StreamerInfo is
going to be used to read the TClonesArray in T1. The result will be Bar objects with
data member values not in the right sequence. The solution to this problem is to call
BypassStreamer(kFALSE) for the TClonesArray. In this case, the normal
Bar::Streamer function will be called. The Bar::Streamer function works OK
independently if the Bar StreamerInfo had been generated in optimized mode or
not.

178 Input/Output June 2003 v3.05

Pointers and References in Persistency
An object pointer data member presents a challenge to the streaming software. If the
object pointed to is saved every time, it could create circular dependencies and
consume a large amount of disk space. The network of references must be preserved
on disk and recreated upon reading the file.

If you use independent I/O operations for pointers and their referenced object you can
use the TRef class. Later in this section is an example that compares disk space,
memory usage, and I/O times of C++ pointers and TRefs. In general, a TRef is faster
than C++ but the advantage of a C++ pointer is that it is already C++.

Streaming C++ Pointers
When ROOT encounters a pointer data member it calls the Streamer of the object and
labels it with a unique object identifier. The object identifier is unique for one I/O
operation. If there is another pointer to the object in the same I/O operation, the first
object is referenced i.e. it is not saved again. When reading the file, the object is rebuilt
and the references recalculated.

In this way, the network of pointers and their objects is rebuilt and ready to use the
same way it was used before it was persistent.

Motivation for the TRef Class
If the object is split into several files or into several branches of one or more TTrees,
standard C++ pointers cannot be used because each I/O operation will write the
referenced objects, and multiple copies will exist. In addition, if the pointer is read
before the referenced object, it is null and may cause a run time system error.

To address these limitations, ROOT offers the TRef class. TRef allows referencing an
object in a different branch and/or in a different file. TRef also supports the complex
situation where a TFile is updated multiple times on the same machine or a different
machine.

When a TRef is read before its referenced object, it is null. As soon as the referenced
object is read, the TRef points to it. In addition, one can specify an action to be taken
by TRef in the case it is read before its reference object (see Action on Demand
below).

Using TRef
A TRef is a lightweight object pointing to any TObject. This object can be used
instead of normal C++ pointers in case

• The referenced object R and the pointer P are not written to the same file

• P is read before R

• R and P are written to different Tree branches

June 2003 v3.05 Input/Output 179

Below is a line from the example in $ROOTSYS/test/Event.cxx.

TRef fLastTrack; //pointer to last track
…
Track *track = new(tracks[fNtrack++])Track(random);
// Save reference to last Track in the collection of Tracks
fLastTrack = track;

The track and its reference fLastTrack can be written with two separate I/O calls in
the same or in different files, in the same or in different branches of a TTree. If the
TRef is read and the referenced object has not yet been read, TRef will return a null
pointer. As soon as the referenced object will be read, TRef will point to it.

How Does It Work?
A TRef is itself a TObject with an additional transient pointer fPID. When a TRef is
used to point to a TObject *R, for example in a class with

TRef P;

one can do:

P = R; //to set the pointer

 When the statement P = R is executed, the following happens:

• The pointer fPID is set to the current TProcessID (see below).
• The current ObjectNumber (see below) is incremented by one.
• R.fUniqueID is set to ObjectNumber.
• In the fPID object, the element fObjects[ObjectNumber] is set to P
• P.fUniqueID is also set to ObjectNumber.

After having set P, one can immediately return the value of R using P.GetObject().
This function returns the fObjects[fUniqueID] from the fPID object.

When the TRef is written, the process id number pidf of fPID is written in addition to
the TObject part of TRef (fBits,fUniqueID).

When the TRef is read, its pointer fPID is set to the value stored in the TObjArray of
TFile::fProcessIDs (fProcessIDs[pidf]).

When a referenced object is written, TObject::Streamer writes the pidf in addition
to the standard fBits and fUniqueID.

When TObject::Streamer reads a reference object, the pidf is read. At this point,
the referenced object is entered into the table of objects of the TProcessID
corresponding to pidf.

WARNING: If MyClass is the class of the referenced object, The TObject part of
MyClass must be streamed. One should not call
MyClass::Class()->IgnoreTObjectStreamer()

TProccessID and TUUID
A TProcessID uniquely identifies a ROOT job. The TProcessID title consists of a
TUUID object, which provides a globally unique identifier.

The TUUID class implements the UUID (Universally Unique Identifier), also known as
GUID (Globally Unique Identifier). A UUID is 128 bits long, and if generated according
to this algorithm, is either guaranteed to be different from all other UUID generated until
3400 A.D. or extremely likely to be different.

The TROOT constructor automatically creates a TProcessID. When a TFile contains
referenced objects, the TProcessID object is written to the file. If a file has been

180 Input/Output June 2003 v3.05

written in multiple sessions (same machine or not), a TProcessID is written for each
session. The TProcessID objects are used by TRef to uniquely identify the referenced
TObject.

When a referenced object is read from a file (its bit kIsReferenced is set), this object
is entered into the objects table of the corresponding TProcessID. Each TFile has a
list of TProcessIDs (see TFile::fProcessIDs) also accessible via
TProcessID::fgPIDs (for all files). When this object is deleted, it is removed from
the table via the cleanup mechanism invoked by the TObject destructor. Each
TProcessID has a table (TObjArray *fObjects) that keeps track of all referenced
objects. If a referenced object has a fUniqueID, a pointer to this unique object may be
found via fObjects->At(fUniqueID). In the same way, when a
TRef::GetObject is called, GetObject uses its own fUniqueID to find the pointer
to the referenced object. See TProcessID::GetObjectWithID and
PutObjectWithID.

Object Number
When an object is referenced, a unique identifier is computed and stored in both the
fUniqueID of the referenced and referencing object. This uniqueID is computed by
incrementing by one the static global in TProcessID::fgNumber. fUniqueID is
some sort of serial object number in the current session. One can retrieve at any time
the current value of fgNumber by calling the static function
TProcessID::GetObjectCount or set this number via
TProcessID::SetObjectCount. To avoid a growing table of fObjects in
TProcessID, in case, for example, one processes many events in a loop, it might be
necessary to reset the ObjectNumber at the end of processing of one event. See an
example in $ROOTSYS/test/Event.cxx (look at function Build).

The value of ObjectNumber may be saved at the beginning of one event and reset to
this original value at the end of the event. These actions may be nested.

saveNumber = TProcessID::GetObjectCount();
…
TProcessID::SetObjectCount(savedNumber);

Action on Demand
The normal behavior of a TRef has been described above. In addition, TRef supports
"Actions on Demand". It may happen that the object referenced is not yet in memory, on
a separate file or not yet computed. In this case, TRef is able to automatically execute
an action:

• Call to a compiled function (static function of member function)
• Call to an interpreted function
• Execution of a CINT script

How to select this option?
In the definition of the TRef data member in the original class, do:

TRef fRef; //EXEC:execName points to something

When the special keyword "EXEC:" is found in the comment field of the member, the
next string is assumed to be the name of a TExec object. When a file is connected, the
dictionary of the classes on the file is read in memory (see
TFile::ReadStreamerInfo). When the TStreamerElement object is read, a
TExec object is automatically created with the name specified after the keyword
"EXEC:" in case a TExec with a same name does not already exist.

June 2003 v3.05 Input/Output 181

The action to be executed via this TExec can be specified with:

• A call to the TExec constructor, if the constructor is called before
• Opening the file.
• A call to TExec::SetAction at any time.

One can compute a pointer to an existing TExec with a name with:

TExec *myExec = gROOT->GetExec(execName);
myExec->SetAction(actionCommand);

actionCommand is a string containing a CINT instruction.

Examples:

myExec->SetAction("LoadHits()");
myExec->SetAction(".x script.C");

When a TRef is de-referenced via TRef::GetObject, its TExec is automatically
executed. The TExec function/script can do one or more of the following:

• Load a file containing the referenced object. This function typically looks in the file
catalog (GRID).

• Compute a pointer to the referenced object and communicate this pointer back to
the calling function TRef::SetObject via:

TRef::SetObject(object)

As soon as an object is returned to GetObject, the fUniqueID of the TRef is set to
the fUniqueID of the referenced object. At the next call to GetObject, the pointer
stored in fPid:fObjects[fUniqueID] will be returned directly. An example of action
on demand is in $ROOTSYS/test/Event.h:

TRef fWebHistogram; //EXEC:GetWebHistogram

When calling fWebHistogram.GetObject(), the function GetObject will
automatically invoke the script GetWebHistogram.C via the interpreter. An example of
a GetWebHistogram.C script is shown below:

void GetWebHistogram() {
 TFile *f=TFile::Open("http://root.cern.ch/files/pippa.root");
 f->cd("DM/CJ");
 TH1 *h6 = (TH1*)gDirectory->Get("h6");
 h6->SetDirectory(0);
 delete f;
 TRef::SetObject(h6);
}

In the above example, a call to fWebHistogram.GetObject() executes the script
with the function GetWebHistogram. This script connects a file with histograms:
pippa.root on the ROOT Web site and returns the object h6 to TRef::GetObject.

TRef fWebHistogram; //EXEC:GetWebHistogram()

Note that if the definition of the TRef fWebHistogram had been changed the
compiled or interpreted function GetWebHistogram() would have been called instead
of the CINT script GetWebHistogram.C.

Array of TRef
When storing multiple TRef(s), it is more efficient to use a TRefArray. The efficiency
is due to having a single pointer fPID for all TRefs in the array. It has a dynamic
compact table of fUniqueIDs. We recommend that you use a TRefArray rather then
a collection of TRefs.

182 Input/Output June 2003 v3.05

Example:

• Suppose a TObjArray *mytracks containing a list of Track objects.
• Suppose a TRefArray *pions containing pointers to the pion tracks in

mytracks. This list is created with statements like: pions->Add(track);
• Suppose a TRefArray *muons containing pointers to the muon tracks in

mytracks.

The 3 arrays mytracks,pions and muons may be written separately.

Schema Evolution
Schema evolution is a problem faced by long-lived data. When a schema changes,
existing persistent data can become inaccessible unless the system provides a
mechanism to access data created with previous versions of the schema.

In the lifetime of collaboration, the class definitions (i.e. the schema) are likely to change
frequently. Not only can the class itself change, but any of its parent classes or data
member classes can change also. This makes the support for schema evolution
necessary.

ROOT fully supports schema evolution. The diagram below illustrates some of the
scenarios.

The top half represents different versions of the shared library with the class definitions.
These are the in-memory class versions. The bottom half represents data files that
contain different versions of the classes.

1) An old version of a shared library and a file with new class definitions. This can be
the case when someone has not updated the library and is reading a new file.

2) Reading a file with a shared library that is missing a class definition (i.e. missing
class D).

3) Reading a file without any class definitions. This can be the case where the class
definition is lost, or unavailable.

4) The current version of a shared library and an old file with old class versions
(backward compatibility). This is often the case when reading old data.

5) Reading a file with a shared library built with MakeProject. This is the case when
someone has already read the data without a shared library and has used ROOT
MakeProject feature to reconstruct the class definitions and shared library
(MakeProject is explained in detail later on).

June 2003 v3.05 Input/Output 183

In case of a mismatch between the in-memory version and the persistent version of a
class, ROOT maps the persistent one to the one in memory. This allows you to change
the class definition at will, for example:

1) Change the order of data members in the class.

2) Add new data members. By default the value of the missing member will be 0 or in
case of an object it will be set to null.

3) Remove data members.

4) Move a data member to a base class or vice –versa.

5) Change the type of a member if it is a simple type or a pointer to a simple type. If a
loss of precision occurs, a warning is given.

6) Add or remove a base class

ROOT supports schema evolution by keeping a class description of each version of the
class that was ever written to disk, with the class. When it writes an object to file, it also
writes the description of the current class version along with it. This description is
implemented in the StreamerInfo class.

The TStreamerInfo Class
Each class has a list of StreamerInfo objects, one for each version of the class if
that version was written to disk at least once. When reading an object from a file, the
system uses the StreamerInfo list to decode an object into the current version. The
StreamerInfo is made up of TStreamerElements . Each describes one persistent
data member of the class. By default all data members of a class are persistent. To
exclude a data member (i.e. make it not persistent), add a “!" after the comment marks.
For example the pointer *fPainter of a TH1 is not persistent:

TVirtualHistPainter* fPainter //!pointer to histogram painter

The TStreamerElement Class
A TStreamerElement describes a data member of a simple type, object, array,
pointer, or container. The offset in the TStreamerElement is the starting address of
the data for that data member.

BASE TNamed offset= 0 type=67 The basis for a named object
BASE TAttLine offset= 28 type= 0 Line attributes

In this example, the TNamed data starts at byte 0, and TAttLine starts at byte 28. The
offset is machine and compiler dependent and is computed when the StreamerInfo
is analyzed. The TClass::GetStreamerInfo method analyzes the StreamerInfo
the same way it would be analyzed by referring to the class. While analyzing the
StreamerInfo, it computes the offsets. The type field is the type of the
TStreamerElement. It is specific to the StreamerInfo definition.

184 Input/Output June 2003 v3.05

The types are defined in the file TStreamerInfo.h and listed here:

enum EReadWrite {
 kBase=0, kChar=1, kShort=2, kInt=3, kLong=4,
 kFloat=5, kCounter=6, kCharStar=7, kDouble=8, kUChar=11,
 kUShort=12, kUInt=13, kULong=14, kBits=15, kOffsetL=20,
 kOffsetP=40, kObject=61, kAny=62, kObjectp=63, kObjectP=64,
 kTString=65, kTObject=66, kTNamed=67, kSkip=100, kSkipL=120,
 kSkipP=140, kConv=200, kConvL=220, kConvP=240, kStreamer=500,
 kStreamLoop=501, kMissing=99999
};

Example: TH1 StreamerInfo
In the StreamerInfo of the TH1 class we see the four base classes: TNamed,
TAttLine, TAttFill, and TAttMarker. These are followed by a list of the data
members. Each data member is implemented by a TStreamerElement object.

root[] TH1::Class()->GetStreamerInfo()->ls()
StreamerInfo for class: TH1, version=3
 BASE TNamed offset= 0 type=67 The basis for a named object
 BASE TAttLine offset= 28 type= 0 Line attributes
 BASE TAttFill offset= 40 type= 0 Fill area attributes
 BASE TAttMarker offset= 48 type= 0 Marker attributes
 Int_t fNcells offset= 60 type= 3 number of bins(1D
 TAxis fXaxis offset= 64 type=61 X axis descriptor
 TAxis fYaxis offset=192 type=61 Y axis descriptor
 TAxis fZaxis offset=320 type=61 Z axis descriptor
 Short_t fBarOffset offset=448 type= 2(1000*offset)for bar charts or legos
 Short_t fBarWidth offset=450 type= 2 (1000*width)for bar charts or legos
 Stat_t fEntries offset=452 type= 8 Number of entries
 Stat_t fTsumw offset=460 type= 8 Total Sum of weights
 Stat_t fTsumw2 offset=468 type= 8 Total Sum of squares of weights
 Stat_t fTsumwx offset=476 type= 8 Total Sum of weight*X
 Stat_t fTsumwx2 offset=484 type= 8 Total Sum of weight*X*X
 Double_t fMaximum offset=492 type= 8 Maximum value for plotting
 Double_t fMinimum offset=500 type= 8 Minimum value for plotting
 Double_t fNormFactor offset=508 type= 8 Normalization factor
 TArrayD fContour offset=516 type=62 Array to display contour levels
 TArrayD fSumw2 offset=528 type=62 Array of sum of squares of weights
 TString fOption offset=540 type=65 histogram options
 TList* fFunctions offset=548 type=63 ->Pointer to list of functions
 i= 0, TNamed type= 67, offset= 0, len=1, method=0
 i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
 i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
 i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704
 i= 4, fNcells type= 3, offset= 60, len=1, method=0
 i= 5, fXaxis type= 61, offset= 64, len=1, method=1081287424
 i= 6, fYaxis type= 61, offset=192, len=1, method=1081287548
 i= 7, fZaxis type= 61, offset=320, len=1, method=1081287676
 i= 8, fBarOffset type= 22, offset=448, len=2, method=0
 i= 9, fEntries type= 28, offset=452, len=8, method=0
 i=10, fContour type= 62, offset=516, len=1, method=1081287804
 i=11, fSumw2 type= 62, offset=528, len=1, method=1081287924
 i=12, fOption type= 65, offset=540, len=1, method=1081288044
 i=13, fFunctions type= 63, offset=548, len=1, method=1081288164

June 2003 v3.05 Input/Output 185

Optimized StreamerInfo
The entries starting with "i = 0" is the optimized format of the StreamerInfo.
Consecutive data members of the same simple type and size are collapsed and read at
once into an array for performance optimization.

i= 0, TNamed type= 67, offset= 0, len=1, method=0
i= 1, TAttLine type= 0, offset= 28, len=1, method=142484480
i= 2, TAttFill type= 0, offset= 40, len=1, method=142496992
i= 3, TAttMarker type= 0, offset= 48, len=1, method=142509704

For example, the five data members beginning with fEnties and the three data
members beginning with fMaximum, are put into an array called fEntries (i = 9)
with the length 8.

i= 9, fEntries type= 28, offset=452, len=8, method=0

Only simple type data members are combined, object data members are not combined.
For example the three axis data members remain separate. The "method" is a handle to
the method that reads the object.

Automatic Schema Evolution
When a class is defined in ROOT, it must include the ClassDef macro as the last line in the
header file inside the class definition. The syntax is:

ClassDef(<ClassName>,<VersionNumber>)

The version number identifies this particular version of the class. The version number is
written to the file in the Streamer by the call TBuffer::WriteVersion. You, as the
designer of the class, do not need to do any manual modification in the Streamer. ROOT
schema evolution mechanism is automatic and handled by the StreamerInfo.

Manual Schema Evolution
If you have written your own Streamer as described in the section "Streamers with Special
Additions", you will have to manually add code for each version and manage the evolution of
your class. When you add or remove data members, you must modify the Streamer by hand.
ROOT assumes that you have increased the class version number in the ClassDef
statement and introduced the relevant test in the read part of the Streamer. For example, if a
new version of the Event class above includes a new member: Int_t fNew the ClassDef
statement should be changed to ClassDef(Event,2) and the following lines should be
added to the read part of the Streamer:

if (R__v > 1) {
 R__b >> fNew;
} else {
 fNew = 0; // set to some default value
}

If, in the same new version 2 you remove the member fH, you must add the following code
to read the histogram object into some temporary object and delete it:

if (R__v) < 2 {
 TH1F *dummy = 0;
 R__b >> dummy;
 delete dummy;
}

Our experience with manual schema evolution shows that it is easy to make and
mismatches between Streamer writers and readers are frequent and increase as the
number of classes increase. We recommend you use rootcint generated
Streamers whenever you can, and profit from the automatic schema evolution.

186 Input/Output June 2003 v3.05

Building Class Definitions with the StreamerInfo
A ROOT file's StreamerInfo list contains the description of all versions of all classes
in the file. When a file is opened the StreamerInfo is read into memory and it
provides enough information to make the file brows able. The TStreamerInfo
enables us to recreate a header file for the class in case the compiled class is not
available. This is done with the TFile::MakeProject method. It creates a directory
with the header files for the named classes and a makefile to compile a shared library
with the class definitions.

Example: MakeProject
To explain the details, we use the example of the ATLFast project which is a fast
simulation for the ATLAS experiment. The complete source for ATLFast can be down
loaded at: ftp://root.cern.ch/root/atlfast.tar.gz Once we compile and run ATLFast we
get a ROOT file called atlfast.root, containing the ATLFast objects. When we
open the file, we get a warning that the file contains classes that are not in the CINT
dictionary. This is correct since we did not load the class definitions.

root[] TFile f("atlfast.root")
Warning in <TClass::TClass>: no dictionary for class TMCParticle is available
Warning in <TClass::TClass>: no dictionary for class ATLFMuon available

We can see the StreamerInfo for the classes:

root[] f.ShowStreamerInfo()
…
StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 0 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 0 type= 3 Muon position in MCParticles list
 Int_t m_KFmother offset= 0 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 0 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 0 type= 3 Muon isolation (1 for isolated)
 Float_t m_Eta offset= 0 type= 5 Eta coordinate
 Float_t m_Phi offset= 0 type= 5 Phi coordinate
 Float_t m_PT offset= 0 type= 5 Transverse energy
 Int_t m_Trigger offset= 0 type= 3 Result of trigger…

However, when we try to use a specific class we get a warning because the class is not
in the CINT dictionary. We can create a class using gROOT->GetClass() which
makes a fake class from the StreamerInfo.

June 2003 v3.05 Input/Output 187

// Build a 'fake' class
root[] gROOT->GetClass("ATLFMuon")
(const class TClass*)0x87e5c08
// The fake class has a StreamerInfo
root[] gROOT->GetClass("ATLFMuon")->GetStreamerInfo()->ls()
StreamerInfo for class: ATLFMuon, version=1
 BASE TObject offset= 0 type=66 Basic ROOT object
 BASE TAtt3D offset= 0 type= 0 3D attributes
 Int_t m_KFcode offset= 16 type= 3 Muon KF-code
 Int_t m_MCParticle offset= 20 type= 3 Muon position in MCParticles list
 Int_t m_KFmother offset= 24 type= 3 Muon mother KF-code
 Int_t m_UseFlag offset= 28 type= 3 Muon energy usage flag
 Int_t m_Isolated offset= 32 type= 3 Muon isolation
 Float_t m_Eta offset= 36 type= 5 Eta coordinate
 Float_t m_Phi offset= 40 type= 5 Phi coordinate
 Float_t m_PT offset= 44 type= 5 Transverse energy
 Int_t m_Trigger offset= 48 type= 3 Result of trigger
 i= 0, TObject type= 66, offset= 0, len=1, method=0
 i= 1, TAtt3D type= 0, offset= 0, len=1, method=142684688
 i= 2, m_KFcode type= 23, offset= 16, len=5, method=0
 i= 3, m_Eta type= 25, offset= 36, len=3, method=0
 i= 4, m_Trigger type= 3, offset= 48, len=1, method=0

MakeProject has three parameters:

MakeProject(const char *dirname,const char *classes,Option_t *option)

The first is the directory name in which to place the generated header files. The second
parameter is the name of the classes to include in the project. By default all classes are
included. It recognizes the wild card character *, for example: "ATLF*" includes all
classes beginning with ATLF. The third parameter is an option with the following values:

• "new" If the directory does not exist, it is created.
• "recreate" If the directory does not exist, it is creates as in "new", in addition if

the directory does exist, all existing files are deleted before creating
the new files.

• "update" The new classes are added to the existing directory and the existing
classes are replaced with the new definition. If the directory does not
exist, it creates it as in "new".

• "+": This option can be used in combination with the other three. It will
create the necessary files to easily build a shared library containing
the class definitions. Specifically it will:

- Generate a script called MAKE that builds the shared library
containing the definition of all classes in the directory.

- Generate a LinkDef.h files to use with rootcint in MAKE.
- Run rootcint to generate a <dirname>ProjectDict.cxx file
- Compile the <dirname>ProjectDict.cxx with the current

options in compiledata.h.
- Build a shared library <dirname>.so.

• "++": This option can be used instead of the single "+". It does everything
the single "+" does, and dynamically loads the shared library
<dirname>.so.

This example makes a directory called MyProject that will contain all class definition from
the atlfast.root file. The necessary makefile to build a shared library are also
created, and since the '++' is appended, the shared library is also loaded.

root[] f.MakeProject("MyProject","*", "recreate++")
MakeProject has generated 0 classes in MyProject
MyProject/MAKE file has been generated
Shared lib MyProject/MyProject.so has been generated
Shared lib MyProject/MyProject.so has been dynamically linked

188 Input/Output June 2003 v3.05

The contents of MyProject:

root[] .! ls MyProject
ATLFCluster.h ATLFJet.h ATLFMiscMaker.h ATLFTrack.h MAKE
TMCParticle.h ATLFClusterMaker.h ATLFJetMaker.h ATLFMuon.h
ATLFElectron.h ATLFMCMaker.h ATLFMuonMaker.h ATLFElectronMaker.h
ATLFMaker.h ATLFPhoton.h ATLFHistBrowser.h ATLFMisc.h
ATLFPhotonMaker.h ATLFTrackMaker.h ATLFTrigger.h ATLFTriggerMaker.h
LinkDef.h MyProject.so MyProjectProjectDict.cxx
MyProjectProjectDict.h MyProjectProjectDict.o

Now you can load the shared library in any consecutive root session to use the
atlfast classes.

root[] gSystem->Load("MyProject/MyProject")
root[] ATLFMuon muon

This is an example of a generated header file:

//
// This class has been generated by TFile::MakeProject
// (Thu Apr 5 10:18:37 2001 by ROOT version 3.00/06)
// from the TStreamerInfo in file atlfast.root
//
#ifndef ATLFMuon_h
#define ATLFMuon_h
#include "TObject.h"
#include "TAtt3D.h"
class ATLFMuon : public TObject , public TAtt3D {
public:
 Int_t m_KFcode; //Muon KF-code
 Int_t m_MCParticle; //Muon position in MCParticles list
 Int_t m_KFmother; //Muon mother KF-code
 Int_t m_UseFlag; //Muon energy usage flag
 Int_t m_Isolated; //Muon isolation (1 for isolated)
 Float_t m_Eta; //Eta coordinate
 Float_t m_Phi; //Phi coordinate
 Float_t m_PT; //Transverse energy
 Int_t m_Trigger; //Result of trigger
 ATLFMuon() {;}
 virtual ~ATLFMuon() {;}
 ClassDef(ATLFMuon,1) //
};
 ClassImp(ATLFMuon)
#endif

Migrating to ROOT 3
We will distinguish the following cases:

Case A: You have your own Streamer method in your class implementation file. This also
means that you have specified MyClass in the LinkDef.h file.

• Keep MyClass - unchanged.
• Increment your class version id in ClassDef by 1, e.g. ClassDef(MyClass, 2)
• Change your Streamer function in the following way:

The old write block can be replaced by the new standard Write. Change the read block
to use the new scheme for the new versions and the old code for the old versions.

June 2003 v3.05 Input/Output 189

 void MyClass::Streamer(TBuffer &R__b)
 {
 // Stream an object of class MyClass.

 if (R__b.IsReading()) {
 UInt_t R__s, R__c;
 Version_t R__v = R__b.ReadVersion(&R__s, &R__c);
 if (R__v > 1) {
 MyClass::Class()->ReadBuffer(R__b, this, R__v, R__s, R__c);
 return;
 }
 // process old versions before automatic schema evolution
 R__b >> xxxx;
 R__b >> .. etc
 R__b.CheckByteCount(R__s, R__c, MyClass::IsA());
 // end of old versions

 } else {
 MyClass::Class()->WriteBuffer(R__b,this);
 }
 }

Case B: You use the automatic Streamer in the dictionary file.

• Move the old Streamer from the file generated by rootcint to your class
implementation file, then modify the Streamer function as in Case A above.

• Increment your class version id in ClassDef by 1, i.e. ClassDef(MyClass, 2)
• Add option "-" in the pragma line of LinkDef.

Case C: You use the automatic Streamer in the dictionary file and you already use the
option "+" in the LinkDef file. If the old automatic Streamer does not contain any
statement using the function WriteArray, you have nothing to do, except running
rootcint again to regenerate the new form of the Streamer function, otherwise
proceed like for case B.

Compression and Performance
ROOT uses a compression algorithm based on the well-known gzip algorithm. It
supports nine levels of compression. The default for ROOT is one. The compression
level can be set with the method TFile::SetCompressionLevel. The experience
with this algorithm shows that a compression level of 1.3 for raw data files and around
two on most DST files is the optimum. The choice of one for the default is a
compromise between the time it takes to read and write the object vs. the disk space
savings.

To specify no compression, set the level to zero.

We recommend using compression when the time spent in I/O is small compared to the
total processing time. If the I/O operation is increased by a factor of 5 it is still a small
percentage of the total time and it may compress the data by a factor of 10. On the
other hand if the time spend on I/O is large, compression may have a large impact on
the program's performance.

The compression factor, i.e. the savings of disk space, varies with the type of data. A
buffer with a same value array is compressed so that the value is only written once. For
example a track has the mass of a pion which it is always the same, and the charge of
the pion which is either positive or negative. For 1000 pions, the mass will be written
only once, and the charge only twice (positive and negative).

When the data is sparse, i.e. when there are many zeros, the compression factor is also
high.

190 Input/Output June 2003 v3.05

Compression
level

Bytes Write Time
(sec)

Read Time
(sec.)

0 1,004,998 4.77 0.07

1 438,366 6.67 0.05

5 429,871 7.03 0.06

9 426,899 8.47 0.05

The time to uncompress an object is small compared to the compression time and is
independent of the selected compression level. Note that the compression level may be
changed at any time, but the new compression level will only apply to newly written
objects. Consequently, a ROOT file may contain objects with different compression
levels. This table shows four runs of the demo script that creates 15 histograms with
different compression parameters. To make the numbers more significant, the macro
was modified to create 1000 histograms. We have included two more examples to show
the impact of compression on Trees in the next chapter.

Remotely Access to ROOT Files via a rootd
Reading and writing ROOT files over the net can be done by creating a TNetFile
object instead of a TFile object. Since the TNetFile class inherits from the TFile
class, it has exactly the same interface and behavior. The only difference is that it reads
and writes to a remote rootd daemon.

TNetFile URL
TNetFile file names are in standard URL format with protocol "root". The following
are valid TNetFile URL's:

root://hpsalo/files/aap.root
root://hpbrun.cern.ch/root/hsimple.root
root://pcna49a:5151/~na49/data/run821.root
root://pcna49d.cern.ch:5050//v1/data/run810.root

The only difference with the well-known http URL's is that the root of the remote file tree
is the remote user's home directory. Therefore an absolute pathname requires a //
after the host or port (as shown in the last example above). Further the expansion of the
standard shell characters, like ~, $, .., etc. is handled as expected. The default
port on which the remote rootd listens is 1094 and this default port is assumed by
TNetFile (actually by TUrl which is used by TNetFile). The port number has been
allocated by the IANA and is reserved for ROOT.

Remote Authentication
Connecting to a rootd daemon requires a remote user id and password. TNetFile
supports several ways for you to provide your login information:

• Setting it globally via the static TNetFile functions TNetFile::SetUser() and
TNetFile::SetPasswd()

• Via the ~/.netrc file (same format and file as used by ftp)
• Via command line prompt
• Setting the SPR password file via the option –P FILE, i.e. the next line will start the

rootd daemon using the files $HOME/.srootdpass2.conf and
$HOME/.srootdpass2 for SPR authentication: rootd –P $HOME/.srootdpass2

June 2003 v3.05 Input/Output 191

A Simple Session
root[] TFile *f1 = TFile::Open("local/file.root","update")
root[] TFile *f2 =
 TFile::Open("root://pcna49a.cern.ch/data/file.root","new")
Name (pcna49a:rdm):
Password:
root[] TFile *f3 =
 TFile::Open("http://root.cern.ch/~rdm/hsimple.root")
root[] f3.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root[] hpx.Draw()

The rootd Daemon
The rootd daemon works with the TNetFile class. It allows remote access to ROOT
database files in read or read/write mode. The rootd daemon can be found in the
directory $ROOTSYS/bin. It can be started either via inetd or by hand from the
command line (no need to be super user). Its performance is comparable with NFS but
while NFS requires all kind of system permissions to setup, rootd can be started by
any user. The simplest way to start rootd is by starting it from the command line while
being logged in to the remote machine. Once started rootd goes immediately in the
background (does not need &) and you can log out from the remote node. The only
required argument is the range of ports –p port1-port2 that will be searched for the
first available port on which your private rootd will listen. You can also specify -p 0-N
for search relative to the service port specified in /etc/services. If a single port is
specified as before via rootd -p 1094, then no search is made. Unless started by
inetd (rootd -i), it prints information about the found port, something like:
ROOTD_PORT=5151, ROOTD_PID=14433 before spawning the daemon. This way
thee user knows what was used (eval `rootd` will set these as variables in Bourne-
shells). Also, rootd shows an error message (as well as the syslog message it
always sent) if there is any problem binding the port or forking the daemon.

Using TNetFile you can now read and write files on the remote machine.

In the example below, rootd runs on the remote node under user id minuser and
searches for an available port into the range 1094÷1098. It finds and listens to port
1094. When creating a TNetFile object you have to specify the same port number
1094 and use minuser (and corresponding password) as login id. When rootd is
started in this way, you can only login with the user id under which rootd was started
on the remote machine.

hpsalo[] telnet fsgi02.fnal.gov
login: minuser
Password:
<fsgi02> rootd -p 1094-1098
ROOTD_PORT=1094
ROOTD_PID=14433
<fsgi02> exit
hpsalo[] root
root[] TFile *f = TFile::Open
 ("root://fsgi02.fnal.gov:1094/file.root","new")
Name (fsgi02.fnal.gov:rdm): minuser
Password:
root[] f.ls()

192 Input/Output June 2003 v3.05

However, you can make many connections since the original rootd will fork (spawn) a
new rootd that will service the requests from the TNetFile. The original rootd
keeps listening on the specified port for other connections. Each time a TNetFile
makes a connection; it gets a new private rootd that will handle its requests. At the
end of a ROOT, session when all TNetFiles are closed only the original rootd will
stay alive ready to service future TNetFile(s).

Starting rootd via inetd
If you expect to often connect via TNetFile to a remote machine, it is more efficient to
install rootd as a service of the inetd super daemon. In this way, it is not necessary
for each user to run a private rootd. However, this requires a one-time modification of
two system files (and super user privileges to do so). Add to /etc/services the line:

rootd 1094/tcp

To /etc/inetd.conf the line:

rootd stream tcp nowait root /usr/local/root/bin/rootd rootd -i

After these changes force inetd to reread its configuration file with:
"kill -HUP <pid inetd>".

It is not necessary to specify a port number in the URL given to TNetFile when the
setup done this way. TNetFile assumes the default port to be 1094 as specified
above in the /etc/services file.

Command Line Arguments for rootd
rootd supports the following arguments:

 -i says that rootd is started by inetd
 -p port#-port# specifies the range of ports to be searched
 -p 0-N the service ports range in /etc/services
 -d level level of debug info written to syslogd
 0 = no debug (default)
 1 = minimum
 2 = medium
 3 = maximum

Reading ROOT Files via Apache Web Server
By adding one ROOT specific module to your Apache web server, you can distribute
ROOT files to any ROOT user. There is no longer a need to send your files via FTP and
risking (out of date) histograms or other objects. Your latest up-to-date results are
always accessible to all your colleagues.

To access ROOT files via a web server, create a TWebFile object instead of a TFile
object with a standard URL as file name. For example:

root[] TWebFile f("http://root.cern.ch/~rdm/hsimple.root")
root[] f.ls()
TWebFile** http://root.cern.ch/~rdm/hsimple.root
TWebFile* http://root.cern.ch/~rdm/hsimple.root
KEY: TH1F hpx;1 This is the px distribution
KEY: TH2F hpxpy;1 py vs px
KEY: TProfile hprof;1 Profile of pz versus px
KEY: TNtuple ntuple;1 Demo ntuple
root[] hpx.Draw()

Since TWebFile inherits from TFile all TFile operations work as expected.
However, due to the nature of a web server a TWebFile is a read-only file.

June 2003 v3.05 Input/Output 193

A TWebFile is ideally suited to read relatively small objects (like histograms or other
data analysis results). Although possible, you don't want to analyze large TTree's via
a TWebFile.

Here follows a step-by-step recipe for making your Apache 1.1 or 1.2 web server
ROOT aware:

1. Go to your Apache source directory and add the file
ftp://root.cern.ch/root/mod_root.c or ftp://root.cern.ch/root/mod_root133.c when
your Apache server is > 1.2 (rename the file mod_root.c).

2. Add to the end of the Configuration file the line:
Module root_module mod_root.o

3. Run the Configure script
4. Type make
5. Copy the new httpd to its expected place
6. Go to the conf directory and add at the end of the srm.conf file the line:

AddHandler root-action root
7. Restart the httpd server

Using the General Open() Function of TFile
To make life simple we provide a general function to open any type of file (except
shared memory files of class TMapFile). This functionality is provided by the static
TFile::Open() function:

TFile *TFile::Open(const Text_t *name,Option_t *option="",
 const Text_t *title="",Int_t compress,Int_t netopt)

Depending on the name argument, the function returns a TFile, a TNetFile or a
TWebFile object. In case a TNetFile URL specifies a local file, a TFile object will
be returned (and of course no login information is needed). The arguments of the
Open() function are the same as the ones for the TFile constructor.

Using ReOpen() method it is possible to reopen a file with a different access mode, like
from READ to UPDATE or from NEW, CREATE, RECREATE, UPDATE to READ. Thus
the mode argument can be either "READ" or "UPDATE". The method returns:

• 0 in case the mode was successfully modified;
• 1 in case the mode did not change (it was already as requested or there were wrong

input arguments);
• -1 in case of failure. In the last case the file cannot be used anymore.

June 2003 v3.05 Trees 195

12 Trees

Why Should You Use a Tree?
In the Input/Output chapter, we saw how objects can be saved in ROOT files. In case you
want to store large quantities of same-class objects, ROOT has designed the TTree and
TNtuple classes specifically for that purpose. The TTree class is optimized to reduce disk
space and enhance access speed. A TNtuple is a TTree that is limited to only hold
floating-point numbers; a TTree on the other hand can hold all kind of data, such as
objects or arrays in addition to all the simple types.

When using a TTree, we fill its branch buffers with leaf data and the buffers are written to
file when it is full. Branches, buffers, and leafs, are explained a little later in this chapter, but
for now, it is important to realize that not each object is written individually, but rather
collected and written a bunch at a time.

This is where the TTree takes advantage of compression and will produce a much smaller
file than if the objects were written individually. Since the unit to be compressed is a buffer,
and the TTree contains many same-class objects, the header of the objects can be
compressed.

The TTree reduces the header of each object, but it still contains the class name. Using
compression, the class name of each same-class object has a good chance of being
compressed, since the compression algorithm recognizes the bit pattern representing the
class name. Using a TTree and compression the header is reduced to about 4 bytes
compared to the original 60 bytes. However, if compression is turned off, you will not see
these large savings.

The TTree is also used to optimize the data access. A tree uses a hierarchy of branches,
and each branch can be read independently from any other branch. Now, assume that Px
and Py are data members of the event, and we would like to compute Px2 + Py2 for every
event and histogram the result.

If we had saved the million events without a TTree we would have to:

• read each event in its entirety into memory
• extract the Px and Py from the event
• compute the sum of the squares
• fill a histogram

We would have to do that a million times! This is very time consuming, and we really do not
need to read the entire event, every time. All we need are two little data members (Px and
Py). On the other hand, if we use a tree with one branch containing Px and another branch
containing Py, we can read all values of Px and Py by only reading the Px and Py
branches. This makes the use of the TTree very attractive.

196 Trees June 2003 v3.05

A Simple TTree
This script builds a TTree from an ASCII file containing statistics about the staff at CERN.
This script, staff.C and its input file staff.dat are in $ROOTSYS/tutorials.

{
// example of macro to read data from an ascii file and
// create a root file with an histogram and a TTree.
 gROOT->Reset();

// the structure to hold the variables for the branch
 struct staff_t {
 Int_t cat;
 Int_t division;
 Int_t flag;
 Int_t age;
 Int_t service;
 Int_t children;
 Int_t grade;
 Int_t step;
 Int_t nation;
 Int_t hrweek;
 Int_t cost;
 };
 staff_t staff;

// open the ASCII file
 FILE *fp = fopen("staff.dat","r");
 char line[81];
// create a new ROOT file
 TFile *f = new TFile("staff.root","RECREATE");
// create a TTree
 TTree *tree = new TTree("tree","staff data from ascii file");
// create one branch with all information from the stucture
 tree->Branch("staff",&staff.cat,"cat/I:division:flag:age:service:
 children:grade:step:nation:hrweek:cost");
// fill the tree from the values in ASCII file
 while (fgets(&line,80,fp)) {
 sscanf(&line[0],"%d%d%d%d",
 &staff.cat,&staff.division,&staff.flag,&staff.age);
 sscanf(&line[13],"%d%d%d%d",&staff.service,
 &staff.children, &staff.grade,&staff.step);
 sscanf(&line[24],"%d%d%d",&staff.nation,
 &staff.hrweek, &staff.cost);
 tree->Fill();
 }
// check what the tree looks like
 tree->Print();
 fclose(fp);
 f->Write();
}

The script declares a structured called staff_t, with several integers representing the
relevant attribute of a staff member. It opens the ASCII file, creates a ROOT file and a
TTree. Then it creates one branch with the TTree::Branch method. The first parameter
of the Branch method is the branch name. The second parameter is the address from
which the first leaf is to be read. In this example it is the address of the structure staff.
Once the branch is defined, the script reads the data from the ASCII file into the staff_t
structure and fills the tree.

The ASCII file is closed, and the ROOT file is written to disk saving the tree. Remember,
trees and histograms are created in the current directory, which is the file in our example.
Hence an f->Write() saves the tree.

June 2003 v3.05 Trees 197

Show an Entry with TTree::Show
An easy way to access one entry of a tree is the use the TTree::Show method. For
example to look at the 10th entry in the staff.root tree:

root[] TFile f("staff.root")
root[] tree->Show(10)
======> EVENT:10
 cat = 361
 division = 9
 flag = 15
 age = 51
 service = 29
 children = 0
 grade = 7
 step = 13
 nation = 7
 hrweek = 40
 cost = 7599

Print the Tree Structure with TTree::Print
A helpful command to see the tree structure meaning the number of entries, the branches
and the leaves, is TTree::Print.

root[] tree->Print()

*Tree :tree : staff data from ascii file
*Entries :3354 : Total = 134680 bytes File Size = 46302
* Tree compression factor = 3.24

*Br 0 :staff:cat/I:division:flag:age:service:children:grade:step:
* nation:hrweek:cost
*Entries :3354 : Total Size = 127856 bytes File Size = 39478
*Baskets : 4 : Basket Size = 32000 bytes Compression= 3.24

Scan a Variable the Tree with TTree::Scan
The TTree::Scan method shows all values of the list of leaves separated by a colon.

root [11] tree->Scan("cost:age:children")
**
* Row * cost * age * children *
**
* 0 * 11975 * 58 * 0 *
* 1 * 10228 * 63 * 0 *
* 2 * 10730 * 56 * 2 *
* 3 * 9311 * 61 * 0 *
* 4 * 9966 * 52 * 2 *
* 5 * 7599 * 60 * 0 *
* 6 * 9868 * 53 * 1 *
* 7 * 8012 * 60 * 1 *
…

198 Trees June 2003 v3.05

The Tree Viewer
The tree viewer is a quick and easy way to examine
a tree. To start the tree viewer, open a file and
object browser. Right click on a TTree and select
StartViewer. You can also start the tree viewer
from the command line. First load the viewer library.

root[] TFile f("staff.root")
root[] tree->StartViewer()

If you want to start a tree viewer without a tree, you
need to load the tree player library first:

root[] gSystem->Load("libTreePlayer.so")
root[] new TTreeViewer()

Below is what the tree viewer looks like for the
example file staff.root. The left panel contains
the list of trees and their branches; in this case
there is only one tree. You can add more trees with
the File-Open command to open the file containing
the new tree, then use the context menu on the
right panel, select SetTreeName and enter the
name of the tree to add. On the right are the leaves

or variables in the tree. You can double click on any leaf to a histogram it.

To draw more than one dimension you can drag and drop any leaf to the X,Y,Z "boxes".
Then push the Draw button, witch is marked with the purple icon on the bottom left.

To add a cut/weight to the histogram, enter an expression in the "cut box". The cut box is
the one with the scissor icon.

You can create a new expression by right clicking on any of the E() boxes. The expression
can be dragged and dropped into any of the boxes (X, Y, Z, Cut, or Scan).

To scan one or more variables, drop them into the Scan box, then double click on the box.
You can also redirect the result of the scan to a file by checking the Scan box on top.

When the "Rec" box is checked, the Draw and Scan commands are recorded in the history
file and echoed on the command line.

June 2003 v3.05 Trees 199

The "Histogram" text box contains the name of the resulting histogram. By default it is
htemp. You can type any name, if the histogram does not exist it will create one.

The Option text box contains the list of Draw options (see Draw Options in the Histogram
Chapter). You can select the options with the Options menu.

The Command box lets you enter any command that you could also enter on the command
line.

The vertical slider on the far left side can be used to select the minimum and maximum of
an event range. The actual start and end index are shown in on the bottom in the status
window.

There is an extensive help utility accessible with the Help menu.

The IList and OList are to specify an input list of entry indices and a name for the
output list respectively. Both need to be of type TList and contain integers of entry indices.
These lists are described below in the paragraph "Creating an Event List".

Here are a couple of graphs. The first is a plot of the age distribution, the second a scatter
plot of the cost vs. age. The second one was generated by dragging the age leaf into the Y-
box and the cost leaf into the X-box, and pressing the Draw button. By default this will
generate a scatter plot. Select a different option, for example "lego" to create a 2D
histogram.

200 Trees June 2003 v3.05

Creating and Saving Trees
This picture shows the TTree class:

To create a TTree we use its constructor. Then we design our data layout and add the
branches. A tree can be created by giving a name and title:

TTree t("MyTree","Example Tree")

Creating a Tree from a Folder Hierarchy
An alternative way to create a tree and organize it, is to use folders. You can build a folder
structure (see the chapter on Folders and Tasks), and create a tree with branches for each
of the sub-folders:

TTree folder_tree("MyFolderTree","/MyFolder")

The second argument "/MyFolder" is the top folder, and the "/" signals the TTree
constructor that this is a folder not just the title. You fill the tree by placing the data into the
folder structure and calling TTree::Fill. The reverse is also true; one can recreate the
folder hierarchy from the tree with the TTree::SetFolder method.

June 2003 v3.05 Trees 201

Autosave
Autosave gives the option to save all branch buffers every n byte. We recommend using
Autosave for large acquisitions. If the acquisition fails to complete, you can recover the file
and all the contents since the last Autosave. To set the number of bytes between
Autosave you can use the TTree::SetAutosave() method. You can also call
TTree::Autosave in the acquisition loop every n entry.

Branches
The class for a branch is called TBranch. The organization of branches allows the
designer to optimize the data for the anticipated use.

If two variables are independent, and the designer knows the variables will not be used
together, she would place them on separate branches. If, however, the variables are
related, such as the coordinates of a point, it is most efficient to create one branch with both
coordinates on it. A variable on a TBranch is called a leaf (yes - TLeaf).

Another point to keep in mind when designing trees is the branches of the same TTree can
be written to separate files. To add a TBranch to a TTree we call the TTree::Branch()
method. Note that we DO NOT use the TBranch constructor.
The TTree::Branch method has several signatures. The branch type differs by what is
stored in it. A branch can hold an entire object, a list of simple variables, contents of a
folder, contents of a TList, or an array of objects. Let's see some examples.To follow
along you will need the shared library libEvent.so. First, check if it is in
$ROOTSYS/test. If it is, copy it to your own area. If it is not there, you have to build it.

Adding a Branch to Hold a List of Variables
As in the very first example (staff.root) the data we want to save is a list of simple
variables, such as integers or floats. In this case, we use the following TTree::Branch
signature:

tree->Branch("Ev_Branch",&event,"temp/F:ntrack/I:nseg:nvtex:flag/i ");

The first parameter is the branch name.

The second parameter is the address from which the first variable
is to be read. In the code above, “event” is a structure with one
float and three integers and one unsigned integer.

You should not assume that the compiler aligns the elements
of a structure without gaps. To avoid alignment problems, you
need to use structures with same length members. If your
structure does not qualify, you need to create one branch for
each element of the structure.

The leaf name is NOT used to pick the variable out of the structure, but is only used the
name for the leaf. This means that the list of variables needs to be in a structure in the
order described in the third parameter.

This third parameter is a string describing the leaf list. Each leaf has a name and a type
separated by a "/" and it is separated from the next leaf by a ":".

<Variable>/<type>:<Variable>/<type>

The example on the next line has two leafs: a floating-point number called temp and an
integer named ntrack.

"temp/F:ntrack/I:"

202 Trees June 2003 v3.05

The type can be omitted and if no type is given, the same type as the previous variable is
assumed. This leaf list has three integers called ntrack, nseg, and nvtex.

"ntrack/I:nseg:nvtex"

There is one more rule: when no type is given for the very first leaf, it becomes a float
(F). This leaf list has three floats called temp, mass, and px.

"temp:mass:px"

The symbols used for the type are:

C: a character string terminated by the 0 character
B: an 8 bit signed integer
b: an 8 bit unsigned integer
S: a 16 bit signed integer
s: a 16 bit unsigned integer
I: a 32 bit signed integer
i: a 32 bit unsigned integer
F: a 32 bit floating point
D: a 64 bit floating point

The type is used for a byte count to decide how much space to allocate. The variable
written is simply the block of bytes starting at the starting address given in the second
parameter. It may or may not match the leaf list depending on whether or not the
programmer is being careful when choosing the leaf address, name, and type.

By default, a variable will be copied with the number of bytes specified in the type
descriptor symbol. However, if the type consists of two characters, the number specifies the
number of bytes to be used when copying the variable to the output buffer. The line below
describes ntrack to be written as a 16-bit integer (rather than a 32-bit integer).

"ntrack/I2"

With this Branch method, you can also add a leaf that holds an entire array of variables. To
add an array of floats use the f[n] notation when describing the leaf.

Float_t f[10];
tree->Branch("fBranch",&f,"f[10]/F");

You can also add an array of variable length:

{
 TFile *f = new TFile("peter.root","recreate");
 Int_t nPhot;
 Float_t E[500];

 TTree* nEmcPhotons = new TTree("nEmcPhotons","EMC Photons");
 nEmcPhotons->Branch("nPhot",&nPhot,"nPhot/I");
 nEmcPhotons->Branch("E",E,"E[nPhot]/F");
}

For an example see Example 2 below ($ROOTSYS/tutorials/tree2.C) and staff.C
at the beginning of this chapter.

Adding a TBranch to Hold an Object
To write a branch to hold an event object, we need to load the definition of the Event class,
which is in $ROOTSYS/test/libEvent.so. An object can be in a tree if its class
definition includes the ClassDef/ClassImp macros. We expect to remove this restriction
in the near future.

June 2003 v3.05 Trees 203

root[] .L libEvent.so

First, we need to open a file and create a tree.

root[] TFile *f = new TFile("AFile.root","RECREATE")
root[] TTree *tree = new TTree("T","A Root Tree")

We need to create a pointer to an Event object that will be used as a reference in the
TTree::Branch method. Then we create a branch with the TTree::Branch method.

root[] Event *event = new Event()
root[] tree->Branch("EventBranch","Event",&event,32000,99)

To add a branch to hold an object we use the signature above. The first parameter is the
name of the branch. The second parameter is the name of the class of the object to be
stored. The third parameter is the address of a pointer to the object to be stored.

Note that it is an address of a pointer to the object, not just a pointer to the object.

The fourth parameter is the buffer size and is by default 32000 bytes. It is the number of
bytes of data for that branch to save to a buffer until it is saved to the file. The last
parameter is the split-level, which is the topic of the next section. Static class members are
not part of an object and thus not written with the object. You could store them separately
by collecting these values in a special "status" object and write it to the file outside of the
tree. If it makes sense to store them for each object, make them a regular data member.

Setting the Split-level
To split a branch means to create a sub-branch for each data member in the object. The
split-level can be set to 0 to disable splitting or it can be a set to a number between 1 and
99 indicating the depth of splitting.

If the split-level is set to zero, the whole object is written in its entirety to one branch. The
TTree will look like the one on the right, with one branch and one leaf holding the entire
event object.

A tree that is split A tree that is not split

When the split level is 1, an object data member is assigned a branch. If the split level is 2,
the data member objects will be split also, and a split level of 3 its data members objects,
will be split. As the split level increases so does the splitting depth. The ROOT default for
the split level is 99. This means the object will be split to the maximum.

Memory Considerations when Splitting a Branch
Splitting a branch can quickly generate many branches. Each branch has its own buffer in
memory. In case of many branches (say more than 100), you should adjust the buffer size
accordingly. A recommended buffer size is 32000 bytes if you have less than 50 branches.
Around 16000 bytes if you have less than 100 branches and 4000 bytes if you have more
than 500 branches. These numbers are recommended for computers with memory size
ranging from 32MB to 256MB. If you have more memory, you should specify larger buffer
sizes. However, in this case, do not forget that your file might be used on another machine
with a smaller memory configuration.

204 Trees June 2003 v3.05

Performance Considerations when Splitting a Branch
A split branch is faster to read, but slightly slower to write. The reading is quicker because
variables of the same type are stored consecutively and the type does not have to be read
each time. It is slower to write because of the large number of buffers as described above.
See Performance Benchmarks for performance impact of split and non-split mode.

Rules for Splitting
When splitting a branch, variables of different types are handled differently. Here are the
rules that apply when splitting a branch.

• If a data member is a basic type, it becomes one branch of class TBranchElement.
• A data member can be an array of basic types. In this case, one single branch is

created for the array.
• A data member can be a pointer to an array of basic types. The length can vary, and

must be specified in the comment field of the data member in the class definition. (see
I/O chapter).

• Pointer data member are not split, except for pointers to a TClonesArray. The
TClonesArray (pointed to) is split if the split level is greater than two. When the split
level is one, the TClonesArray is not split.

• If a data member is a pointer to an object, a special branch is created. The branch will
be filled by calling the class Streamer function to serialize the object into the branch
buffer.

• If a data member is an object, the data members of this object are split into branches
according to the split level (i.e. split level > 2).

• Base classes are split when the object is split.
• Abstract base classes are never split
• Most STL containers are supported except for some extreme cases. These examples

are not supported:

// STL vector of vectors of TAxis*
vector<vector<TAxis *> > fVectAxis;

// STL map of string/vector
map<string,vector<int> > fMapString;

// STL deque of pair
deque<pair<float,float> > fDequePair;

• C-structure data members are not supported in split mode.
• An object that is not split may be slow to browse.
• An STL container that is not split will not be accessible in the browser.

Exempt a Data Member from Splitting
If you are creating a branch with an object and in general you want the data members to be
split, but you want to exempt a data member from the split. You can specify this in the
comment field of the data member:

class Event : public TObject {

private:
 EventHeader fEvtHdr; //|| Don't split the header

June 2003 v3.05 Trees 205

Adding a Branch to Hold a TClonesArray
ROOT has two classes to manage arrays of objects. The TObjArray can manage objects
of different classes, and the TClonesArray that specializes in managing objects of the
same class (hence the name Clones Array). TClonesArray takes advantage of the
constant size of each element when adding the elements to the array. Instead of allocating
memory for each new object as it is added, it reuses the memory. Here is an example of
the time a TClonesArray can save over a TObjArray.

We have 100,000 events, and each has 10,000 tracks, which gives 1,000,000,000 tracks.
If we use a TObjArray for the tracks, we implicitly make a call to new and a corresponding
call to delete for each track. The time it takes to make a pair of new/delete calls is about 7
µs (10-6). If we multiply the number of tracks by 7 µs, (1,000,000,000 * 7 * 10-6) we calculate
that the time allocating and freeing memory is about 2 hours. This is the chunk of time
saved when a TClonesArray is used rather than a TObjArray. If you don't want to wait 2
hours for your tracks (or equivalent objects), be sure to use a TClonesArray for same-
class objects arrays.

Branches with TClonesArrays use the same method (TTree::Branch) as any other
object described above. If splitting is specified the objects in the TClonesArray are split,
not the TClonesArray itself.

Identical Branch Names
When a top-level object (say event), has two data members of the same class the sub
branches end up with identical names. To distinguish the sub branch we must associate
them with the master branch by including a “.” (a dot) at the end of the master branch
name. This will force the name of the sub branch to be master.sub branch instead of
simply sub branch. For example, a tree has two branches Trigger and MuonTrigger,
each containing an object of the same class (Trigger). To uniquely identify the sub
branches we add the dot:

tree->Branch("Trigger.","Trigger",&b1,8000,1);
tree->Branch("MuonTrigger.","Trigger",&b2,8000,1);

If Trigger has three members, T1, T2, T3, the two instructions above will generate sub
branches called: Trigger.T1, Trigger.T2, Trigger.T3, MuonTrigger.T1,
MuonTrigger.T2, MuonTrigger.T3.

Adding a Branch with a Folder
Use the syntax below to add a branch from a folder:

tree->Branch("/aFolder");

This method creates one branch for each element in the folder. The method returns the
total number of branches created.

Adding a Branch with a Collection
This Branch method creates one branch for each element in the collection.

tree->Branch(*aCollection, 8000, 99);
// Int_t TTree::Branch(TCollection *list, Int_t bufsize,
// Int_t splitlevel, const char *name)

The method returns the total number of branches created. Each entry in the collection
becomes a top level branch if the corresponding class is not a collection. If it is a collection,
the entry in the collection becomes in turn top level branches, etc. The split level is
decreased by 1 every time a new collection is found.

206 Trees June 2003 v3.05

For example if list is a TObjArray*

• If splitlevel = 1, one top level branch is created for each element of the
TObjArray.

• If splitlevel = 2, one top level branch is created for each array element. If, in
turn, one of the array elements is a TCollection, one top level branch will be
created for each element of this collection.

In case a collection element is a TClonesArray, the special Tree constructor for
TClonesArray is called. The collection itself cannot be a TClonesArray.

If name is given, all branch names will be prefixed with name_.

IMPORTANT NOTE1: This function should not be called if splitlevel<1.

IMPORTANT NOTE2: The branches created by this function will have names
corresponding to the collection or object names. It is important to give names to collections
to avoid misleading branch names or identical branch names. By default collections have a
name equal to the corresponding class name, e.g. the default name of TList is “TList”.

Examples for Writing and Reading Trees
The following sections are examples of writing and reading trees increasing in complexity
from a simple tree with a few variables to a tree containing folders and complex Event
objects.

Each example has a named script in the $ROOTSYS/tutorials directory. They are called
tree1.C to tree4.C. The examples are:

• tree1.C: A tree with several simple (integers and floating point) variables.
• tree2.C: A tree built from a C structure (struct). This example uses the Geant3 C

 wrapper as an example of a FORTRAN common block ported to C with a C
 structure.

• tree3.C: In this example we will show how to extend a tree with a branch from
 another tree with the Friends feature. These trees have branches with
 variable length arrays. Each entry has a variable number of tracks, and
 each track has several variables.

• tree4.C: A tree with a class (Event). The class Event is defined in
 $ROOTSYS/test. In this example we first encounter the impact of splitting
 a branch.

Each script contains the main function, with the same name as the file (i.e. tree1), the
function to write - tree1w, and the function to read - tree1r. If the script is not run in
batch mode, it displays the tree in the browser and tree viewer. To study the example
scripts, you can either execute the main script, or load the script and execute a specific
function. For example:

// execute the function that writes, reads, shows the tree
root[] .x tree1.C
// use ACLiC to build shared library, check syntax, execute
root[] .x tree1.C++
// Load the script and select a function to execute
root[] .L tree1.C
root[] tree1w()
root[] tree1r()

June 2003 v3.05 Trees 207

Example 1: A Tree with Simple Variables
This example shows how to write, view, and read a tree with several simple (integers and
floating point) variables.

Writing the Tree
Below is the function that writes the tree (tree1w). First, the variables are defined (px,
py, pz, random and ev). Then we add a branch for each of the variables to the tree, by
calling the TTree::Branch method for each variable.

void tree1w()
{
 //create a Tree file tree1.root
 //create the file, the Tree and a few branches
 TFile f("tree1.root","recreate");
 TTree t1("t1","a simple Tree with simple variables");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1.Branch("px",&px,"px/F");
 t1.Branch("py",&py,"py/F");
 t1.Branch("pz",&pz,"pz/F");
 t1.Branch("ev",&ev,"ev/I");

 //fill the tree
 for (Int_t i=0; i<10000; i++) {
 gRandom->Rannor(px,py);
 pz = px*px + py*py;
 random = gRandom->Rndm();
 ev = i;
 t1.Fill();
 }

 //save the Tree heade; the file will be automatically closed
 //when going out of the function scope
 t1.Write();
}

Creating Branches with A single Variable
This is the signature of TTree::Branch to create a branch with a list of variables:

TBranch* TTree::Branch(const char* name,void* address,
 const char* leaflist,Int_t bufsize = 32000)

The first parameter is the branch name. The second parameter is the address from which
to read the value. The third parameter is the leaf list with the name and type of each leaf.

In this example each branch has only one leaf. In the box below, the branch is named px
and has one floating point type leaf also called px.

t1.Branch("px",&px,"px/F");

Filling the Tree
First we find some random values for the variables. We assign px and py a Gaussian with
mean = 0 and sigma = 1 by calling gRandom->Rannor(px, py), and calculate pz.
Then we call the TTree::Fill method. The call t1.Fill() fills all branches in the tree
because we have already organized the tree into branches and told each branch where to
get the value from. After this script is executed we have a ROOT file called tree1.root
with a tree called t1.

208 Trees June 2003 v3.05

Viewing the Tree
This is the tree1.root file and its tree in the browser.

In the right panel are the branches: ev, px, py, pz, and random. Note that these are
shown as leaves because they are "end" branches with only one leaf.

To histogram a leaf we can simply double click on it in the browser:

This is how the tree t1 looks in the Tree Viewer. Here we can add a cut and add other
operations for histogramming the leaves (see the section on Tree Viewer). For example, we
can plot a two dimensional histogram.

June 2003 v3.05 Trees 209

Reading the Tree
The tree1r function shows how to read the tree and access each entry and each leaf. We
first define the variables to hold the read values.

Float_t px, py, pz;

Then we tell the tree to populate these variables when reading an entry. We do this with the
TTree::SetBranchAddress method. The first parameter is the branch name, and the
second is the address of the variable where the branch data is to be placed.

In this example the branch name is px. This name was given when the tree was written
(see tree1w). The second parameter is the address of the variable px.

t1->SetBranchAddress("px",&px);

GetEntry
Once the branches have been given the address, a specific entry can be read into the
variables with the method TTree::GetEntry(n). It reads all the branches for entry (n)
and populates the given address accordingly.

By default, GetEntry() reuses the space allocated by the previous object for each
branch. You can force the previous object to be automatically deleted if you call mybranch.
SetAutoDelete(kTRUE) (default is kFALSE).

Example:

Consider the example in $ROOTSYS/test/Event.h. The top level branch in the tree T is
declared with:

Event *event = 0;
//event must be null or point to a valid object
//it must be initialized
T.SetBranchAddress("event",&event);

When reading the Tree, one can choose one of these 3 options:

Option 1:

for (Int_t i = 0; i<nentries; i++) {
 T.GetEntry(i);
 //the object event has been filled at this point
 }

This is the default and recommended way to create an object of the class Event. It will be
pointed by event.

At the following entries, event will be overwritten by the new data. All internal members
that are TObject* are automatically deleted. It is important that these members be in a
valid state when GetEntry is called. Pointers must be correctly initialized.

However these internal members will not be deleted if the characters "->" are specified as
the first characters in the comment field of the data member declaration.

The pointer member is read via pointer->Streamer(buf) if "->" is specified. In this
case, it is assumed that the pointer is never null (see pointer TClonesArray *fTracks in
the $ROOTSYS/test/Event example). If "->" is not specified, the pointer member is
read via buf >> pointer. In this case the pointer may be null. Note that the option with
"->" is faster to read or write and it also consumes less space in the file.

210 Trees June 2003 v3.05

Option 2:

The option AutoDelete is set:

 TBranch *branch = T.GetBranch("event");
 branch->SetAddress(&event);
 branch->SetAutoDelete(kTRUE);
 for (Int_t i=0; i<nentries; i++) {
 T.GetEntry(i); // the object event has been filled at this point
}

In this case, at any iteration, the object event is deleted by GetEntry and a new instance
of Event is created and filled.

Option 3:

Same as option 1, but you delete yourself the event:

for (Int_t i=0; i<nentries; i++) {
 delete event;
 event = 0; EXTREMELY IMPORTANT
 T.GetEntry(i);
 the objrect event has been filled at this point
}

It is strongly recommended to use the default option 1. It has the additional advantage that
functions like TTree::Draw (internally calling TTree::GetEntry) will be functional even
when the classes in the file are not available. Reading selected branches is quicker than
reading an entire entry. If you are interested in only one branch, you can use the
TBranch::GetEntry method and only that branch is read. Here is the script tree1r:

void tree1r()
{
 //read the Tree generated by tree1w and fill two histograms
 //note that we use "new" to create the TFile and TTree objects,
 //to keep them alive after leaving this function.
 TFile *f = new TFile("tree1.root");
 TTree *t1 = (TTree*)f->Get("t1");
 Float_t px, py, pz;
 Double_t random;
 Int_t ev;
 t1->SetBranchAddress("px",&px);
 t1->SetBranchAddress("py",&py);
 t1->SetBranchAddress("pz",&pz);
 t1->SetBranchAddress("random",&random);
 t1->SetBranchAddress("ev",&ev);
 //create two histograms
 TH1F *hpx = new TH1F("hpx","px distribution",100,-3,3);
 TH2F *hpxpy = new TH2F("hpxpy","py vs px",30,-3,3,30,-3,3);
 //read all entries and fill the histograms
 Int_t nentries = (Int_t)t1->GetEntries();
 for (Int_t i=0; i<nentries; i++) {
 t1->GetEntry(i);
 hpx->Fill(px);
 hpxpy->Fill(px,py);
 }
 //We do not close the file. We want to keep the generated histograms
 //we open a browser and the TreeViewer
 if (gROOT->IsBatch()) return;
 new TBrowser ();
 t1->StartViewer();
 //In the browser, click on "ROOT Files", then on "tree1.root"
 //You can click on the histogram icons in the right panel to draw
 //them in the TreeViewer, follow the instructionsin the Help.
}

June 2003 v3.05 Trees 211

Example 2: A Tree with a C Structure
The executable script for this example is $ROOTSYS/tutorials/tree2.C. In this
example we show:

• how to build branches from a C structure
• how to make a branch with a fixed length array
• how to make a branch with a variable length array
• how to read selective branches
• how to fill a histogram from a branch
• how to use TTree::Draw to show a 3D plot

A C structure (struct) is used to build a ROOT tree. In general we discourage the use of
C structures, we recommend using a class instead. However, we do support them for
legacy applications written in C or FORTRAN.

The example struct holds simple variables and arrays. It maps to a Geant3 common
block /gctrak/. This is the definition of the common block/structure:

const Int_t MAXMEC = 30;
// PARAMETER (MAXMEC=30)
// COMMON/GCTRAK/VECT(7),GETOT,GEKIN,VOUT(7)
// + ,NMEC,LMEC(MAXMEC)
// + ,NAMEC(MAXMEC),NSTEP
// + ,PID,DESTEP,DESTEL,SAFETY,SLENG
// + ,STEP,SNEXT,SFIELD,TOFG,GEKRAT,UPWGHT

typedef struct {
 Float_t vect[7];
 Float_t getot;
 Float_t gekin;
 Float_t vout[7];
 Int_t nmec;
 Int_t lmec[MAXMEC];
 Int_t namec[MAXMEC];
 Int_t nstep;
 Int_t pid;
 Float_t destep;
 Float_t destel;
 Float_t safety;
 Float_t sleng;
 Float_t step;
 Float_t snext;
 Float_t sfield;
 Float_t tofg;
 Float_t gekrat;
 Float_t upwght;
} Gctrak_t;

When using Geant3, the common block is filled by Geant3 routines at each step and only
the TTree::Fill method needs to be called. In this example we emulate the Geant3 step
routine with the helixStep function. We also emulate the filling of the particle values. The
calls to the Branch methods are the same as if Geant3 were used.

212 Trees June 2003 v3.05

void helixStep(Float_t step, Float_t *vect, Float_t *vout)
{
 // extrapolate track in constant field
 Float_t field = 20; // field in kilogauss
 enum Evect {kX,kY,kZ,kPX,kPY,kPZ,kPP};
 vout[kPP] = vect[kPP];
 Float_t h4 = field*2.99792e-4;
 Float_t rho = -h4/vect[kPP];
 Float_t tet = rho*step;
 Float_t tsint = tet*tet/6;
 Float_t sintt = 1 - tsint;
 Float_t sint = tet*sintt;
 Float_t cos1t = tet/2;
 Float_t f1 = step*sintt;
 Float_t f2 = step*cos1t;
 Float_t f3 = step*tsint*vect[kPZ];
 Float_t f4 = -tet*cos1t;
 Float_t f5 = sint;
 Float_t f6 = tet*cos1t*vect[kPZ];
 vout[kX] = vect[kX] + (f1*vect[kPX] - f2*vect[kPY]);
 vout[kY] = vect[kY] + (f1*vect[kPY] + f2*vect[kPX]);
 vout[kZ] = vect[kZ] + (f1*vect[kPZ] + f3);
 vout[kPX] = vect[kPX] + (f4*vect[kPX] - f5*vect[kPY]);
 vout[kPY] = vect[kPY] + (f4*vect[kPY] + f5*vect[kPX]);
 vout[kPZ] = vect[kPZ] + (f4*vect[kPZ] + f6);
}

Writing the Tree
void tree2w() // write tree2 example
{
 //create a Tree file tree2.root
 TFile f("tree2.root","recreate");

 //create the file, the Tree
 TTree t2("t2","a Tree with data from a fake Geant3");

 // declare a variable of the C structure type
 Gctrak_t gstep;

 // add the branches for a subset of gstep
 t2.Branch("vect",gstep.vect,"vect[7]/F");
 t2.Branch("getot",&gstep.getot,"getot/F");
 t2.Branch("gekin",&gstep.gekin,"gekin/F");
 t2.Branch("nmec",&gstep.nmec,"nmec/I");
 t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");
 t2.Branch("destep",&gstep.destep,"destep/F");
 t2.Branch("pid",&gstep.pid,"pid/I");

 //Initialize particle parameters at first point
 Float_t px,py,pz,p,charge=0;
 Float_t vout[7];
 Float_t mass = 0.137;
 Bool_t newParticle = kTRUE;
 gstep.step = 0.1;
 gstep.destep = 0;
 gstep.nmec = 0;
 gstep.pid = 0;
 //continued...

June 2003 v3.05 Trees 213

 //transport particles
 for (Int_t i=0; i<10000; i++) {
 //generate a new particle if necessary (Geant3 emulation)
 if (newParticle) {
 px = gRandom->Gaus(0,.02);
 py = gRandom->Gaus(0,.02);
 pz = gRandom->Gaus(0,.02);
 p = TMath::Sqrt(px*px+py*py+pz*pz);
 charge = 1;
 if (gRandom->Rndm() < 0.5) charge = -1;
 gstep.pid += 1;
 gstep.vect[0] = 0;
 gstep.vect[1] = 0;
 gstep.vect[2] = 0;
 gstep.vect[3] = px/p;
 gstep.vect[4] = py/p;
 gstep.vect[5] = pz/p;
 gstep.vect[6] = p*charge;
 gstep.getot = TMath::Sqrt(p*p + mass*mass);
 gstep.gekin = gstep.getot - mass;
 newParticle = kFALSE;
 }
 // fill the Tree with current step parameters
 t2.Fill();

 //transport particle in magnetic field (Geant3 emulation)
 helixStep(gstep.step, gstep.vect, vout); //make one step

 //apply energy loss
 gstep.destep = gstep.step*gRandom->Gaus(0.0002,0.00001);
 gstep.gekin -= gstep.destep;
 gstep.getot = gstep.gekin + mass;
 gstep.vect[6]= charge*TMath::Sqrt(gstep.getot*gstep.getot - mass*mass);
 gstep.vect[0] = vout[0];
 gstep.vect[1] = vout[1];
 gstep.vect[2] = vout[2];
 gstep.vect[3] = vout[3];
 gstep.vect[4] = vout[4];
 gstep.vect[5] = vout[5];
 gstep.nmec = (Int_t)(5*gRandom->Rndm());
 for (Int_t l=0; l<gstep.nmec; l++) gstep.lmec[l] = l;
 if (gstep.gekin < 0.001) newParticle = kTRUE;
 if (TMath::Abs(gstep.vect[2]) > 30)
 newParticle = kTRUE;
 }
 //save the Tree header. The file will be automatically
 // closed when going out of the function scope
 t2.Write();
}

Adding a Branch with a Fixed Length Array
At first, we create a tree and create branches for a subset of variables in the C structure
Gctrak_t. Then we add several types of branches.

The first branch reads seven floating point values beginning at the address of
'gstep.vect'. You do not need to specify &gstep.vect, because in C and C++ the
array variable holds the address of the first element.

t2.Branch("vect",gstep.vect,"vect[7]/F");
t2.Branch("getot",&gstep.getot,"getot/F");
t2.Branch("gekin",&gstep.gekin,"gekin/F");

214 Trees June 2003 v3.05

Adding a Branch with a Variable Length Array
The next two branches are dependent on each other. The first holds the length of the
variable length array and the second holds the variable length array. The lmec branch
reads nmec number of integers beginning at the address gstep.destep.

t2.Branch("nmec",&gstep.nmec,"nmec/I");
t2.Branch("lmec",gstep.lmec,"lmec[nmec]/I");

The variable nmec is a random number and is reset for each entry.

gstep.nmec = (Int_t)(5*gRandom->Rndm());

Filling the Tree
In this emulation of Geant3, we generate and transport particles in a magnetic field and
store the particle parameters at each tracking step in a ROOT tree.

Analysis
In this analysis we do not read the entire entry, we only read one branch. First we set the
address for the branch to the file dstep, and then we use the TBranch::GetEntry
method.

Then we fill a histogram with the dstep branch entries, draw it and fit it with a Gaussian.

In addition we draw the particle's path using the three values in the vector. Here we use the
TTree::Draw method. It automatically creates a histogram and plots the 3 expressions
(see Using Trees in Analysis).

void tree2r()
{
 // read the Tree generated by tree2w and fill one histogram
 // we are only interested by the destep branch

 // note that we use "new" to create the TFile and TTree objects because we want
 // to keep these objects alive when we leave this function

 TFile *f = new TFile("tree2.root");
 TTree *t2 = (TTree*)f->Get("t2");
 static Float_t destep;
 TBranch *b_destep = t2->GetBranch("destep");
 b_destep->SetAddress(&destep);

 //create one histogram
 TH1F *hdestep = new TH1F("hdestep","destep in Mev",100,1e-5,3e-5);

 //read only the destep branch for all entries
 Int_t nentries = (Int_t)t2->GetEntries();
 for (Int_t i=0;i<nentries;i++) {
 b_destep->GetEntry(i);

 // fill the histogram with the destep entry
 hdestep->Fill(destep);
 }
 //continued...

June 2003 v3.05 Trees 215

 // we do not close the file; we want to keep the generated histograms;
 // we fill a 3-d scatter plot with the particle step coordinates

 TCanvas *c1 = new TCanvas("c1","c1",600,800);
 c1->SetFillColor(42);
 c1->Divide(1,2);

 c1->cd(1);
 hdestep->SetFillColor(45);
 hdestep->Fit("gaus");

 c1->cd(2);
 gPad->SetFillColor(37);
 t2->SetMarkerColor(kRed);
 t2->Draw("vect[0]:vect[1]:vect[2]");
 if (gROOT->IsBatch()) return;

 // invoke the x3d viewer
 gPad->x3d();
}

216 Trees June 2003 v3.05

Example 3: Adding Friends to Trees
In this example we will show how to extend a tree with a branch from another tree with the
Friends feature.

Adding a Branch to an Existing Tree
You may want to add a branch to an existing tree. For example, if one variable in the tree
was computed with a certain algorithm, you may want to try another algorithm and compare
the results. One solution is to add a new branch, fill it, and save the tree. The code below
adds a simple branch to an existing tree. Note the kOverwrite option in the Write
method, it overwrites the existing tree. If it is not specified, two copies of the tree headers
are saved.

void tree3AddBranch()
{
 TFile f("tree3.root","update");

 Float_t new_v;
 TTree *t3 = (TTree*)f->Get("t3");
 TBranch *newBranch = t3-> Branch("new_v",&new_v,"new_v/F");
 //read the number of entries in the t3
 Int_t nentries = (Int_t)t3->GetEntries();
 for (Int_t i = 0; i < nentries; i++){
 new_v= gRandom->Gaus(0,1);
 newBranch->Fill();
 }
 // save only the new version of the tree
 t3->Write("",TObject::kOverwrite);
}

Adding a branch is often not possible because the tree is in a read-only file and you do not
have permission to save the modified tree with the new branch. Even if you do have the
permission, you risk loosing the original tree with an unsuccessful attempt to save the
modification. Since trees are usually large, adding a branch could extend it over the 2GB
limit. In this case, the attempt to write the tree fails, and the original data is may also be
corrupted. In addition, adding a branch to a tree enlarges the tree and increases the
amount of memory needed to read an entry, and therefore decreases the performance. For
these reasons, ROOT offers the concept of friends for trees (and chains). We encourage
you to use TTree::AddFriend rather than adding a branch manually.

TTree::AddFriend
A tree keeps a list of friends. In the context of a tree (or a chain), friendship means
unrestricted access to the friends data. In this way it is much like adding another branch to
the tree without taking the risk of damaging it. To add a friend to the list, you can use the
TTree::AddFriend method. The TTree (tree) below has two friends (ft1 and ft2)
and now has access to the variables a,b,c,i,j,k,l and m.

The AddFriend method has two parameters, the first is the tree name and the second is
the name of the ROOT file where the friend tree is saved. AddFriend automatically opens

June 2003 v3.05 Trees 217

the friend file. If no file name is given, the tree called ft1 is assumed to be in the same file
as the original tree.

tree.AddFriend("ft1","friendfile1.root");

If the friend tree has the same name as the original tree, you can give it an alias in the
context of the friendship:

tree.AddFriend("tree1 = tree","friendfile1.root");

Once the tree has friends, we can use TTree::Draw as if the friend's variables were in the
original tree. To specify which tree to use in the Draw method, use the syntax:

<treeName>.<branchname>.<varname>

If the variablename is enough to uniquely identify the variable, you can leave out the tree
and/or branch name.

For example, these commands generate a 3-d scatter plot of variable "var" in the TTree
tree versus variable v1 in TTree ft1 versus variable v2 in TTree ft2.

tree.AddFriend("ft1","friendfile1.root");
tree.AddFriend("ft2","friendfile2.root");
tree.Draw("var:ft1.v1:ft2.v2");

The picture illustrates the access of the
tree and its friends with a Draw
command.

When AddFriend is called, the ROOT
file is automatically opened and the friend
tree (ft1) header is read into memory.
The new friend (ft1) is added to the list
of friends of tree.

The number of entries in the friend must
be equal or greater to the number of
entries of the original tree. If the friend
tree has fewer entries a warning is given
and the missing entries are not included
in the histogram.

To retrieve the list of friends from a tree use TTree::GetListOfFriends.

When the tree is written to file (TTree::Write), the friends list is saved with it. And when
the tree is retrieved, the trees on the friends list are also retrieved and the friendship
restored. When a tree is deleted, the elements of the friend list are also deleted. It is
possible to declare a friend tree that has the same internal structure (same branches and
leaves) as the original tree, and compare the same values by specifying the tree.

tree.Draw("var:ft1.var:ft2.var")

The example code is in $ROOTSYS/tutorials/tree3.C.

218 Trees June 2003 v3.05

Here is the script:

void tree3w() {
// Example of a Tree where branches are variable length arrays
// A second Tree is created and filled in parallel.
// Run this script with
// .x tree3.C
// In the function treer, the first Tree is open.
// The second Tree is declared friend of the first tree.
// TTree::Draw is called with variables from both Trees.

 const Int_t kMaxTrack = 500;
 Int_t ntrack;
 Int_t stat[kMaxTrack];
 Int_t sign[kMaxTrack];
 Float_t px[kMaxTrack];
 Float_t py[kMaxTrack];
 Float_t pz[kMaxTrack];
 Float_t pt[kMaxTrack];
 Float_t zv[kMaxTrack];
 Float_t chi2[kMaxTrack];
 Double_t sumstat;

// create the first root file with a tree
 TFile f("tree3.root","recreate");
 TTree *t3 = new TTree("t3","Reconst ntuple");
 t3->Branch("ntrack",&ntrack,"ntrack/I");
 t3->Branch("stat",stat,"stat[ntrack]/I");
 t3->Branch("sign",sign,"sign[ntrack]/I");
 t3->Branch("px",px,"px[ntrack]/F");
 t3->Branch("py",py,"py[ntrack]/F");
 t3->Branch("pz",pz,"pz[ntrack]/F");
 t3->Branch("zv",zv,"zv[ntrack]/F");
 t3->Branch("chi2",chi2,"chi2[ntrack]/F");

// create the second root file with a different tree
 TFile fr("tree3f.root","recreate");
 TTree *t3f = new TTree("t3f","a friend Tree");
 t3f->Branch("ntrack",&ntrack,"ntrack/I");
 t3f->Branch("sumstat",&sumstat,"sumstat/D");
 t3f->Branch("pt",pt,"pt[ntrack]/F");

 // Fill the trees
 for (Int_t i=0;i<1000;i++) {
 Int_t nt = gRandom->Rndm()*(kMaxTrack-1);
 ntrack = nt;
 sumstat = 0;
 // set the values in each track
 for (Int_t n=0;n<nt;n++) {
 stat[n] = n%3;
 sign[n] = i%2;
 px[n] = gRandom->Gaus(0,1);
 py[n] = gRandom->Gaus(0,2);
 pz[n] = gRandom->Gaus(10,5);
 zv[n] = gRandom->Gaus(100,2);
 chi2[n] = gRandom->Gaus(0,.01);
 sumstat += chi2[n];
 pt[n] = TMath::Sqrt(px[n]*px[n] + py[n]*py[n]);
 }
 t3->Fill();
 t3f->Fill();
 } //continued...

June 2003 v3.05 Trees 219

 // Write the two files
 t3->Print();
 f.cd();
 t3->Write();
 fr.cd();
 t3f->Write();
}

// Function to read the two files and add the friend
void tree3r()
{
 TFile *f = new TFile("tree3.root");
 TTree *t3 = (TTree*)f->Get("t3");

 // Add the second tree to the first tree as a friend
 t3->AddFriend("t3f","tree3f.root");

 // Draw pz which is in the first tree and use pt
 // in the condition. pt is in the friend tree.
 t3->Draw("pz","pt>3");
}

// This is executed when typing .x tree3.C
void tree3()
{
 tree3w();
 tree3r();
}

Example 4: A Tree with an Event Class
This example is a simplified version of $ROOTSYS/test/MainEvent.cxx and where
Event objects are saved in a tree. The full definition of Event is in
$ROOTSYS/test/Event.h. To execute this macro, you will need the library
$ROOTSYS/test/libEvent.so. If it does not exist you can build the test directory
applications by following the instruction in the $ROOTSYS/test/README file.

In this example we will show

• the difference in splitting or not splitting a branch
• how to read selected branches of the tree,
• how to print a selected entry

The Event Class
Event is a descendent of TObject. As such it inherits the data members of TObject and
its methods such as Dump() and Inspect() and Write(). Also, because it inherits
from TObject it can be a member of a collection.

To summarize, the advantages of inheriting from a TObject are:

• Inherit the Write, Inspect, and Dump methods
• Enables a class to be a member of a ROOT collection
• Enables RTTI

Below is the list of the Event data members. It contains a character array, several integers,
a floating point number, and an EventHeader object. The EventHeader class is
described in the following paragraph. Event also has two pointers, one to a
TClonesArray of tracks and one to a histogram. The string "->" in the comment field of
the members *fTracks and *fH instructs the automatic Streamer to assume that the
objects *fTracks and *fH are never null pointers and that fTracks->Streamer can be
used instead of the more time consuming form R__b << fTracks.

220 Trees June 2003 v3.05

class Event : public TObject {

private:
 char fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 EventHeader fEvtHdr;
 TClonesArray *fTracks; //->
 TH1F *fH; //->
 Int_t fMeasures[10];
 Float_t fMatrix[4][4];
 Float_t *fClosestDistance; //[fNvertex]
 static TClonesArray *fgTracks;
 static TH1F *fgHist;
// … list of methods
…
 ClassDef(Event,1) //Event structure
};

The EventHeader Class
The EventHeader class (also defined in Event.h) does not inherit from TObject.
Beginning with ROOT 3.0, an object can be placed on a branch even though it does not
inherit from TObject. In previous releases branches were restricted to objects inheriting
from the TObject. However, it has always been possible to write a class not inheriting from
TObject to a tree by encapsulating it in a TObject descending class as is the case in
EventHeader and Event.

class EventHeader {

private:
 Int_t fEvtNum;
 Int_t fRun;
 Int_t fDate;
// … list of methods
 ClassDef(EventHeader,1) //Event Header
};

The Track Class
The Track class descends from TObject since tracks are in a TClonesArray (i.e. a
ROOT collection class) and contains a selection of basic types and an array of vertices. It's
TObject inheritance, enables Track to be in a collection, and in Event is a
TClonesArray of Tracks.

June 2003 v3.05 Trees 221

class Track : public TObject {

private:
 Float_t fPx; //X component of the momentum
 Float_t fPy; //Y component of the momentum
 Float_t fPz; //Z component of the momentum
 Float_t fRandom; //A random track quantity
 Float_t fMass2; //The mass square of this particle
 Float_t fBx; //X intercept at the vertex
 Float_t fBy; //Y intercept at the vertex
 Float_t fMeanCharge; //Mean charge deposition of all hits
 Float_t fXfirst; //X coordinate of the first point
 Float_t fXlast; //X coordinate of the last point
 Float_t fYfirst; //Y coordinate of the first point
 Float_t fYlast; //Y coordinate of the last point
 Float_t fZfirst; //Z coordinate of the first point
 Float_t fZlast; //Z coordinate of the last point
 Float_t fCharge; //Charge of this track
 Float_t fVertex[3]; //Track vertex position
 Int_t fNpoint; //Number of points for this track
 Short_t fValid; //Validity criterion

// method definitions …
 ClassDef(Track,1) //A track segment
};

Writing the Tree
We create a simple tree with two branches both holding Event objects. One is split and the
other is not. We also create a pointer to an Event object (event).

void tree4w()
{
 // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
 if (!TClassTable::GetDict("Event")) {
 gSystem->Load("$ROOTSYS/test/libEvent.so");
 }
 // create a Tree file tree4.root
 TFile f("tree4.root","RECREATE");

 // create a ROOT Tree
 TTree t4("t4","A Tree with Events");

 // create a pointer to an Event object
 Event *event = new Event();

 // create two branches, split one
 t4.Branch("event_branch", "Event", &event,16000,2);
 t4.Branch("event_not_split", "Event", &event,16000,0);

 // a local variable for the event type
 char etype[20];

 // fill the tree
 for (Int_t ev = 0; ev <100; ev++) {
 Float_t sigmat, sigmas;
 gRandom->Rannor(sigmat,sigmas);
 Int_t ntrack = Int_t(600 + 600 *sigmat/120.);
 Float_t random = gRandom->Rndm(1);
 sprintf(etype,"type%d",ev%5); //continued …

222 Trees June 2003 v3.05

 event->SetType(etype);
 event->SetHeader(ev, 200, 960312, random);
 event->SetNseg(Int_t(10*ntrack+20*sigmas));
 event->SetNvertex(Int_t(1+20*gRandom->Rndm()));
 event->SetFlag(UInt_t(random+0.5));
 event->SetTemperature(random+20.);

 for(UChar_t m = 0; m < 10; m++) {
 event->SetMeasure(m, Int_t(gRandom->Gaus(m,m+1)));
 }

 // fill the matrix
 for(UChar_t i0 = 0; i0 < 4; i0++) {
 for(UChar_t i1 = 0; i1 < 4; i1++) {
 event->SetMatrix(i0,i1,gRandom->Gaus(i0*i1,1));
 }
 }
 // create and fill the Track objects
 for (Int_t t = 0; t < ntrack; t++) event->AddTrack(random);
 t4.Fill(); // Fill the tree
 event->Clear(); // Clear before reloading event
 }
 f.Write(); // Write the file header
 t4.Print(); // Print the tree contents
}

Reading the Tree
First, we check if the shared library with the class definitions is loaded. If not we load it.
Then we read two branches, one for the number of tracks and one for the entire event. We
check the number of tracks first, and if it meets our condition we read the entire event. We
show the fist entry that meets the condition.

void tree4r()
{
 // check to see if the event class is in the dictionary
 // if it is not load the definition in libEvent.so
 if (!TClassTable::GetDict("Event")) {
 gSystem->Load("$ROOTSYS/test/libEvent.so");
 }

 // read the tree generated with tree4w

 // note that we use "new" to create the TFile and
 // TTree objects, because we want to keep these
 // objects alive when we leave this function.
 TFile *f = new TFile("tree4.root");
 TTree *t4 = (TTree*)f->Get("t4");

 // create a pointer to an event object. This will be used
 // to read the branch values.
 Event *event = new Event();

 // get two branches and set the branch address
 TBranch *bntrack = t4->GetBranch("fNtrack");
 TBranch *branch = t4->GetBranch("event_split");
 branch->SetAddress(&event);

 Int_t nevent = t4->GetEntries();
 Int_t nselected = 0;
 Int_t nb = 0; //continued …

June 2003 v3.05 Trees 223

 for (Int_t i=0; i<nevent; i++) {
 //read branch "fNtrack"only
 bntrack->GetEntry(i);

 //reject events with more than 587 tracks
 if (event->GetNtrack() > 587)continue;

 //read complete accepted event in memory
 nb += t4->GetEntry(i);
 nselected++;

 //print the first accepted event
 if (nselected == 1) t4->Show();

 //clear tracks array
 event->Clear();
 }

 if (gROOT->IsBatch()) return;
 new TBrowser();
 t4->StartViewer();
}

Now, let's see what the tree looks like in the tree viewer.

You can see the two branches in the tree in the left panel: the event_branch is split and
hence expands when clicked on. The other branch event_not_split is not expandable
and we can not browse the data members.

The TClonesArray of tracks fTracks is also split because we set the split level to 2.

224 Trees June 2003 v3.05

The output on the command line is the result of tree4->Show. It shows the first entry with
more than 587 tracks:

======> EVENT:26
 event_split =
 fUniqueID = 0
 fBits = 50331648
 fType[20] = 116 121 112 101 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 fNtrack = 585
 fNseg = 5834
 fNvertex = 17
 fFlag = 0
 fTemperature = 20.044315
 fEvtHdr.fEvtNum = 26
 fEvtHdr.fRun = 200
 fEvtHdr.fDate = 960312
 fTracks = 585
 fTracks.fUniqueID = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
…

Trees in Analysis
The methods TTree::Draw, TTree::MakeClass and TTree::MakeSelector are
available for data analysis using trees.

The TTree::Draw method is a powerful yet simple way to look and draw the trees
contents. It enables you to plot a variable (a leaf) with just one line of code. However, the
Draw method falls short once you want to look at each entry and design more sophisticated
acceptance criteria for your analysis. For these cases, you can use TTree::MakeClass. It
creates a class that loops over the trees entries one by one. You can then expand it to do
the logic of your analysis.

The TTree::MakeSelector is the recommended method for ROOT data analysis. It is
especially important for large data set in a parallel processing configuration where the
analysis is distributed over several processors and you can specify which entries to send to
each processor. With MakeClass the user has control over the event loop, with
MakeSelector the tree is in control of the event loop.

Simple Analysis Using TTree::Draw
We will use the tree in staff.root which was made by the macro in
$ROOTSYS/tutorials/staff.C.

First, open the file and lists its contents.

root[] TFile f ("staff.root")
root[] f.ls()
TFile** staff.root
 TFile* staff.root
 KEY: TTree tree;1 staff data from ascii file

We can see the TTree"tree" in the file. We will use it to experiment with the
TTree::Draw method, so let’s create a pointer to it:

root[] TTree *MyTree = tree

CINT allows us to simply get the object by using it. Here we define a pointer to a TTree
object and assign it the value of "tree", the TTree in the file. CINT looks for "tree" and
returns it. To show the different Draw options, we create a canvas with four sub-pads. We
will use one sub-pad for each Draw command.

root[] TCanvas *myCanvas = new TCanvas()
root[] myCanvas->Divide(2,2)

June 2003 v3.05 Trees 225

We activate the first pad with the TCanvas::cd statement:

root[] myCanvas->cd(1)

We then draw the variable cost:

root[] MyTree->Draw("cost")

As you can see, the last call TTree::Draw has only one parameter. It is a string containing
the leaf name. A histogram is automatically created as a result of a TTree::Draw. The
style of the histogram is inherited from the TTree attributes and the current style (gStyle)
is ignored. The TTree gets its attributes from the current TStyle at the time it was
created. You can call the method TTree::UseCurrentStyle to change to the current
style rather than the TTree style. (See gStyle; see also Graphics and Graphic User
Interface)

In this next segment we activate the second pad and draw a scatter plot variables:

root[] myCanvas->cd(2)
root[] MyTree->Draw("cost:age")

This signature still only has one parameter, but it now has two dimensions separated by a
colon (“x:y”). The item to be plotted can be an expression not just a simple variable. In
general, this parameter is a string that contains up to three expressions, one for each
dimension, separated by a colon (“e1:e2:e3”). A list of examples follows this introduction.

Using Selection with TTree:Draw
Change the active pad to 3, and add a selection to the list of parameters of the draw
command.

root[] myCanvas->cd(3)
root[] MyTree->Draw("cost:age","nation == 3");

This will draw the cost vs. age for the entries where the nation is equal to 3. You can
use any C++ operator, plus some functions defined in TFormula, in the selection
parameter.

The value of the selection is used as a weight when filling the histogram. If the expression
includes only Boolean operations as in the example above, the result is 0 or 1. If the result
is 0, the histogram is not filled. In general, the expression is:

Selection = "weight *(boolean expression)"

If the Boolean expression evaluates to true, the histogram is filled with a weight. If the
weight is not explicitly specified it is assumed to be 1.

For example, this selection will add 1 to the histogram if x is less than y and the square root
of z is less than 3.2.

"x<y && sqrt(z)>3.2"

On the other hand, this selection will add x+y to the histogram if the square root of z is
larger than 3.2.

"(x+y)*(sqrt(z)>3.2)"

The Draw method has its own parser, and it only looks in the current tree for variables. This
means that any variable used in the selection must be defined in the tree. You cannot use
an arbitrary global variable in the TTree::Draw method.

226 Trees June 2003 v3.05

Using TCut Objects in TTree::Draw
The TTree::Draw method also accepts TCut objects. A TCut is a specialized string
object used for TTree selections. A TCut object has a name and a title. It does not have
any data members in addition to what it inherits from TNamed. It only adds a set of
operators to do logical string concatenation. For example, assume:

TCut cut1 = "x<1"
TCut cut2 = "y>2"

then

cut1 && cut2
//result is the string "(x<1)&&(y>2)"

Operators =, +=, +, *, !, &&, || are overloaded, here are some examples:

root[]TCut c1 = "x < 1"
root[]TCut c2 = "y < 0"
root[]TCut c3 = c1 && c2
root[]MyTree.Draw("x", c1)
root[]MyTree.Draw("x", c1 || "x>0")
root[]MyTree.Draw("x", c1 && c2)
root[]MyTree.Draw("x", "(x + y)" * (c1 && c2)

Accessing the Histogram in Batch Mode
The TTree::Draw method creates a histogram called htemp and puts it on the active pad.
In a batch program, the histogram htemp created by default, is reachable from the current
pad.

// draw the histogram
nt->Draw("x", "cuts");
// get the histogram from the current pad
TH1F htemp = (TH1F*)gPad->GetPrimitive("htemp");
// now we have full use of the histogram
htemp->GetEntries();

If you pipe the result of the TTree::Draw into a histogram, the histogram is also available
in the current directory. You can do:

// Draw the histogram and fill hnew with it
nt->Draw("x>>hnew","cuts");
// get hnew from the current directory
TH1F *hnew = (TH1F*)gDirectory->Get("hnew");
// or get hnew from the current Pad
TH1F *hnew = (TH1F*)gPad->GetPrimitive("hnew");

Using Draw Options in TTree::Draw
The next parameter is the draw option for the histogram:

root[] myCanvas->cd(4)
root[] MyTree->Draw("cost:age","nation == 3","surf2”);

The draw options are the same as for TH1::Draw, and they are listed in the section: Draw
Options in the chapter on Histograms. In addition to the draw options defined in TH1, there
are three more. The 'prof' and 'profs' draw a profile histogram (TProfile) rather
than a regular 2D histogram (TH2D) from an expression with two variables. If the
expression has three variables, a TProfile2D is generated.

June 2003 v3.05 Trees 227

The 'profs' generates a TProfile with error on the spread. The 'prof' option
generates a TProfile with error on the mean. The "goff" option suppresses generating
the graphics. You can combine the draw options in a list separated by commas. After
typing the lines above, you should now have a canvas that looks like this.

Superimposing Two Histograms
When superimposing two 2-D histograms inside a script with TTree::Draw and using the
"same" option, you will need to update the pad between Draw commands.

// superimpose two 2D scatter plots
{
 // Create a 2D histogram and fill it with random numbers
 TH2 *h2 = new TH2D ("h2","2D histo",100,0,70,100,0,20000);
 for (Int_t i = 0; i < 10000; i++)
 h2->Fill(gRandom->Gaus(40,10),gRandom->Gaus(10000,3000));

 // set the color to differentiate it visually
 h2->SetMarkerColor(kGreen);
 h2->Draw();

 // Open the example file and get the tree
 TFile f("staff.root");
 TTree *myTree = (TTree*)f.Get("tree");

 // the update is needed for the next draw command to work properly
 gPad->Update();
 myTree->Draw("cost:age", "","same");
}

In this example, h2->Draw is only adding the object h2 to the pad's list of primitives. It does
not paint the object on the screen. However, TTree::Draw when called with option "same"
gets the current pad coordinates to build an intermediate histogram with the right limits.
Since nothing has been painted in the pad yet, the pad limits have not been computed.
Calling pad->Update forces the painting of the pad and allows TTree::Draw to compute
the right limits for the intermediate histogram.

Setting the Range in TTree::Draw
There are two more optional parameters to the TTree::Draw method: one is the number of
entries and the second one is the entry to start with. For example this command draws 1000
entries starting with entry 100:

myTree->Draw("cost:age", "","",1000,100);

228 Trees June 2003 v3.05

TTree::Draw Examples
The examples below use the Event.root file generated by the $ROOTSYS/test/Event
executable and the Event, Track, and EventHeader class definitions are in
$ROOTSYS/test/Event.h.

The commands have been tested on the split levels 0, 1, and 9. Each command is
numbered and referenced by the explanations immediately following the examples.

// Data members and methods
1 tree->Draw("fNtrack");
2 tree->Draw("event.GetNtrack()");
3 tree->Draw("GetNtrack()");

4 tree->Draw("fH.fXaxis.fXmax");
5 tree->Draw("fH.fXaxis.GetXmax()");
6 tree->Draw("fH.GetXaxis().fXmax");
7 tree->Draw("GetHistogram().GetXaxis().GetXmax()");

// expressions in the selection paramter
8 tree->Draw("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");
9 tree->Draw("fPx","fEvtHdr.fEvtNum%10 == 0");

// Two dimensional arrays
// fMatrix is defined as:
// Float_t fMatrix[4][4]; in Event class
10 tree->Draw("fMatrix");
11 tree->Draw("fMatrix[][]");
12 tree->Draw("fMatrix[2][2]");
13 tree->Draw("fMatrix[][0]");
14 tree->Draw("fMatrix[1][]");

// using two arrays…
// Float_t fVertex[3]; in Track class
15 tree->Draw("fMatrix - fVertex");
16 tree->Draw("fMatrix[2][1] - fVertex[5][1]");
17 tree->Draw("fMatrix[][1] - fVertex[5][1]");
18 tree->Draw("fMatrix[2][] - fVertex[5][]");
19 tree->Draw("fMatrix[][2] - fVertex[][1]");
20 tree->Draw("fMatrix[][2] - fVertex[][]");
21 tree->Draw("fMatrix[][] - fVertex[][]");
// Float_t fVertex[3]; in Track class
15 tree->Draw("fMatrix - fVertex");
16 tree->Draw("fMatrix[2][1] - fVertex[5][1]");
17 tree->Draw("fMatrix[][1] - fVertex[5][1]");
18 tree->Draw("fMatrix[2][] - fVertex[5][]");
19 tree->Draw("fMatrix[][2] - fVertex[][1]");
20 tree->Draw("fMatrix[][2] - fVertex[][]");
21 tree->Draw("fMatrix[][] - fVertex[][]");

// variable length arrays
22 tree->Draw("fClosestDistance");
23 tree->Draw("fClosestDistance[fNvertex/2]");

// mathematical expressions
24 tree->Draw("sqrt(fPx*fPx + fPy*fPy + fPz*fPz))");

// strings
25 tree->Draw("fEvtHdr.fEvtNum","fType==\"type1\" ");
26 tree->Draw("fEvtHdr.fEvtNum","strstr(fType,\"1\" ");
 // continued…

June 2003 v3.05 Trees 229

// Where fPoints is defined in the track class:
// Int_t fNpoint;
// Int_t *fPoints; [fNpoint]
27 tree->Draw("fTracks.fPoints");
28 tree->Draw("fTracks.fPoints –
 fTracks.fPoints[][fAvgPoints]");
29 tree->Draw("fTracks.fPoints[2][]- fTracks.fPoints[][55]");
30 tree->Draw("fTracks.fPoints[][] - fTracks.fVertex[][]");

// Selections
31 tree->Draw("fValid&0x1","(fNvertex>10) && (fNseg<=6000)")
32 tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");
33 tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");
34 tree->Draw("fVertex","fVertex>10")
35 tree->Draw("fPx[600]")
36 tree->Draw("fPx[600]","fNtrack>600")

// Alphanumeric bin histogram
37 tree->Draw("Nation")

// where Nation and Division is a char* indended to be used
// as a string
38 tree->Draw("MyByte + 0")
// where MyByte is a char* intended to be used as a byte

Explanations:
1. tree->Draw("fNtrack");

It fills the histogram with the number of tracks for each entry. fNtrack is a member of
event.

2. tree->Draw("event.GetNtrack()");

Same as case 1, but use the method of event to get the number of tracks. When using
a method, you can include parameters for the method as long as the parameters are
literals.

3. tree->Draw("GetNtrack()");

Same as case 2, the object of the method is not specified. The command uses the first
instance of the GetNtrack method found in the objects stored in the tree. We
recommend using this shortcut only if the method name is unique.

4. tree->Draw("fH.fXaxis.fXmax");

Draw the data member of a data member. In the tree, each entry has a histogram. This
command draws the maximum value of the X-axis for each histogram.

5.tree->Draw("fH.fXaxis.GetXmax()");

Same as case 4, but use the method of a data member.
6.tree->Draw("fH.GetXaxis().fXmax");

The same as case 4: a data member of a data member retrieved by a method.
7. tree->Draw("GetHistogram().GetXaxis().GetXmax()");

Same as case 4, using only methods.
8.tree->Draw("fTracks.fPx","fEvtHdr.fEvtNum%10 == 0");

Use data members in the expression and in the selection parameter to plot fPx or all
tracks in every 10th entry. Since fTracks is a TClonesArray of Tracks, there will
be d values of fPx for each entry.

9. tree->Draw("fPx","fEvtHdr.fEvtNum%10 == 0");

Same as case 8, use the name of the data member directly.

230 Trees June 2003 v3.05

10.tree->Draw("fMatrix");

When the index of the array is left out or when empty brackets are used [], all values
of the array are selected. Draw all values of fMatrix for each entry in the tree. If
fMatrix is defined as: Float_t fMatrix[4][4], all 16 values are used for each
entry.

11. tree->Draw("fMatrix[][]");

The same as case 10, all values of fMatrix are drawn for each entry.

12. tree->Draw("fMatrix[2][2]");

The single element at fMatrix[2][2] is drawn for each entry.

13. tree->Draw("fMatrix[][0]");

Four elements of fMatrix are used: fMatrix[1][0], fMatrix[2][0],
fMatrix[3][0], fMatrix[4][0].

14. tree->Draw("fMatrix[1][]");

Four elements of fMatrix are used: fMatrix[1][0], fMatrix[1][2],
fMatrix[1][3], fMatrix[1][4].

15. tree->Draw("fMatrix - fVertex");

With two arrays and unspecified element numbers, the number of selected values is the
minimum of the first dimension times the minimum of the second dimension. In this
case fVertex is also a two dimensional array since it is a data member of the tracks
array. If fVertex is defined in the track class as: Float_t *fVertex[3], it has
fNtracks x 3 elements. fMatrix has 4 x 4 elements. This case, draws 4 (the
smaller of fNtrack and 4) times 3 (the smaller of 4 and 3), meaning 12 elements per
entry. The selected values for each entry are:
fMatrix[0][0] – fVertex[0][0]
fMatrix[0][1] – fVertex[0][1]
fMatrix[0][2] – fVertex[0][2]
fMatrix[1][0] – fVertex[1][0]
fMatrix[1][1] – fVertex[1][1]
fMatrix[1][2] – fVertex[1][2]
fMatrix[2][0] – fVertex[2][0]
fMatrix[2][1] – fVertex[2][1]
fMatrix[2][2] – fVertex[2][2]
fMatrix[3][0] – fVertex[3][0]
fMatrix[3][1] – fVertex[3][1]
fMatrix[3][2] – fVertex[3][2]

16. tree->Draw("fMatrix[2][1] - fVertex[5][1]");

This command selects one value per entry.
17. tree->Draw("fMatrix[][1] - fVertex[5][1]");

The first dimension of the array is taken by the fMatrix.

fMatrix[0][1] - fVertex[5][1]
fMatrix[1][1] - fVertex[5][1]
fMatrix[2][1] - fVertex[5][1]
fMatrix[3][1] - fVertex[5][1]

18. tree->Draw("("fMatrix[2][] - fVertex[5][]");

The first dimension minimum is 2, and the second dimension minimum is 3 (from
fVertex). Three values are selected from each entry:

fMatrix[2][0] - fVertex[5][0]
fMatrix[2][1] - fVertex[5][1]
fMatrix[2][2] - fVertex[5][2]

June 2003 v3.05 Trees 231

19. tree->Draw("fMatrix[][2] - fVertex[][1]")

This is similar to case 18. Four values are selected from each entry:

fMatrix[0][2] - fVertex[0][1]
fMatrix[1][2] - fVertex[1][1]
fMatrix[2][2] - fVertex[2][1]
fMatrix[3][2] - fVertex[3][1]

20. tree->Draw("fMatrix[][2] - fVertex[][]")

This is similar to case 19. Twelve values are selected (4x3) from each entry:

fMatrix[0][2] - fVertex[0][0]
fMatrix[0][2] - fVertex[0][1]
fMatrix[0][2] - fVertex[0][2]
fMatrix[1][2] - fVertex[1][0]
fMatrix[1][2] - fVertex[1][1]
fMatrix[1][2] - fVertex[1][2]
fMatrix[2][2] - fVertex[2][0]
fMatrix[2][2] - fVertex[2][1]
fMatrix[2][2] - fVertex[2][2]
fMatrix[3][2] - fVertex[3][0]
fMatrix[3][2] - fVertex[3][1]
fMatrix[3][2] - fVertex[3][2]

21. tree->Draw("fMatrix[][] - fVertex[][]")

This is the same as case 15. The first dimension minimum is 4 (from fMatrix), and
the second dimension minimum is 3 (from fVertex). Twelve values are selected from
each entry.

22. tree->Draw("fClosestDistance")

This event data member fClosestDistance is a variable length array: Float_t
*fClosestDistance; //[fNvertex]
This command selects all elements, but the number per entry depends on the number
of vertices of that entry.

23. tree->Draw("fClosestDistance[fNvertex/2]")

With this command the element at fNvertex/2 of the fClosestDistance array is
selected. Only one per entry is selected.

24. tree->Draw("sqrt(fPx*fPx + fPy*fPy + fPz*fPz)")

This command shows the use of a mathematical expression. It draws the square root of
the sum of the product.

25. tree->Draw("fEvtHdr.fEvtNum","fType==\"type1\" ")

You can compare strings, using the symbols == and !=, in the first two parameters of
the Draw command (TTreeFormula). In this case, the event number for ‘type1’
events is plotted.

26. tree->Draw("fEvtHdr.fEvtNum","strstr(fType,\"1\") ")

To compare strings, you can also use strstr. In this case, events having a '1' in
fType are selected.

27. tree->Draw("fTracks.fPoints")

If fPoints is a data member of the Track class declared as:
 Int_t fNpoint;
 Int_t *fPoints; [fNpoint]
The size of the array fPoints varies with each track of each event. This command
draws all the value in the fPoints arrays.

232 Trees June 2003 v3.05

28. tree->Draw("fTracks.fPoints - fTracks.fPoints[][fAvgPoints]");

When fAvgPoints is a data member of the Event class, this example selects:

fTracks[0].fPoints[0] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[1] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[2] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[3] - fTracks[0].fPoint[fAvgPoints]
fTracks[0].fPoints[4] - fTracks[0].fPoint[fAvgPoints]
…

fTracks[0].fPoints[max0]- fTracks[0].fPoint[fAvgPoints]

fTracks[1].fPoints[0] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[1] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[2] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[3] - fTracks[1].fPoint[fAvgPoints]
fTracks[1].fPoints[4] - fTracks[1].fPoint[fAvgPoints]
…

fTracks[1].fPoints[max1]- fTracks[1].fPoint[fAvgPoints]
…

fTracks[fNtrack-1].fPoints[0]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[1]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[2]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[3]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
fTracks[fNtrack-1].fPoints[4]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]
…

fTracks[fNtrack-1].fPoints[maxn]
 - fTracks[fNtrack-1].fPoint[fAvgPoints]

Where max0, max1, … max n, is the size of the fPoints array for the respective
track.

29. tree->Draw("fTracks.fPoints[2][]– fTracks.fPoints[][55]")

For each event, this expression is selected:

fTracks[2].fPoints[0] - fTracks[0].fPoints[55]
fTracks[2].fPoints[1] - fTracks[1].fPoints[55]
fTracks[2].fPoints[2] - fTracks[2].fPoints[55]
fTracks[2].fPoints[3] - fTracks[3].fPoints[55]
 ...

 fTracks[2].fPoints[max] - fTracks[max].fPoints[55]

where max is the minimum of fNtrack and fTracks[2].fNpoint.

30. tree->Draw("fTracks.fPoints[][] - fTracks.fVertex[][]")

For each event and each track, this expression is selected. It is the difference between
fPoints and of fVertex. The number of elements used for each track is the
minimum of fNpoint and 3 (the size of the fVertex array).

fTracks[0].fPoints[0] - fTracks[0].fVertex[0]
fTracks[0].fPoints[1] - fTracks[0].fVertex[1]
fTracks[0].fPoints[2] - fTracks[0].fVertex[2]
// with fTracks[1].fNpoint==7

June 2003 v3.05 Trees 233

fTracks[1].fPoints[0] - fTracks[1].fVertex[0]
fTracks[1].fPoints[1] - fTracks[1].fVertex[1]
fTracks[1].fPoints[2] - fTracks[1].fVertex[2]
// with fTracks[1].fNpoint==5

fTracks[2].fPoints[0] - fTracks[1].fVertex[0]
fTracks[2].fPoints[1] - fTracks[1].fVertex[1]
// with fTracks[2].fNpoint==2

fTracks[3].fPoints[0] - fTracks[3].fVertex[0]
// with fTracks[3].fNpoint==1

fTracks[4].fPoints[0] - fTracks[4].fVertex[0]
fTracks[4].fPoints[1] - fTracks[4].fVertex[1]
fTracks[4].fPoints[2] - fTracks[4].fVertex[2]
// with fTracks[4].fNpoint==3

31. tree->Draw("fValid&0x1","(fNvertex>10) && (fNseg<=6000)")

You can use bit patterns (&,|,<<) or Boolean operation.

32. tree->Draw("fPx","(fBx>.4) || (fBy<=-.4)");
33. tree->Draw("fPx","fBx*fBx*(fBx>.4) + fBy*fBy*(fBy<=-.4)");

The selection argument is used as a weight. The expression returns a multiplier and in
case of a Boolean the multiplier is either 0 (for false) or 1 (for true). The first command
draws fPx for the range between 0.4 and –0.4, the second command draws fPx for
the same range, but adds a weight using the result of the second expression.

34. tree->Draw("fVertex","fVertex>10")

When using arrays in the selection and the expression, the selection is applied to each
element of the array.

if (fVertex[0]>10) fVertex[0]
if (fVertex[1]>10) fVertex[1]
if (fVertex[2]>10) fVertex[2]

35. tree->Draw("fPx[600]")

36. tree->Draw("fPx[600]","fNtrack > 600")

When using a specific element for a variable length array the entries with less elements
are ignored. Thus these two commands are equivalent.

37. tree->Draw("Nation")

Nation is a char* branch. When drawing a char* it will plot an alphanumeric
histogram, of the different value of the string Nation. The axis will have the Nation
values (see Alphanumeric Histograms in the Histogram chapter).

38. tree->Draw("MyChar +0")

If you want to plot a char* variable as a byte rather than a string, you can use the syntax
above.

Creating an Event List
The TTree::Draw method can also be used to build a list of the entries. When the first
argument is preceded by ">>" ROOT knows that this command is not intended to draw
anything, but to save the entries in a list with the name given by the first argument. The
resulting list is a TEventList, and is added to the objects in the current directory.

For example, to create a TEventList of all entries with more than 600 tracks:

root[] TFile *f = new TFile("Event.root")
root[] T->Draw(">> myList"," fNtrack > 600")

This list contains the entry number of all entries with more than 600 tracks.

234 Trees June 2003 v3.05

To see the entry numbers use the Print("all") command.

root[] myList->Print("all")

When using the ">>" whatever was in the TEventList is overwritten. The TEventList
can be grown by using the ">>+" syntax.

For example to add the entries, with exactly 600 tracks:

root[] T->Draw(">>+ myList"," fNtrack == 600")

If the Draw command generates duplicate entries, they are not added to the list.

root[] T->Draw(">>+ myList"," fNtrack > 610")

This command does not add any new entries to the list because all entries with more than
610 tracks have already been found by the previous command for entries with more than
600 tracks.

Using an Event List
The TEventList can be used to limit the TTree to the events in the list. The
SetEventList method tells the tree to use the event list and hence limits all subsequent
TTree methods to the entries in the list. In this example, we create a list with all entries
with more than 600 tracks and then set it so the Tree will use this list. To reset the TTree to
use all events use SetEventList(0).

1) Let’s look at an example. First, open the file and draw the fNtrack.

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack ")

2) Now, put the entries with over 600 tracks into a TEventList called myList. We get the
list from the current directory and assign it to a variable list.

root[] T->Draw(">>myList"," fNtrack > 600")
root[] TEventList *list=(TEventList*)gDirectory->Get("myList")

3) Instruct the tree T to use the new list and draw it again. Note that this is exactly the same
Draw command. The list limits the entries.

root[] T->SetEventList(list)
root[] T->Draw("fNtrack ")

You should now see a canvas that looks like this one.

June 2003 v3.05 Trees 235

Filling a Histogram
The TTree::Draw method can also be used to fill a specific histogram. The syntax is:

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack >> myHisto")
root[] myHisto->Print()
TH1.Print Name= myHisto, Entries= 100, Total sum= 100

As we can see, this created a TH1, called myHisto. If you want to append more entries to
the histogram, you can use this syntax:

root[] T->Draw("fNtrack >>+ myHisto")

If you do not create a histogram ahead of time, ROOT will create one at the time of the
Draw command (as is the case above). If you would like to draw the variable into a specific
histogram where you, for example, set the range and bin number, you can define the
histogram ahead of time and use it in the Draw command. The histogram has to be in the
same directory as the tree.

root[] TH1 *h1 = new TH1("h1","h1",50,0.,150.);
root[] T->Draw("fNtrack>> h1");

When you project a TTree into a histogram, the histogram inherits the TTree attributes
and not the current style attributes. This allows you to project two Trees with different
attributes into the same picture. You can call the method TTree::UseCurrentStyle to
change the histogram to use the current style (gStyle, see the Chapter Graphics and
Graphic User Interfaces).

The binning of the newly created histogram can be specified in two ways. You can set a
default in the .rootrc and/or you can add the binning information in the TTree::Draw
command.

To set number of bins default for the 1-d,2-d,3-d histograms can be specified in the
.rootrc file via the environment variables, e.g.:

default binnings
Hist.Binning.1D.x: 100

Hist.Binning.2D.x: 40
Hist.Binning.2D.y: 40
Hist.Binning.2D.Prof: 100

Hist.Binning.3D.x: 20
Hist.Binning.3D.y: 20
Hist.Binning.3D.z: 20
Hist.Binning.3D.Profx: 100
Hist.Binning.3D.Profy: 100

To set the number of bins for a specific histogram when using TTree::Draw, add up to
nine numbers following the histogram name. The numbers meaning is:

1 bins in x-direction
2 lower limit in x-direction
3 upper limit in x-direction
4-6 same for y-direction
7-9 same for z-direction

When a bin number is specified, the value becomes the default. Any of the numbers can be
skipped.

236 Trees June 2003 v3.05

For example:

tree.Draw("sqrt(x)>>hsqrt(500,10,20)";
// plot sqrt(x) between 10 and 20 using 500 bins

tree.Draw("sqrt(x):sin(y)>>hsqrt(100,10,,50,.1,.5)";
// plot sqrt(x) against sin(y)
// 100 bins in x-direction; lower limit on x-axis is 10;
// no upper limit
// 50 bins in y-direction; lower limit on y-axis is .1;
// upper limit is .5

When the name is followed by binning information, appending the histogram with a "+", will
not reset hsqrt, but will continue to fill it.

tree.Draw("sqrt(x)>>+hsqrt","y>0");

This works for 1-D, 2-D and 3-D histograms.

Projecting a Histogram
If you would like to fill a histogram, but not draw it you can use the TTree::Project()
method.

root[] T->Project("quietHisto","fNtrack")

Making a Profile Histogram
In case of a two dimensional expression, you can generate a TProfile histogram instead
of a two dimensional histogram by specifying the 'prof' or 'profs' option. The prof
option is automatically selected when the output is redirected into a TProfile. For
example y:x>>pf where pf is an existing TProfile histogram.

Tree Information
Once we have drawn a tree, we can get information about the tree. These are the methods
used to get information from a drawn tree TTree:

• GetSelectedRows: Returns the number of entries accepted by the selection
expression. In case where no selection was specified, it returns the number of entries
processed.

• GetV1: Returns a pointer to the float array of the first variable.
• GetV2: Returns a pointer to the float array of second variable
• GetV3: Returns a pointer to the float array of third variable.
• GetW: Returns a pointer to the float array of Weights where the weight equals the

result of the selection expression.

To read the drawn values of fNtrack into an array, and loop through the entries follow the
lines below. First, open the file and draw the fNtrack variable:

root[] TFile *f = new TFile("Event.root")
root[] T->Draw("fNtrack")

Then declare a pointer to a float and use the GetV1 method to retrieve the first dimension
of the tree. In this example we only drew one dimension (fNtrack) if we had drawn two,
we could use GetV2 to get the second one.

root[] Float_t *a
root[] a = T->GetV1()

June 2003 v3.05 Trees 237

Loop through the first 10 entries and print the values of fNtrack:

root[] for (int i = 0; i < 10; i++)
root[] cout << a[i] << " "
root[] cout << endl // need an endl to see the values
594 597 606 595 604 610 604 602 603 596

By default, TTree::Draw creates these arrays with fEstimate words
where fEstimate can be set via TTree::SetEstimate. If you have more entries than
fEstimate only the first fEstimate selected entries will be stored in the arrays. The
arrays are used as buffers. When fEstimate entries have been processed, ROOT scans
the buffers to compute the minimum and maximum of each coordinate and creates the
corresponding histograms. You can use these lines to read all entries into these arrays:

 root[] Int_t nestimate = (Int_t)T->GetEntries();
 root[] T->SetEstimate(nestimate);

Obviously, this will not work if the number of entries is very large. This technique is useful in
several cases, for example if you want to draw a graph connecting all the x,y (or z)
points. Note that you may have a tree (or chain) with 1 billion entries, but only a few may
survive the cuts and will fit without problems in these arrays.

Using TTree::MakeClass
The TTree::Draw method is convenient and easy to use; however it falls short if you need
to do some programming with the variable.

For example, for plotting the masses of all oppositely changed pairs of tracks, you would
need to write a program that loops over all events, finds all pairs of tracks, and calculates
the required quantities. We have shown how to retrieve the data arrays from the branches
of the tree in the previous section, and you could just write that program from scratch. Since
this is a very common task, ROOT provides a utility that generates a skeleton class
designed to loop over the entries of the tree. This is the TTree::MakeClass method

We will now go through the steps of using MakeClass with a simplified example. The
methods used here obviously work for much more complex event loop calculations.

These are our assumptions: we would like to do selective plotting and loop through each
entry of the tree and tracks. We chose a simple example: we want to plot fPx of the first
100 tracks of each entry. We have a ROOT tree with a branch for each data member in the
"Event" object. To build this file and tree follow the instructions on how to build the
examples in $ROOTSYS/test.

Execute Event and instruct it to split the object with this command (from the UNIX
command line).

> $ROOTSYS/test/Event 400 1 2 1

This creates an Event.root file with 400 events, compressed, split, and filled. See
$ROOTSYS/test/MainEvent.Cxx for more info.

The person who designed the tree makes a shared library available to you, which defines
the classes needed. In this case, the classes are Event, EventHeader, and Track and
they are defined in the shared library libEvent.so. The designer also gives you the
Event.h file to see the definition of the classes. You can locate Event.h in
$ROOTSYS/test, and if you have not yet built libEvent.so, please see the instructions
of how to build it. If you have already built it, you can now use it again.

238 Trees June 2003 v3.05

Creating a Class with MakeClass
First, we load the shared library and open Event.root.

root[] .L libEvent.so
root[] TFile *f = new TFile("Event.root");
root[] f->ls();
TFile** Event.root TTree benchmark ROOT file
 TFile* Event.root TTree benchmark ROOT file
 KEY: TH1F htime;1 Real-Time to write versus time
 KEY: TTree T;1 An example of a ROOT tree

We can see there is a tree “T”, and just to verify that we are working with the correct one,
we print the tree, which will show us the header and branches.

root[] T->Print();

From the output of print we can see that the tree has one branch for each data member of
Event, Track, and EventHeader.

Now we can use TTree::MakeClass on our tree “T”. MakeClass takes one parameter, a
string containing the name of the class to be made.

In the command below, the name of our class will be “MyClass”.

root[] T->MakeClass("MyClass")
Files: MyClass.h and MyClass.C generated from Tree: T

CINT informs us that it has created two files. MyClass.h contains the class definition and
MyClass.C contains the MyClass::Loop method. MyClass has more methods than just
Loop. The other methods are: a constructor, a destructor, GetEntry, LoadTree,
Notify, and Show. The implementations of these methods are in the .h file. This division
of methods was done intentionally. The .C file is kept as short as possible, and contains
only code that is intended for you to customize. The .h file contains all the other methods.

It is clear that you want to be as independent as possible of the header file (i.e.
MyClass.h) generated by MakeClass. The solution is to implement a derived class, for
example MyRealClass deriving from MyClass such that a change in your Tree or
regeneration of MyClass.h does not force you to change MyRealClass.h. You can
imagine deriving several classes from MyClass.h, each with a specific algorithm.

To start with, it helps to understand both files, so let’s start with MyClass.h and the class
definition:

MyClass.h

class MyClass {
 public :
 //pointer to the analyzed TTree or TChain
 TTree *fChain;
 //current Tree number in a TChain
 Int_t fCurrent;
 //Declaration of leaves types
 UInt_t fUniqueID;
 UInt_t fBits;
 Char_t fType[20];
 Int_t fNtrack;
 Int_t fNseg;
 Int_t fNvertex;
 UInt_t fFlag;
 Float_t fTemperature;
 Int_t fEvtHdr_fEvtNum;
 //continued…

June 2003 v3.05 Trees 239

 //List of branches
 TBranch *b_fUniqueID;
 TBranch *b_fBits;
 TBranch *b_fType;
 TBranch *b_fNtrack;
 TBranch *b_fNseg;
 TBranch *b_fNvertex;
 TBranch *b_fFlag;
 TBranch *b_fTemperature;
 TBranch *b_fEvtHdr_fEvtNum;
…
 MyClass(TTree *tree=0);
 ~MyClass();
 Int_t Cut(Int_t entry);
 Int_t GetEntry(Int_t entry);
 Int_t LoadTree(Int_t entry);
 void Init(TTree *tree);
 void Loop();
 Bool_t Notify();
 void Show(Int_t entry = -1);
};

We can see data members in the generated class. The first data member is fChain. Once
this class is instantiated, fChain will point to the original tree or chain this class was made
from. In our case, this is “T” in “Event.root”. If the class is instantiated with a tree as a
parameter to the constructor, fChain will point to the tree named in the parameter.

Next is fCurrent, which is also a pointer to the current tree/chain. Its role is only relevant
when we have multiple trees chained together in a TChain.

The class definition shows us that this tree has one branch and one leaf per data member.

The methods of MyClass are:

• MyClass(TTree *tree=0): This constructor has an optional tree for a parameter.
If you pass a tree, MyClass will use it rather than the tree from which it was created.

• void Init(TTree *tree): Init is called by the constructor to initialize the tree for
reading. It associates each branch with the corresponding leaf data member.

• ~MyClass():This is the destructor, nothing special.
• Int_t GetEntry(Int_t entry): This loads the class with the entry specified.

Once you have executed GetEntry, the leaf data members in MyClass are set to the
values of the entry. For example, GetEntry(12) loads the 13th event into the event
data member of MyClass (note that the first entry is 0).
GetEntry returns the number of bytes read from the file. In case the same entry is
read twice, ROOT does not have to do any I/O. In this case GetEntry returns 1. It
does not return 0, because many people assume a return of 0 means an error has
occurred while reading.

• Int_t LoadTree(Int_t entry) and void Notify():
These two methods are related to chains. LoadTree will load the tree containing the
specified entry from a chain of trees. Notify is called by LoadTree to adjust the
branch addresses.

• void Loop(): This is the skeleton method that loops through each entry of the
tree. This is interesting to us, because we will need to customize it for our analysis.

240 Trees June 2003 v3.05

MyClass.C
MyClass::Loop consists of a for-loop calling GetEntry for each entry. In the template,
the numbers of bytes are added up, but it does nothing else. If we were to execute it now,
there would be no output.

void MyClass::Loop()
{
 if (fChain == 0) return;
 Int_t nentries = Int_t(fChain->GetEntries());

 Int_t nbytes = 0, nb = 0;
 for (Int_t jentry=0; jentry<nentries;jentry++) {
 Int_t ientry = LoadTree(jentry);
 // in case of a TChain, ientry is the entry number
 // in the current file
 nb = fChain->GetEntry(jentry); nbytes += nb;
 // if (Cut(ientry) < 0) continue;
 }
}

At the beginning of the file are instructions about reading selected branches. They are not
reprinted here, but please read them from your own file

Modifying MyClass::Loop
Lets continue with the goal of going through the first 100 tracks of each entry and plot Px.
To do this we change the Loop method.

…
 if (fChain == 0) return;
 Int_t nentries = Int_t(fChain->GetEntries());
 TH1F *myHisto = new TH1F("myHisto","fPx", 100, -5,5);
 TH1F *smallHisto = new TH1F("small","fPx", 100, -5,5);
…

In the for-loop, we need to add another for-loop to go over all the tracks.
In the outer for-loop, we get the entry and the number of tracks.
In the inner for-loop, we fill the large histogram (myHisto) with all tracks and the small
histogram (smallHisto) with the track if it is in the first 100.

…
 for (Int_t jentry=0; jentry<nentries;jentry++) {
 GetEntry(jentry);
 for (Int_t j = 0; j < 100; j++){
 myHisto->Fill(fTracks_fPx[j]);
 if (j < 100){
 smallHisto->Fill(fTracks_fPx[j]);
 }
 }
 }
…

Outside of the for-loop, we draw both histograms on the same canvas.

…
myHisto->Draw();
smallHisto->Draw("Same");
…

Save these changes to MyClass.C and start a fresh root session. We will now load
MyClass and experiment with its methods.

June 2003 v3.05 Trees 241

Loading MyClass
The first step is to load the library and the class file. Then we can instantiate a MyClass
object.

root[] .L libEvent.so
root[] .L MyClass.C
root[] MyClass m

Now we can get a specific entry and populate the event leaf. In the code snipped below, we
get entry 0, and print the number of tracks (594). Then we get entry 1 and print the number
of tracks (597).

root[] m.GetEntry(0)
(int)57503
root[] m.fNtrack()
(Int_t)594
root[] m.GetEntry(1)
(int)48045
root[] m.fNtrack()
(Int_t)597

Now we can call the Loop method, which will build and display the two histograms.

root[] m.Loop()

You should now see a canvas that looks like this.

To conclude the discussion on MakeClass let’s lists the steps that got us here.

• Call TTree::MakeClass, which automatically creates a class to loop over the tree.
• Modify the MyClass::Loop() method in MyClass.C to fit your task.
• Load and instantiate MyClass, and run MyClass::Loop().

Using TTree::MakeSelector
With a TTree we can make a selector and use it to process a limited set of entries. This is
especially important in a parallel processing configuration where the analysis is distributed
over several processors and we can specify which entries to send to each processor. The
TTree::Process method is used to specify the selector and the entries.

Before we can use TTree::Process we need to make a selector. We can call the
TTree::MakeSelector method. It creates two files similar to TTree::MakeClass.

242 Trees June 2003 v3.05

In the resulting files is a class that is a descendent of TSelector and implements the
following methods:

• TSelector::Begin: This function is called every time a loop over the tree starts.
This is a convenient place to create your histograms.

• TSelector::Notify(): This function is called at the first entry of a new tree in a
chain.

• TSelector::ProcessCut: This function is called at the beginning of each entry to
return a flag true if the entry must be analyzed.

• TSelector::ProcessFill: This function is called in the entry loop for all entries
accepted by Select.

• TSelector::Terminate: This function is called at the end of a loop on a TTree.
This is a convenient place to draw and fit your histograms.

The TSelector, unlike the resulting class from MakeClass, separates the processing into
a ProcessCut and ProcessFill, so that we can limit reading the branches to the ones
we need.

To create a selector call:

root[] T->MakeSelector("MySelector");

Where T is the TTree and MySelector is the name of created class and the name of the
.h and .C files.

The resulting TSelector is the argument to TTree::Process. The argument can be the
file name or a pointer to the selector object.

root[] T->Process("MySelector.C","",1000,100);

This call will interpret the class defined in MySelector.C and process 1000 entries
beginning with entry 100. The file name can be appended with a "+" or a "++" to use
ACLiC.

root[] T->Process("MySelector.C++","",1000,100);

When appending a "++", the class will be compiled and dynamically loaded.

root[] T->Process("MySelector.C+","",1000,100);

When appending a "+", the class will also be compiled and dynamically loaded. When it is
called again, it recompiles only if the macro (MySelector.C) has changed since it was
compiled last. If not it loads the existing library.

TTree::Process is aware of PROOF, ROOT parallel processing facility. If PROOF is
setup, it divides the processing amongst the slave CPUs.

Performance Benchmarks
The program $ROOTSYS/test/bench.cxx compares the I/O performance of STL vectors
to the ROOT native TClonesArrays collection class. It creates trees with and without
compression for the following cases: vector<THit>, vector<THit*>,
TClonesArray(TObjHit) not split TClonesArray(TObjHit) split.

The next graphs show the two columns on the right which represent the split and non-split
TClonesArray, are significantly lower than the vectors. The most significant difference is
en reading a file without compression.

The file size with compression, write times with and without compression and the read
times with and without compression all favor the TClonesArray.

June 2003 v3.05 Trees 243

Impact of Compression on I/O
This benchmark illustrates the pros and cons of the compression option. We recommend
using compression when the time spent in I/O is small compared to the total processing
time. In this case, if the I/O operation is increased by a factor of 5 it is still a small
percentage of the total time and it may very well save a factor of 10 on disk space. On the
other hand if the time spend on I/O is large, compression may slow down the program's
performance. The standard test program $ROOTSYS/test/Event was used in various
configurations with 400 events. The data file contains a TTree. The program was invoked
with:

 Event 400 comp split

• comp = 0 means: no compression at all.
• comp = 1 means: compress everything if split = 0.
• comp = 1 means: compress only the tree branches with integers if split = 1.
• comp = 2 means: compress everything if split=1.
• split = 0 : the full event is serialized into one single buffer.
• split = 1 : the event is split into branches. One branch for each data member of the

Event class. The list of tracks (a TClonesArray) has the data members of the Track
class also split into individual buffers.

244 Trees June 2003 v3.05

These tests were run on Pentium III CPU with 650 MHz.

Event
Parameters

File Size Total Time to
Write
(MB/sec)

Effective
Time to Write
(MB/sec)

Total Time
to Read All
(MB/sec)

Total Time to
Read Sample
(MB/sec)

Comp = 0

Split = 1

19.75 MB

6.84 s.

(2.8 MB/s)

3.56 s.

(5.4 MB/s)

0.79 s.

(24.2 MB/s)

0.79 s.

(24.2 MB/s)

Comp = 1

Split = 1

17.73 MB 6.44 s.

(3.0 MB/s)

4.02 s.

(4.8 MB/s)

0.90 s.

(21.3 MB/s)

0.90 s.

(21.3 MB/s)

Comp = 2

Split = 1

13.78 MB 11.34 s.

(1.7 MB/s)

9.51 s.

(2.0 MB/s)

2.17 s.

(8.8 MB/s)

2.17 s.

(8.8 MB/s)

The Total Time is the real time in seconds to run the program.

Effective time is the real time minus the time spent in non I/O operations (essentially the
random number generator). The program Event generates in average 600 tracks per
event. Each track has 17 data members. The read benchmark runs in the interactive
version of ROOT. The Total Time to read All is the real time reported by the
execution of the script &ROOTSYS/test/eventa. We did not correct this time for the
overhead coming from the interpreter itself.

The Total time to read sample is the execution time of the script
$ROOTSYS/test/eventb. This script loops on all events. For each event, the branch
containing the number of tracks is read. In case the number of tracks is less than 585, the
full event is read in memory. This test is obviously not possible in non-split mode. In non-
split mode, the full event must be read in memory.

The times reported in the table correspond to complete I/O operations necessary to deal
with machine independent binary files. On Linux, this also includes byte-swapping
operations. The ROOT file allows for direct access to any event in the file and also direct
access to any part of an event when split=1.

Note also that the uncompressed file generated with split=0 is 48.7 Mbytes and only 47.17
Mbytes for the option split=1. The difference in size is due to the object identification
mechanism overhead when the event is written to a single buffer. This overhead does not
exist in split mode because the branch buffers are optimized for homogeneous data types.

You can run the test programs on your architecture. The program Event will report the
write performance. You can measure the read performance by executing the scripts
eventa and eventb. The performance depends not only of the processor type, but also of
the disk devices (local, NFS, AFS, etc.).

Chains
A TChain object is a list of ROOT files containing the same tree. As an example, assume
we have three files called file1.root, file2.root, file3.root. Each file contains
one tree called "T". We can create a chain with the following statements:

TChain chain("T"); // name of the tree is the argument
chain.Add("file1.root");
chain.Add("file2.root");
chain.Add("file3.root");

The name of the TChain will be the same as the name of the tree; in this case it will be
"T". Note that two objects can have the same name as long as they are not histograms in
the same directory, because there, the histogram names are used to build a hash table.
The class TChain is derived from the class TTree.

June 2003 v3.05 Trees 245

For example, to generate a histogram corresponding to the attribute "x" in tree "T" by
processing sequentially the three files of this chain, we can use the TChain::Draw
method.

chain.Draw("x");

When using a TChain, the branch address(es) must be set with:

chain.SetBranchAdress(branchname,…) // use this for TChain

rather than:

branch->SetAddress(…); // this will not work

The second form returns the pointer to the branch of the current TTree in the chain,
typically the first one. The information is lost when the next TTree is loaded.

The following statements illustrate how to set the address of the object to be read and how
to loop on all events of all files of the chain.

{
 TChain chain("T"); // create the chain with tree "T"
 chain.Add("file1.root"); // add the files
 chain.Add("file2.root");
 chain.Add("file3.root");

 TH1F *hnseg = new TH1F("hnseg",
 "Number of segments for selected tracks",5000,0,5000);

 // create an object before setting the branch address
 Event *event = new Event();
 // Specify the address where to read the event object
 chain.SetBranchAddress("event", &event);

 // Start main loop on all events In case you want to read only a few
 // branches, use TChain::SetBranchStatus to activate a branch.
 Int_t nevent = chain.GetEntries();
 for (Int_t i=0;i<nevent;i++) {
 // read complete accepted event in memory
 chain.GetEvent(i);
 // Fill histogram with number of segments
 hnseg->Fill(event->GetNseg());
 }

 // Draw the histogram
 hnseg->Draw();
}

TChain::AddFriend
A TChain has a list of friends similar to a tree (see TTree::AddFriend). You can add a
friend to a chain with the TChain::AddFriend method. You can retrieve the list of
friends with TChain::GetListOfFriends.

This example has four chains each has 20 ROOT trees from 20 ROOT files.

TChain ch("t"); // a chain with 20 trees from 20 files
TChain ch1("t1");
TChain ch2("t2");
TChain ch3("t3");

246 Trees June 2003 v3.05

Now we can add the friends to the first chain.

ch.AddFriend("t1")
ch.AddFriend("t2")
ch.AddFriend("t3")

The parameter is the name of friend chain (the name of a chain is always the name of the
tree from which it was created).

The original chain has access to all variables in its friends. We can use the TChain::Draw
method as if the values in the friends were in the original chain.

To specify the chain to use in the Draw method, use the syntax:

<chainname>.<branchname>.<varname>

If the variable name is enough to uniquely identify the variable, you can leave out the chain
and/or branch name.

For example, this generates a 3-d scatter plot of variable "var" in the TChain ch versus
variable v1 in TChain t1 versus variable v2 in TChain t2.

ch.Draw("var:t1.v1:t2.v2");

When a TChain::Draw is executed, an automatic call to TTree::AddFriend connects
the trees in the chain. When a chain is deleted, its friend elements are also deleted.

The number of entries in the friend must be equal or greater to the number of entries of the
original chain. If the friend has fewer entries a warning is given and the resulting histogram
will have missing entries.

For additional information see TTree::AddFriends. A full example of a tree and friends
is in Example #3 ($ROOTSYS/tutorials/tree3.c) in the Tree section above.

June 2003 v3.05 Adding a Class 247

13 Adding a Class

The Role of TObject
The light-weight TObject class provides the default behavior and protocol for the objects
in the ROOT system. Specifically, it is the primary interface to classes providing object I/O,
error handling, inspection, introspection, and drawing. The interface to this service is via
abstract classes.

Introspection, Reflection and Run Time Type Identification
Introspection, which is also referred to as reflection, or run time type identification (RTTI) is
the ability of a class to reflect upon itself or to "look inside itself. ROOT implements
reflection with the TClass class. It provides all the information about a class, a full
description of data members and methods, including the comment field and the method
parameter types. A class with the ClassDef macro has the ability to obtain a TClass with
the IsA method.

TClass *cl = obj->IsA();

which returns a TClass. In addition an object can directly get the class name and the base
classes with:

const char* name = obj->ClassName();

which returns a character string containing the class name. If the class is a descendent of
TObject, you can check if an object inherits from a specific class, you can use the
InheritsFrom method. This method returns kTrue if the object inherits from the
specified class name or TClass.

Bool_t b = obj->InheritsFrom("TLine");
Bool_t b = obj->InheritsFrom(TLine::Class());

ROOT and CINT rely on reflection and the class dictionary to identify the type of a variable
at run time. With TObject inheritance come some methods that use Introspection to help
you see the data in the object or class. For instance:

obj->Dump(); // lists all data members and their current valsue
obj->Inspect(); // opens a window to browser data members at all levels
obj->DrawClass(); // Draws the class inheritance tree

For an example of obj->Inspect see "Inspecting ROOT Objects" in the CINT chapter.

Collections
To store an object in a ROOT collection, it must be a descendent of TObject. This is
convenient if you want to store objects of different classes in the same collection and
execute the method of the same name on all members of the collection. For example the
list of graphics primitives are in a ROOT collection called TList. When the canvas is

248 Adding a Class June 2003 v3.05

drawn the Paint method is executed on the entire collection. Each member may be a
different class, and if the Paint method is not implemented, TObject::Paint will be
executed.

Input/Output
The TObject::Write method is the interface to the ROOT I/O system. It streams the
object into a buffer using the Streamer method. It supports cycle numbers and automatic
schema evolution (see the chapter on I/O).

Paint/Draw
These two graphics methods are defaults, their implementation in TObject does not use
the graphics subsystem. The TObject::Draw method is simply a call to AppendPad. The
Paint method is empty. The default is provided so that one can call Paint in a collection.

GetDrawOption
This method returns the draw option that was used when the object was drawn on the
canvas. This is especially relevant with histograms and graphs.

Clone/DrawClone
Two useful methods are Clone and DrawClone. The Clone method takes a snapshot of
the object with the Streamer and creates a new object. The DrawClone method does the
same thing and in addition draws the clone.

Browse
This method is called if the object is browse-able and is to be displayed in the object
browser. For example the TTree implementation of Browse, calls the Browse method for
each branch. The TBranch::Browse method displays the name of each leaf. For the
object's Browse method to be called, the IsFolder() method must be overridden to
return true. This does not mean it has to be a folder, it just means that it is browse-able.

SavePrimitive
This method is called by a canvas on its list of primitives, when the canvas is saved as a
script. The purpose of SavePrimitve is to save a primitive as a C++ statement(s). Most
ROOT classes implement the SavePrimitive method. It is recommended that the
SavePrimitive is implemented in user defined classes if it is to be drawn on a canvas.
Such that the command TCanvas::SaveAs(Canvas.C) will preserve the user-class
object in the resulting script.

GetObjectInfo
This method is called when displaying the event status in a canvas. To show the event
status window, select the Options menu and the EventStatus item. This method
returns a string of information about the object at position (x, y). Every time the cursor
moves, the object under the cursor executes the GetObjectInfo method. The string is
then shown in the status bar. There is a default implementation in TObject, but it is
typically overridden for classes that can report peculiarities for different cursor positions (for
example the bin contents in a TH1).

IsFolder
By default an object inheriting from TObject is not brows-able, because
TObject::IsFolder() returns kFALSE. To make a class browse-able, the IsFolder

June 2003 v3.05 Adding a Class 249

method needs to be overridden to return kTRUE. In general, this method returns kTRUE if
the object contains browse-able objects (like containers or lists of other objects).

Bit Masks and Unique ID
A TObject descendent inherits two data members: fBits and fUniqueID. fBits is
32-bit data member used with a bit mask to get object information. Bit 0 –7 are reserved by
TObject. The kMustCleanup, kCanDelete are used in TObject, these can be set by
any object and should not be reused. These are the bits used in TObject:

enum EObjBits {
 kCanDelete = BIT(0), //if object in a list can be deleted
 kMustCleanup = BIT(3), //if object destructor must call
 //RecursiveRemove()
 kCannotPick = BIT(6), //if object in a pad cannot be picked
 kInvalidObject = BIT(13) // if object ctor succeeded but
 // object should not be used
};

The remaining 24 bits can be used by other classes. Make sure there is no overlap in any
given hierarchy. For example TClass uses bit 12 and 13 kClassSaved and
kIgnoreTObjectStreamer respectively.

The above bit 13 is set when an object could not be read from a ROOT file. It will check this
bit and skip to the next object on the file. The TObject constructor initializes the fBits to
zero depending if the object is created on the stack or allocated on the heap. When the
object is created on the stack, the kCanDelete bit is set to false to protect from deleting
objects on the stack. Of the status word the high 8 bits are reserved for system usage and
the low 24 bits are user settable.

fUniqueID is a data member used to give a unique identification number to an object. It
is initialized to zero by the TObject constructor. This data member is not used by ROOT.

The two data members (fBits and fUniqueID) are streamed out when writing an object
to disk. If you do not use them you can save some space and time by specifying:

MyClass::Class()->IgnoreTObjectStreamer()

This sets a bit in the TClass object. If the file is compressed, the savings are minimal since
most values are zero; however, it saves some space when the file is not compressed. A call
to IgnoreObjectStreamer also prevents the creation of two additional branches when
splitting the object. If left alone, two branches called fBits and fUniqueID will appear.

Motivation
If you want to integrate and use your classes with ROOT, to enjoy features like, extensive
RTTI (Run Time Type Information) and ROOT object I/O and inspection, you have to add
the following line to your class header files:

ClassDef(ClassName,ClassVersionID) //The class title

For example in TLine.h we have:

ClassDef(TLine,1) //A line segment

The ClassVersionID is used by the ROOT I/O system. It is written on the output stream
and during reading you can check this version ID and take appropriate action depending on
the value of the ID (see the section on Streamers in the Chapter Input/Output). Every time
you change the data members of a class, you should increase its ClassVersionID by
one. The ClassVersionID should be >=1. Set ClassVersionID=0 in case you
don't need object I/O. Similarly, in your implementation file you must add the statement:

250 Adding a Class June 2003 v3.05

ClassImp(ClassName)

For example in TLine.cxx:

ClassImp(TLine)

Note that you MUST provide a default constructor for your classes, i.e. a constructor with
zero parameters or with one or more parameters all with default values in case you want to
use object I/O. If not you will get a compile time error. The ClassDef and ClassImp
macros are necessary to link your classes to the dictionary generated by CINT. The
ClassDef and ClassImp macros are defined in the file Rtypes.h. This file is referenced
by all ROOT include files, so you will automatically get them if you use a ROOT include file.

Template Support
ROOT provides ClassDef and ClassImp macros for classes with two and three template
arguments. The macros are: ClassDefT, ClassDef2T2, ClassDef3T2 and
ClassImpT, ClassImp2T, ClassImp3T. ClassDefT is independent of the number of
template arguments. For templates the ClassImp must be in the header file. When you
use templates in principle all the code is defined in the header. Then when a special
"instantiation" is needed the compiler takes the code in the header and generates the real
code (i.e. replaces the T by int, where T was the template argument). So for template
classes it is normal to put the ClassImp in the header. Here is an example of a header and
LinkDef file:

// in header file MyClass.h
template <typename T> class MyClass1 {
private:
 T fA;
 ...
public:
 ...
 ClassDefT(MyClass1,1)
};
ClassDefT2(MyClass1,T)
ClassImpT(MyClass1,T)

template <typename T1, typename T2> class MyClass2 {
private:
 T1 fA;
 T2 fB;
public:
 ...
 ClassDefT(MyClass2,1)
};
ClassDef2T2(MyClass2,T1,T2)
ClassImp2T(MyClass2,T1,T2)

template <typename T1, typename T2, typename T3> class MyClass3 {
private:
 T1 fA;
 T2 fB;
 T3 fC;
 ...
public:
 ...
 ClassDefT(MyClass3,1)
};
ClassDef3T2(MyClass3,T1,T2,T3)
ClassImp3T(MyClass3,T1,T2,T3)

June 2003 v3.05 Adding a Class 251

// A LinkDef.h file with all the explicit template
// instances that will be needed at link time
#ifdef __CINT__

#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;

#pragma link C++ class MyClass1<float>+;
#pragma link C++ class MyClass1<double>+;
#pragma link C++ class MyClass2<float,int>+;
#pragma link C++ class MyClass2<float,double>+;
#pragma link C++ class MyClass3<float,int,TObject*>+;
#pragma link C++ class MyClass3<float,TEvent*,TObject*>+;

#endif

The Default Constructor
ROOT object I/O requires every class to have a default constructor. This default constructor
is called whenever an object is being read from a ROOT database. Be sure that you don't
allocate any space for embedded pointer objects in the default constructor. This space will
be lost (memory leak) while reading in the object. For example:

class T49Event : public TObject {
private:
 Int_t fId;
 TCollection *fTracks;
 ...

public:
 // Error space for TList pointer will be lost
 T49Event() { fId = 0; fTrack = new TList; }

 // Correct default initialization of pointer
 T49Event() { fId = 0; fTrack = 0; }
 ...
};

The memory will be lost because during reading of the object the pointer will be set to the
object it was pointing to at the time the object was written.

Create the fTrack list when you need it, e.g. when you start filling the list or in a
not-default constructor.

...
if (!fTrack) fTrack = new TList;
...

252 Adding a Class June 2003 v3.05

rootcint: The CINT Dictionary Generator
In the following example we walk through the steps necessary to generate a dictionary, I/O,
and inspect member functions. Let's start with a TEvent class, which contains a collection
of TTracks:

#ifndef __TEvent__
#define __TEvent__

#include "TObject.h"

class TCollection;
class TTrack;

class TEvent : public TObject {

private:
 Int_t fId; // event sequential id
 Float_t fTotalMom; // total momentum
 TCollection *fTracks; // collection of tracks

public:
 TEvent() { fId = 0; fTracks = 0; }
 TEvent(Int_t id);
 ~TEvent();

 void AddTrack(TTrack *t);
 Int_t GetId() const { return fId; }
 Int_t GetNoTracks() const;
 void Print(Option_t *opt="");
 Float_t TotalMomentum();

 ClassDef (TEvent,1) //Simple event class
};

The things to notice in these header files are:

• The usage of the ClassDef macro
• The default constructors of the TEvent and TTrack classes
• Comments to describe the data members and the comment after the ClassDef

macro to describe the class

These classes are intended for you to create an event object with a certain id, and then add
tracks to it. The track objects have a pointer to their event. This shows that the I/O system
correctly handles circular references.

June 2003 v3.05 Adding a Class 253

And the TTrack.h header:

#ifndef __TTrack__
#define __TTrack__

#include "TObject.h"

class TEvent;

class TTrack : public TObject {

private:
 Int_t fId; //track sequential id
 TEvent *fEvent; //event to which track belongs
 Float_t fPx; //x part of track momentum
 Float_t fPy; //y part of track momentum
 Float_t fPz; //z part of track momentum

public:
 TTrack() { fId = 0; fEvent = 0; fPx = fPy = fPz = 0; }
 TTrack(Int_t id, Event *ev, Float_t px,Float_t py,Float_t pz);

 Float_t Momentum() const;
 TEvent *GetEvent() const { return fEvent; }
 void Print(Option_t *opt="");

 ClassDef (TTrack,1) //Simple track class
};

#endif

Next is the implementation of these two classes.

Event.cxx:

#include <iostream.h>

#include "TOrdCollection.h"
#include "TEvent.h"
#include "TTrack.h"

ClassImp(TEvent)

...

Track.cxx:

#include <iostream.h>

#include "TMath.h"
#include "Track.h"
#include "Event.h"

ClassImp(TTrack)
...

Now using rootcint we can generate the dictionary file.

Make sure you use a unique filename, because rootcint appends it to the name of static
function (G__cpp_reset_tabableeventdict() and
G__set_cpp_environmenteventdict ()).

rootcint eventdict.cxx -c TEvent.h TTrack.h

254 Adding a Class June 2003 v3.05

Looking in the file eventdict.C we can see, besides the many member function calling
stubs (used internally by the interpreter), the Streamer() and ShowMembers() methods
for the two classes. Streamer() is used to stream an object to/from a TBuffer and
ShowMembers() is used by the Dump() and Inspect() methods of TObject.

Here is the TEvent::Streamer method:

void TEvent::Streamer(TBuffer &R__b)
{
 // Stream an object of class TEvent.
 if (R__b.IsReading()) {
 Version_t R__v = R__b.ReadVersion();
 TObject::(R__b);
 R__b >> fId;
 R__b >> fTotalMom;
 R__b >> fTracks;
 } else {
 R__b.WriteVersion(TEvent::IsA());
 TObject::Streamer(R__b);
 R__b << fId;
 R__b << fTotalMom;
 R__b << fTracks;
 }
}

The TBuffer class overloads the operator<<() and operator>>() for all basic types
and for pointers to objects. These operators write and read from the buffer and take care of
any needed byte swapping to make the buffer machine independent. During writing the
TBuffer keeps track of the objects that have been written and multiple references to the
same object are replaced by an index. In addition, the object's class information is stored.

TEvent and TTracks need manual intervention. Cut and paste the generated
Streamer() from the eventdict.C into the class' source file and modify as needed (e.g.
add counter for array of basic types) and disable the generation of the Streamer() when
using the LinkDef.h file for next execution of rootcint.

In case you don't want to read or write this class (no I/O) you can tell rootcint to
generate a dummy Streamer() by changing this line in the source file:

ClassDef(TEvent,0)

If you want to prevent the generation of Streamer(), see the next chapter "Adding a
Class with a Shared Library".

June 2003 v3.05 Adding a Class 255

Adding a Class with a Shared Library
Step 1:
Define your own class in SClass.h and implement it in SClass.cxx. You must provide a
default constructor for your class.

#include <iostream.h>
#include "TObject.h"
class SClass : public TObject {
private:
 Float_t fX; //x position in centimeters
 Float_t fY; //y position in centimeters
 Int_t fTempValue; //! temporary state value
public:
 SClass() { fX = fY = -1; }
 void Print() const;
 void SetX(float x) { fX = x; }
 void SetY(float y) { fY = y; }

 ClassDef(SClass, 1)
};

Step 2:
Add a call to the ClassDef macro to at the end of the class definition (i.e. in the SClass.h
file). ClassDef(SClass,1). Add a call to the ClassImp macro in the implementation
file (SClass.cxx): ClassImp(SClass).

SClass.cxx:

#include "SClass.h"
ClassImp(SClass);
void SClass::Print() const {
 cout << "fX = " << fX << ", fY = " << fY << endl;
}

You can add a class without using the ClassDef and ClassImp macros, however you will
be limited. Specifically the object I/O features of ROOT will not be available to you for these
classes (see the chapter "CINT the C++ Interpreter"). The ShowMembers() and
Streamer() method, as well as the >> operator overloads, are implemented only if you
use ClassDef and ClassImp. See http://root.cern.ch/root/html/Rtypes.h for the definition
of ClassDef and ClassImp.

To exclude a data member from the Streamer, add a ! as the first character in the
comments of the field:

Int_t fTempValue; //! temporary state value

The LinkDef.h File
Step 3:
The LinkDef.h file tells rootcint for which classes to generate the method interface
stubs.

#ifdef __CINT__
#pragma link off all globals;
#pragma link off all classes;
#pragma link off all functions;
#pragma link C++ class SClass;
#endif

256 Adding a Class June 2003 v3.05

Three options can trail the class name:

• - : tells rootcint not to generate the Streamer() method for this class. This is
 necessary for those classes that need a customized Streamer() method.

#pragma link C++ class SClass-; // no streamer

• ! : tells rootcint not to generate the
 operator>>(TBuffer &b,MyClass *&obj) method for this class. This is
 necessary to be able to write pointers to objects of classes not inheriting from
 TObject.

#pragma link C++ class SClass!; // no >> operator
// or
#pragma link C++ class SClass-!; // no Streamer no >> operator

• + : in ROOT version 1 and 2 tells rootcint to generate a Streamer() with extra
 byte count information. This adds an integer to each object in the output buffer, but
 it allows for powerful error correction in case a Streamer() method is out of sync
 with data in the file. The + option is mutual exclusive with both the - and ! options.

IMPORTANT NOTE: In ROOT Version 3, a "+" after the class name tells rootcint to use
the new I/O system. The byte count check is always added.

#pragma link C++ class SClass+; // add byte count

For information on Streamers see the section on Streamers in the Input/Output chapter.
To get help on rootcint type on the UNIX command line:
rootcint -? .

The Order Matters
When using template classes, the order of the pragma statements matters. For example,
here is a template class Tmpl and a normal class Norm which holds a specialized instance
of a Tmpl:

class Norm {
private:
 Tmpl<int>* fIntTmpl;
public:
 ...
};

Then in Linkdef.h the pragma statements must be ordered by listing all
specializations before any classes which need them:

// Correct Linkdef.h ordering
...
#pragma link C++ class Tmpl<int>;
#pragma link C++ class Norm;
...

And not vice versa:

// Bad Linkdef.h ordering
...
#pragma link C++ class Norm;
#pragma link C++ class Tmpl<int>;
...

In this later case, rootcint generates Norm::Streamer() which makes reference to
Tmpl<int>::Streamer(). Then rootcint gets to process Tmpl<int> and generates
a specialized Tmpl<int>::Streamer() function. The problem is, when the compiler

June 2003 v3.05 Adding a Class 257

finds the first Tmpl<int>::Streamer(), it will instantiate it. But, later in the file it finds the
specialized version that rootcint generated. This causes the error. However, if the
Linkdef.h order is reversed then rootcint can generate the specialized
Tmpl<int>::Streamer() before it is needed (and thus never instantiated by the
compiler).

Step 4: Compile the class using the Makefile. In the Makefile call rootcint to make
the dictionary for the class. Call it SClassDict.cxx. The rootcint utility generates the
methods Streamer(), TBuffer &operator>>() and ShowMembers()for ROOT
classes.

For more information on rootcint see the $ROOTSYS/test directory Makefile,
Event.cxx, and Event.h for an example, or follow this link:
http://root.cern.ch/root/RootCintMan.html

gmake –f Makefile

Load the shared library:

root[] .L SClass.so
root[] SClass *sc = new SClass()
root[] TFile *f = new TFile("Afile.root","UPDATE");
root[] sc->Write();

Adding a Class with ACLiC
Step 1: Define your class

#include "TObject.h"
// define the ABC class and make it inherit
// from TObject so that we can write ABC to a ROOT file
class ABC : public TObject {

public:
 Float_t a, b, c, p;
 ABC() : a(0), b(0), c(0), p(0){};

 // Define the class for the cint dictionary
 ClassDef (ABC,1)
};

// Call the ClassImp macro to give the ABC class RTTI
// and full I/O capabilities.

#if !defined(__CINT__)
 ClassImp(ABC);
#endif

Step 2: Load the ABC class in the script.

// Check if ABC is already loaded
if (!TClassTable::GetDict("ABC")) {
 gROOT->Macro("ABCClass.C++");
}

// Use the Class
ABC *v = new ABC;
v->p = (sqrt((v->a * v->a)+ (v->b * v->b)+(v->c * v->c)));

June 2003 v3.05 Collection Classes 259

14 Collection Classes

Collections are a key feature of the ROOT system. Many, if not most, of the applications
you write will use collections. If you have used parameterized C++ collections or
polymorphic collections before, some of this material will be review. However, much of this
chapter covers aspects of collections specific to the ROOT system. When you have read
this chapter, you will know

• How to create instances of collections
• The difference between lists, arrays, hash tables, maps, etc.
• How to add and remove elements of a collection
• How to search a collection for a specific element
• How to access and modify collection elements
• How to iterate over a collection to access collection elements
• How to manage memory for collections and collection elements
• How collection elements are tested for equality (IsEqual())
• How collection elements are compared (Compare()) in case of sorted collections
• How collection elements are hashed (Hash()) in hash tables

Understanding Collections
A collection is a group of related objects. You will find it easier to manage a large number of
items as a collection. For example, a diagram editor might manage a collection of points
and lines. A set of widgets for a graphical user interface can be placed in a collection. A
geometrical model can be described by collections of shapes, materials and rotation
matrices. Collections can themselves be placed in collections. Collections act as flexible
alternatives to traditional data structures of computers science such as arrays, lists and
trees.

General Characteristics
The ROOT collections are polymorphic containers that hold pointers to TObjects, so:

• They can only hold objects that inherit from TObject
• They return pointers to TObjects, that have to be cast back to the correct subclass

Collections are dynamic; they can grow in size as required.

Collections themselves are descendants of TObject so can themselves be held in
collections. It is possible to nest one type of collection inside another to any level to
produce structures of arbitrary complexity.

Collections don’t own the objects they hold for the very good reason that the same object
could be a member of more than one collection. Object ownership is important when it
comes to deleting objects; if nobody owns the object it could end up as wasted memory (i.e.
a memory leak) when no longer needed. If a collection is deleted, its objects are not. The
user can force a collection to delete its objects, but that is the user’s choice.

260 Collection Classes June 2003 v3.05

Determining the Class of Contained Objects
Most containers may hold heterogeneous collections of objects and then it is left to the user
to correctly cast the TObject pointer to the right class. Casting to the wrong class will give
wrong results and may well crash the program! So the user has to be very careful. Often a
container only contains one class of objects, but if it really contains a mixture, it is possible
to ask each object about its class using the InheritsFrom() method.

For example if myObject is a TObject pointer:

if (myObject->InheritsFrom("TParticle") {
 printf("myObject is a TParticle\n");
}

As the name suggests, this test works even if the object is a subclass of TParticle. The
member function IsA() can be used instead of InheritsFrom() to make the test exact.
The InheritsFrom() and IsA() methods use the extensive Run Time Type Information
(RTTI) available via the ROOT meta classes.

Types of Collections
The ROOT system implements the following basic types of collections: unordered
collections, ordered collections and sorted collections. This picture shows the inheritance
hierarchy for the primary collection classes. All primary collection classes derive from the
abstract base class TCollection.

Ordered Collections (Sequences)
Sequences are collections that are externally ordered because they maintain internal
elements according to the order in which they were added. The following sequences are
available:

• TList
• THashList
• TOrdCollection
• TObjArray
• TClonesArray

The TOrdCollection, TObjArray as well as the TClonesArray can be sorted using
their Sort() member function (if the stored items are sort able). Ordered collections all
derive from the abstract base class TSeqCollection.

TCollection

TSeqCollection

TList TObjArrayTOrdCollection

TSortedList

TMapTHashTable

THashList TClonesArray

TBtree

June 2003 v3.05 Collection Classes 261

Sorted Collection
Sorted collections are ordered by an internal (automatic) sorting mechanism. The following
sorted collections are available:

• TSortedList
• TBtree

The stored items must be sort able.

Unordered Collections
Unordered collections don't maintain the order in which the elements were added, i.e. when
you iterate over an unordered collection, you are not likely to retrieve elements in the same
order they were added to the collection. The following unordered collections are available:

• THashTable
• TMap

Iterators: Processing a Collection
The concept of processing all the members of a collection is generic, i.e. independent of
any specific representation of a collection. To process each object in a collection one needs
some type of cursor that is initialized and then steps over each member of the collection in
turn. Collection objects could provide this service but there is a snag: as there is only one
collection object per collection there would only be one cursor. Instead, to permit the use of
as many cursors as required, they are made separate classes called iterator. For each
collection class there is an associated iterator class that knows how to sequentially retrieve
each member in turn. The relationship between a collection and its iterator is very close and
may require that the iterator has full access to the collection (i.e. it is a friend class). In
general iterator will be used via the TIter wrapper class.

For example:

• TList TListIter
• TMap TMapIter

Foundation Classes
All collections are based on the fundamental classes: TCollection and TIterator.
They are so generic that it is not possible to create objects from them; they are only used
as base classes for other classes (i.e. they are abstract base classes).

TCollection
The TCollection class provides the basic protocol (i.e. the minimum set of member
functions) that all collection classes have to implement. These include:

• Add() Adds another object to the collection.
• GetSize() Returns the number of objects in the collection.
• Clear() Clears out the collection, but does not delete the removed objects.
• Delete() Clears out the collection and deletes the removed objects. This

should only be used if the collection owns its objects (which are not
normally the case).

• FindObject() Find an object given either its name or address.
• MakeIterator() Returns an iterator associated with the collection.
• Remove() Removes an object from the collection.

Coming back to the issue of object ownership. The code example below shows a class
containing three lists, where the fTracks list is the owning collection and the other two

262 Collection Classes June 2003 v3.05

lists are used to store a sub-set of the track objects. In the destructor of the class the
Delete() method is called for the owning collection to delete correctly all its track objects.

To delete the objects in the container do 'fTrack->Delete()'. To delete the container
itself do 'delete fTracks'.

class TEvent : public TObject{

private:
 TList *fTracks; //list of all tracks
 TList *fVertex1; //subset of tracks part of vertex1
 TList *fVertex2; //subset of tracks part of vertex2
 ...
};

TEvent::~TEvent()
{
 fTracks->Delete();
 delete fTracks;
 delete fVertex1;
 delete fVertex2;
}

TIterator
The TIterator class defines the minimum set of member functions that all iterators must
support. These include:

• Next() return the next member of the collection or 0 if no more members.
• Reset() reset the iterator so that Next() returns the first object.

A Collectable Class
By default, all objects of TObject derived classes can be stored in ROOT containers.
However, the TObject class provides some member functions that allow you to tune the
behavior of objects in containers. For example, by default two objects are considered equal
if their pointers point to the same address. This might be too strict for some classes where
equality is already achieved if some or all of the data members are equal. By overriding the
following TObject member functions, you can change the behavior of objects in
collections:

• IsEqual() is used by the FindObject() collection method. By default,
IsEqual() compares the two object pointers.

• Compare() returns –1, 0 or 1 depending if the object is smaller, equal or larger
than the other object. By default, a TObject has not a valid
Compare() method.

• IsSortable() returns true if the class is sort able (i.e. if it has a valid Compare()
method). By default, a TObject is not sort able.

• Hash() returns a hash value. It needs to be implemented if an object has to
be stored in a collection using a hashing technique, like
THashTable, THashList and TMap. By default, Hash() returns
the address of the object. It is essential to choose a good hash
function.

June 2003 v3.05 Collection Classes 263

The example below shows how to use and override these member functions.

// TObjNum is a simple container for an integer.
class TObjNum : public TObject {
private:
 int num;

public:
 TObjNum(int i = 0) : num(i) { }
 ~TObjNum() { }
 void SetNum(int i) { num = i; }
 int GetNum() const { return num; }
 void Print(Option_t *) const
 { printf("num = %d\n", num); }
 Bool_t IsEqual(TObject *obj) const
 { return num == ((TObjNum*)obj)->num; }
 Bool_t IsSortable() const { return kTRUE; }
 Int_t Compare(TObject *obj) const
 { if (num < ((TObjNum*)obj)->num)
 return -1;
 else if (num > ((TObjNum*)obj)->num)
 return 1;
 else
 return 0; }
 ULong_t Hash() const { return num; }
};

The TIter Generic Iterator
As stated above, the TIterator class is abstract; it is not possible to create TIterator
objects. However, it should be possible to write generic code to process all members of a
collection so there is a need for a generic iterator object. A TIter object acts as generic
iterator. It provides the same Next() and Reset() methods as TIterator although it
has no idea how to support them! It works as follows:

• To create a TIter object its constructor must be passed an object that inherits from
TCollection. The TIter constructor calls the MakeIterator() method of this
collection to get the appropriate iterator object that inherits from TIterator.

• The Next() and Reset() methods of TIter simply call the Next() and Reset()
methods of the iterator object.

So TIter simply acts as a wrapper for an object of a concrete class inheriting from
TIterator.

To see this working in practice, consider the TObjArray collection. Its associated iterator
is TObjArrayIter. Suppose myarray is a pointer to a TObjArray, i.e.

TObjArray *myarray;

which contains MyClass objects. To create a TIter object called myiter:

TIter myiter(myarray);

264 Collection Classes June 2003 v3.05

As shown in the diagram, this results in several methods being called:

(1) The TIter constructor is passed a TObjArray

(2) TIter asks embedded TCollection to make an iterator

(3) TCollection asks TObjArray to make an iterator

(4) TObjArray returns a TObjArrayIter.

Now define a pointer for MyClass objects and set it to each member of the TObjArray:

MyClass *myobject;
while ((myobject = (MyClass *)myiter.Next())) {
 // process myobject
}

The heart of this is the myiter.Next() expression which does the following:

(1) The Next() method of the TIter object myiter is called

(2) The TIter forwards the call to the TIterator embedded in the TObjArrayIter

(3) TIterator forwards the call to the TObjArrayIter

(4) TObjArrayIter finds the next MyClass object and returns it

(5) TIter passes the MyClass object back to the caller

TObjArray

TIterTCollection

myarray myiter

TObjArrayIter

(1) TIter myiter(myarray)

(3) MakeIterator

(2) MakeIterator

(4)

TObjArrayIter

TIter

TIterator

myiter

MyClass

(1) Next()

(3) Next()

(4)

(2) Next()

MyClass
(5)

June 2003 v3.05 Collection Classes 265

Sometimes the TIter object is called next, and then instead of writing:
next.Next() which is legal, but looks rather odd, iteration is written as next().

This works because the function operator() is defined for the TIter class to be
equivalent to the Next() method.

The TList Collection
A TList is a doubly linked list. Before being inserted into the list the object pointer is
wrapped in a TObjLink object that contains, besides the object pointer also a previous
and next pointer.

Objects are typically added using:

• Add()
• AddFirst(), AddLast()
• AddBefore(), AddAfter()

Main features of TList: very low cost of adding/removing elements anywhere in the list.

Overhead per element: 1 TObjLink, i.e. two 4 (or 8) byte pointers + pointer to vtable =
12 (or 24) bytes.

This diagram shows the internal data structure of a TList.

Iterating Over a TList
There are basically four ways to iterate over a TList:

(1) Using the ForEach script:

GetListOfPrimitives()->ForEach(TObject,Draw)();

(2) Using the TList iterator TListIter (via the wrapper class TIter):

TIter next(GetListOfTracks());
while ((TTrack *obj = (TTrack *)next()))
 obj->Draw();

class TList : public TSeqCollection
{
private:
 TObjLink *fLast;
 TObjLink *fFirst;
 . . .
 . . .
};

class TObjLink {
friend class TList;
private:
 TObjLink *fPrev;
 TObjLink *fNext;
 TObject *fObject;
 . . .
 . . .
};

fPrev

fNext

fObject

obj

TObjLink

fPrev

fNext

fObject

obj

TObjLink

fPrev

fNext

fObject

obj

TObjLink

266 Collection Classes June 2003 v3.05

(3) Using the TObjLink list entries (that wrap the TObject*):

TObjLink *lnk = GetListOfPrimitives()->FirstLink();
while (lnk) {
 lnk->GetObject()->Draw();
 lnk = lnk->Next();
}

(4) Using the TList's After() and Before() member functions:

TFree *idcur = this;
while (idcur) {
 ...
 idcur = (TFree*)GetListOfFree()->After(idcur);
}

Method 1 uses internally method 2.

Method 2 works for all collection classes. TIter overloads operator().

Methods 3 and 4 are specific for TList.

Methods 2, 3 and 4 can also easily iterate backwards using either a backward TIter
(using argument kIterBackward) or by using LastLink() and lnk->Prev() or by
using the Before() method.

The TObjArray Collection
A TObjArray is a collection which supports traditional array semantics via the overloading
of operator[]. Objects can be directly accessed via an index. The array expands
automatically when objects are added. At creation time one specifies the default array size
(default = 16) and lower bound (default = 0). Resizing involves a re-allocation and a copy of
the old array to the new. This can be costly if done too often. If possible, set initial size
close to expected final size. Index validity is always checked (if you are 100% sure and
maximum performance is needed you can use UnCheckedAt() instead of At() or
operator[]). If the stored objects are sort able the array can be sorted using Sort().
Once sorted, efficient searching is possible via the BinarySearch() method.

This diagram shows the internal data structure of a TObjArray:

Iterating can be done using a TIter iterator or via a simple for loop:

for (int i = 0; i <= fArr.GetLast(); i++)
 if ((track = (TTrack*)fArr[i])) // or fArr.At(i)
 track->Draw();

Main features of TObjArray: simple, well known array semantics. Overhead per element:
none, except possible over sizing of fCont.

class TObjArray : public TSeqCollection {
private:
 TObject **fCont;
 . . .
 . . .
}; 0

0

0

obj
obj

obj
obj

June 2003 v3.05 Collection Classes 267

TClonesArray – An Array of Identical Objects
A TClonesArray is an array of identical (clone) objects. The memory for the objects
stored in the array is allocated only once in the lifetime of the clones array. All objects must
be of the same class and the object must have a fixed size (i.e. they may not allocate other
objects). For the rest this class has the same properties as a TObjArray.

The class is specially designed for repetitive data analysis tasks, where in a loop many
times the same objects, are created and deleted. The diagram above shows the internal
data structure of a TClonesArray:

The Idea Behind TClonesArray
To reduce the very large number of new and delete calls in large loops like this
(O(100000) x O(10000) times new/delete):

TObjArray a(10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 a[i] = new TTrack(x,y,z,...);
 ...
 }
 ...
 a.Delete();
}

You better use a TClonesArray which reduces the number of new/delete calls to only
O(10000):

TClonesArray a("TTrack", 10000);
while (TEvent *ev = (TEvent *)next()) { // O(100000)
 for (int i = 0; i < ev->Ntracks; i++) { // O(10000)
 new(a[i]) TTrack(x,y,z,...);
 ...
 ...
 }
 ...
 a.Delete();
}

Considering that a pair of new/delete calls on average cost about 70 µs, O(109)
new/deletes will save about 19 hours.

For the other collections see the class reference guide on the web and the test program
$ROOTSYS/test/tcollex.cxx.

class TClonesArray : public TObjArray {
private:
 TObjArray *fKeep;
 TClass *fClass;
 . . .
 . . .
};

fCont

space for identical
objects of type fClass

268 Collection Classes June 2003 v3.05

Template Containers and STL
Some people dislike polymorphic containers because they are not truly “type safe”. In the
end, the compiler leaves it the user to ensure that the types are correct. This only leaves
the other alternative: creating a new class each time a new (container organization) /
(contained object) combination is needed. To say the least this could be very tedious. Most
people faced with this choice would, for each type of container:

1. Define the class leaving a dummy name for the contained object type.

2. When a particular container was needed, copy the code and then do a global
search and replace for the contained class.

C++ has a built in template scheme that effectively does just this. For example:

template<class T>

class ArrayContainer {
private:
 T *member[10];
...
};

This is an array container with a 10-element array of pointers to T, it could hold up to 10 T
objects. This array is flawed because it is static and hard-coded, it should be dynamic.
However, the important point is that the template statement indicates that T is a template,
or parameterized class. If we need an ArrayContainer for Track objects, it can be
created by:

ArrayContainer<Track> MyTrackArrayContainer;

C++ takes the parameter list, and substitutes Track for T throughout the definition of the
class ArrayContainer, then compiles the code so generated, effectively doing the same
we could do by hand, but with a lot less effort.

This produces code that is type safe, but does have different drawbacks:

• Templates make code harder to read.

• At the time of writing this documentation, some compilers can be very slow when
dealing with templates.

• It does not solve the problem when a container has to hold a heterogeneous set of
objects.

• The system can end up generating a great deal of code; each container/object
combination has its own code, a phenomenon that is sometimes referred to as
code bloat.

The Standard Template Library (STL) is part on ANSI C++, and includes a set of template
containers.

June 2003 v3.05 Physics Vectors 269

15 Physics Vectors

The physics vector classes describe vectors in three and four dimensions and their rotation
algorithms. The classes were ported to root from CLHEP see:
http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Vector/vector.html

The Physics Vector Classes
In order to use the physics vector classes you will have to load the Physics library:

gSystem.Load("libPhysics.so");

There are four classes in this package. They are:

TVector3 is a general three-vector. A TVector3 may be expressed in Cartesian, polar, or
cylindrical coordinates. Methods include dot and cross products, unit vectors and
magnitudes, angles between vectors, and rotations and boosts. There are also functions of
particular use to HEP, like pseudo-rapidity, projections, and transverse part of a TVector3,
and kinetic methods on 4-vectors such as Invariant Mass of pairs or containers of particles.

TLorentzVector is a general four-vector class, which can be used either for the
description of position and time (x, y, z, t) or momentum and energy (px, py, pz, E).

TRotation is a class describing a rotation of a TVector3 object.

TLorentzRotation is a class to describe the Lorentz transformations including Lorentz
boosts and rotations.

There is also a TVector2 that is a basic implementation of a vector in two dimensions and
not part of the CLHEP translation.

TVector3
TVector3 is a general three vector class, which can be
used for description of different vectors in 3D. Components
of three vectors:

x ,y ,z - basic components
θ = azimuth angle
φ = polar angle
magnitude = mag = sqrt(x2 + y2 + z2)
transverse component = perp = sqrt(x2 + y2)

Using the TVector3 class you should remember that it
contains only common features of three vectors and lacks
methods specific for some particular vector values. For
example, it has no translated function because translation
has no meaning for vectors.

270 Physics Vectors June 2003 v3.05

Declaration / Access to the components
TVector3 has been implemented as a vector of three Double_t variables, representing
the Cartesian coordinates. By default the values are initialized to zero, however you can
change them in the constructor:

TVector3 v1; // v1 = (0,0,0)
TVector3 v2(1); // v2 = (1,0,0)
TVector3 v3(1,2,3); // v3 = (1,2,3)
TVector3 v4(v2); // v4 = v2

It is also possible (but not recommended) to initialize a TVector3 with a Double_t or
Float_t C array.

You can get the components by name or by index:

xx = v1.X(); or xx = v1(0);
yy = v1.Y(); yy = v1(1);
zz = v1.Z(); zz = v1(2);

 The methods SetX(), SetY(), SetZ() and SetXYZ() allow you to set the
components:

v1.SetX(1.); v1.SetY(2.); v1.SetZ(3.);
v1.SetXYZ(1.,2.,3.);

Other Coordinates
To get information on the TVector3 in spherical (rho, phi, theta) or cylindrical (z, r, theta)
coordinates, the following methods can be used.

Double_t m = v.Mag();
// get magnitude (=rho=Sqrt(x*x+y*y+z*z)))
Double_t m2 = v.Mag2(); // get magnitude squared
Double_t t = v.Theta(); // get polar angle
Double_t ct = v.CosTheta(); // get cos of theta
Double_t p = v.Phi(); // get azimuth angle
Double_t pp = v.Perp(); // get transverse component
Double_t pp2= v.Perp2(); // get transverse squared

It is also possible to get the transverse component with respect to another vector:

Double_t ppv1 = v.Perp(v1);
Double_t pp2v1 = v.Perp2(v1);

The pseudo-rapidity (eta = -ln (tan (phi/2))) can be get by Eta() or
PseudoRapidity():

Double_t eta = v.PseudoRapidity();

These setters change one of the non-Cartesian coordinates:

v.SetTheta(.5); // keeping rho and phi
v.SetPhi(.8); // keeping rho and theta
v.SetMag(10.); // keeping theta and phi
v.SetPerp(3.); // keeping z and phi

June 2003 v3.05 Physics Vectors 271

Arithmetic / Comparison
The TVector3 class has operators to add, subtract, scale and compare vectors:

v3 = -v1;
v1 = v2+v3;
v1 += v3;
v1 = v1 - v3;
v1 -= v3;
v1 *= 10;
v1 = 5*v2;
if(v1 == v2) {...}
if(v1 != v2) {...}

Related Vectors
v2 = v1.Unit(); // get unit vector parallel to v1
v2 = v1.Orthogonal(); // get vector orthogonal to v1

Scalar and Vector Products
s = v1.Dot(v2); // scalar product
s = v1 * v2; // scalar product
v = v1.Cross(v2); // vector product

Angle between Two Vectors
Double_t a = v1.Angle(v2);

Rotation around Axes
v.RotateX(.5);
v.RotateY(TMath::Pi());
v.RotateZ(angle);

Rotation around a Vector
v1.Rotate(TMath::Pi()/4, v2); // rotation around v2

Rotation by TRotation
TVector3 objects can be rotated by TRotation objects using the Transform() method,
the operator *=, or the operator * of the TRotation class. See the later section on
TRotation.

TRotation m;
...
v1.Transform(m);
v1 = m*v1;
v1 *= m; // v1 = m*v1

272 Physics Vectors June 2003 v3.05

Transformation from Rotated Frame
This code transforms v1 from the rotated frame (z' parallel to direction, x' in the theta
plane and y' in the xy plane as well as perpendicular to the theta plane) to the (x, y, z)
frame.

TVector3 direction = v.Unit()
v1.RotateUz(direction); // direction must be TVector3 of unit length

TRotation
The TRotation class describes a rotation of TVector3 object. It is a 3 * 3 matrix of
Double_t:

│ xx xy xz │
│ yx yy yz │
│ zx zy zz │

It describes a so-called active rotation, i.e. a rotation of objects inside a static system of
coordinates. In case you want to rotate the frame and want to know the coordinates of
objects in the rotated system, you should apply the inverse rotation to the objects. If you
want to transform coordinates from the rotated frame to the original frame you have to
apply the direct transformation. A rotation around a specified axis means counterclockwise
rotation around the positive direction of the axis.

Declaration, Access, Comparisons
TRotation r; // r initialized as identity
TRotation m(r); // m = r

There is no direct way to set the matrix elements - to ensure that a TRotation always
describes a real rotation. But you can get the values by with the methods XX()..ZZ() or
the (,) operator:

Double_t xx = r.XX(); // the same as xx=r(0,0)
 xx = r(0,0);
if (r==m) {...} // test for equality
if (r!=m) {..} // test for inequality
if (r.IsIdentity()) {...} // test for identity

Rotation around Axes
The following matrices describe counter-clockwise rotations around the coordinate axes
and are implemented in: RotateX(), RotateY() and RotateZ():

 │ 1 0 0 │
Rx(a) = │ 0 cos(a) -sin(a) │
 │ 0 sin(a) cos(a) │

 │ cos(a) 0 sin(a) │
Ry(a) = │ 0 1 0 │
 │ -sin(a) 0 cos(a) │

 │ cos(a) -sin(a) 0 │
Rz(a) = │ cos(a) -sin(a) 0 │
 │ 0 0 1 │

 r.RotateX(TMath::Pi()); // rotation around the x-axis

June 2003 v3.05 Physics Vectors 273

Rotation around Arbitrary Axis
The Rotate() method allows you to rotate around an arbitrary vector (not necessary a
unit one) and returns the result.

r.Rotate(TMath::Pi()/3,TVector3(3,4,5));

It is possible to find a unit vector and an angle, which describe the same rotation as the
current one:

Double_t angle;
TVector3 axis;
r.GetAngleAxis(angle,axis);

Rotation of Local Axes
The RotateAxes()method adds a rotation of local axes to the current rotation and
returns the result:

TVector3 newX(0,1,0);
TVector3 newY(0,0,1);
TVector3 newZ(1,0,0);
a.RotateAxes(newX,newX,newZ);

Methods ThetaX(), ThetaY(), ThetaZ(), PhiX(), PhiY(),PhiZ() return
azimuth and polar angles of the rotated axes:

Double_t tx,ty,tz,px,py,pz;
tx= a.ThetaX();
...
pz= a.PhiZ();

Inverse Rotation
TRotation a,b;
...
b = a.Inverse(); // b is inverse of a, a is unchanged
b = a.Invert(); // invert a and set b = a

Compound Rotations
The operator * has been implemented in a way that follows the mathematical notation of
a product of the two matrices which describe the two consecutive rotations. Therefore the
second rotation should be placed first:

r = r2 * r1;

Rotation of TVector3
The TRotation class provides an operator * which allows expressing a rotation of a
TVector3 analog to the mathematical notation:

 │ x' │ │ xx xy xz │ │ x │
 │ y' │ = │ yx yy yz │ │ y │
 │ z' │ │ zx zy zz │ │ z │

274 Physics Vectors June 2003 v3.05

TRotation r;
TVector3 v(1,1,1);
v = r * v;

You can also use the Transform() method or the operator *= of the TVector3 class:

TVector3 v;
TRotation r;
v.Transform(r);

TLorentzVector
TLorentzVector is a general four-vector class, which can be used either for the
description of position and time (x, y, z, t) or momentum and energy (px, py, pz, E).

Declaration
TLorentzVector has been implemented as a set a TVector3 and a Double_t variable.
By default all components are initialized by zero.

TLorentzVector v1; // initialized by (0.,0.,0.,0.)
TLorentzVector v2(1.,1.,1.,1.);
TLorentzVector v3(v1);
TLorentzVector v4(TVector3(1.,2.,3.),4.);

For backward compatibility there are two constructors from a Double_t and Float_t
array.

Access to Components
There are two sets of access functions to the components of a TLorentzVector:
X(),Y(),Z(),T() and Px(),Py(),Pz() and E(). Both sets return the same values
but the first set is more relevant for use where TLorentzVector describes a combination
of position and time and the second set is more relevant where TLorentzVector
describes momentum and energy:

Double_t xx =v.X();
...
Double_t tt = v.T();
Double_t px = v.Px();
...
Double_t ee = v.E();

The components of TLorentzVector can also accessed by index:

xx = v(0); or xx = v[0];
yy = v(1); yy = v[1];
zz = v(2); zz = v[2];
tt = v(3); tt = v[3];

You can use the Vect() method to get the vector component of TLorentzVector:

TVector3 p = v.Vect();

For setting components there are two methods: SetX(),.., SetPx(),..:

v.SetX(1.); or v.SetPx(1.);
... ...
v.SetT(1.); v.SetE(1.);

June 2003 v3.05 Physics Vectors 275

To set more the one component by one call you can use the SetVect() function for the
TVector3 part or SetXYZT(), SetPxPyPzE(). For convenience there is also a
SetXYZM():

v.SetVect(TVector3(1,2,3));
v.SetXYZT(x,y,z,t);
v.SetPxPyPzE(px,py,pz,e);
v.SetXYZM(x,y,z,m); // v = (x,y,z,e = Sqrt(x*x+y*y+z*z+m*m))

Vector Components in Non-Cartesian Coordinates
There are a couple of methods to get and set the TVector3 part of the parameters in
spherical coordinate systems:

Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
m = v.Rho();
t = v.Theta();
cost = v.CosTheta();
phi = v.Phi();
v.SetRho(10.);
v.SetTheta(TMath::Pi()*.3);
v.SetPhi(TMath::Pi());

or get information about the r-coordinate in cylindrical systems:

Double_t pp, pp2, ppv2, pp2v2;
pp = v.Perp(); // get transverse component
pp2 = v.Perp2(); // get transverse component squared
ppv2 = v.Perp(v1); // get transverse component with
 // respect to another vector
pp2v2 = v.Perp(v1);

for convenience there are two more set functions SetPtEtaPhiE(pt,eta,phi,e) and
SetPtEtaPhiM(pt,eta,phi,m)

Arithmetic and Comparison Operators
The TLorentzVector class provides operators to add subtract or compare four-vectors:

v3 = -v1;
v1 = v2+v3;
v1+= v3;
v1 = v2 + v3;
v1-= v3;
if(v1 == v2) {...}
if(v1 != v3) {...}

Magnitude/Invariant mass, beta, gamma, scalar product
The scalar product of two four-vectors is calculated with the (-,-,-,+) metric:

s = v1*v2 = t1*t2-x1*x2-y1*y2-z1*z2

The magnitude squared mag2 of a four-vector is therefore:

mag2 = v*v = t*t-x*x-y*y-z*z

If mag2 is negative

mag = -Sqrt(-mag*mag)

276 Physics Vectors June 2003 v3.05

The methods are:

Double_t s, s2;
s = v1.Dot(v2); // scalar product
s = v1*v2; // scalar product
s2 = v.Mag2(); or s2 = v.M2();
s = v.Mag(); s = v.M();

Since in case of momentum and energy the magnitude has the meaning of invariant mass
TLorentzVector provides the more meaningful aliases M2() and M(). The methods
Beta() and Gamma() returns beta and gamma = 1/Sqrt(1-beta*beta)

Lorentz Boost
A boost in a general direction can be parameterized with three parameters which can be
taken as the components of a three vector b=(bx,by,bz). With x=(x,y,z) and
gamma=1/Sqrt(1-beta*beta), an arbitrary active Lorentz boost transformation (from
the rod frame to the original frame) can be written as:

x = x' + (gamma-1)/(beta*beta)*(b*x')*b + gamma*t'*b

t = gamma(t'+ b*x)

The Boost() method performs a boost transformation from the rod frame to the original
frame. BoostVector() returns a TVector3 of the spatial components divided by the time
component:

TVector3 b;
v.Boost(bx,by,bz);
v.Boost(b);
b = v.BoostVector(); // b=(x/t,y/t,z/t)

Rotations
There are four sets of functions to rotate the TVector3 component of a
TLorentzVector:

Rotation around Axes

v.RotateX(TMath::Pi()/2.);
v.RotateY(.5);
v.RotateZ(.99);

Rotation around an Arbitrary Axis

v.Rotate(TMath::Pi()/4., v1); // rotation around v1

Transformation from Rotated Frame

v.RotateUz(direction); // direction must be a unit TVector3

Rotation by TRotation

TRotation r;
v.Transform(r); //or v *= r; (v = r*v)

June 2003 v3.05 Physics Vectors 277

Miscellaneous

Angle between Two Vectors

Double_t a = v1.Angle(v2); // get angle between v1 and v2

Light-cone Components
Methods Plus() and Minus() return the positive and negative light-cone components:

Double_t pcone = v.Plus();
Double_t mcone = v.Minus();

Transformation by TLorentzRotation
A general Lorentz transformation (see class TLorentzRotation) can be used by the
Transform() method, the *=, or * operator of the TLorentzRotation class:

TLorentzRotation l;
v.Transform(l);
v = l*v; or v *= l; // v = l*v

TLorentzRotation
The TLorentzRotation class describes Lorentz transformations including Lorentz boosts
and rotations (see TRotation)

 │ xx xy xz xt │
 │ │
 │ yx yy yz yt │
 lambda = │ │
 │ zx zy zz zt │
 │ │
 │ tx ty tz tt │

Declaration
By default it is initialized to the identity matrix, but it may also be initialized by other
TLorentzRotation, by a pure TRotation or by a boost:

TLorentzRotation l; // l is initialized as identity
TLorentzRotation m(l); // m = l
TRotation r;
TLorentzRotation lr(r);
TLorentzRotation lb1(bx,by,bz);
TVector3 b;
TLorentzRotation lb2(b);

The Matrix for a Lorentz boosts is:

 │1+gamma'*bx*bx gamma'*bx*by gamma'*bx*bz gamma*bx │
 │ gamma'*bx*bz 1+gamma'*by*by gamma'*by*by gamma*by │
 │ gamma'*bz*bx gamma'*bz*by 1+gamma'*bz*bz gamma*bz │
 │ gamma*bx gamma*by gamma*bz gamma │

with the boost vector b=(bx,by,bz); gamma=1/Sqrt(1-beta*beta);

gamma'=(gamma-1)/beta*beta

278 Physics Vectors June 2003 v3.05

Access to the Matrix Components/Comparisons
The access to the matrix components is possible with the methods XX(), XY() ...
TT(), and with the operator (int,int):

Double_t xx;
TLorentzRotation l;
xx = l.XX(); // gets the xx component
xx = l(0,0); // gets the xx component
if (l == m) {...} // test for equality
if (l != m) {...} // test for inequality
if (l.IsIdentity()) {...} // test for identity

Transformations of a Lorentz Rotation

Compound transformations
There are four possibilities to find the product of two TLorentzRotation transformations:

TLorentzRotation a,b,c;
c = b*a; // product
c = a.MatrixMultiplication(b); // a is unchanged
a *= b; // a=a*b
c = a.Transform(b) // a=b*a then c=a

Lorentz boosts

Double_t bx, by, bz;
TVector3 v(bx,by,bz);
TLorentzRotation l;
l.Boost(v);
l.Boost(bx,by,bz);

Rotations

TVector3 axis;
l.RotateX(TMath::Pi()); // rotation around x-axis
l.Rotate(.5,axis); // rotation around specified vector

Inverse transformation
The matrix for the inverse transformation of a TLorentzRotation is as follows:

 │ xx yx zx -tx │
 │ │
 │ xy yy zy -ty │
 │ │
 │ xz yz zz -tz │
 │ │
 │-xt -yt –zt tt │

Use the method Inverse() to return the inverse transformation keeping the current one
unchanged. The method Invert() inverts the current TLorentzRotation:

l1 = l2.Inverse(); // l1 is inverse of l2, l2 unchanged
l1 = l2.Invert(); // invert l2, then l1=l2

June 2003 v3.05 Physics Vectors 279

Transformation of a TLorentzVector
To apply TLorentzRotation to TLorentzVector you can use either the
VectorMultiplication() method or the * operator. You can also use the
Transform() function and the *= operator of the TLorentzVector class.

TLorentzVector v;
TLorentzRotation l;
...
v=l.VectorMultiplication(v);
v = l * v;
v.Transform(l);
v *= l; // v = l*v

Physics Vector Example
To see an example of using physics vectors you can look at the test file. It is in
$ROOTSYS/test/TestVectors.cxx. The vector classes are not loaded by default, and
to run it, you will need to load libPhysics.so first:

root[] .L $ROOTSYS/lib/libPhysics.so
root[] .x TestVectors.cxx

To load the physics vector library in a ROOT application use:

gSystem->Load("libPhysics");

The example $ROOTSYS/test/TestVectors.cxx does not return much, especially if all
went well, but when you look at the code you will find examples for many calls.

June 2003 v3.05 Matrix Elements and Operations 281

16 Matrix Elements and
Operations

The operator:

operator*(const TMatrix &source1,const TMatrix &source2);

multiplies matrix of transposed shapes: a(m,n) * b(n,m).

It does not calculate /correct the matrix determinant if the user does not request its value.
The reason for this is that after rescaling by the diagonal it might be too large or too small.

If rank(matrix) <= 3 determinant and matrix inversion formulas are hard-coded in
order to improve speed, as requested by Nicolas Produit

http://root.cern.ch/root/roottalk/roottalk02/1136.html

The implemented class TMatrixFlat lets you access the matrix elements as a flat array.
Functionalities are identical to TMatrixRow, TMatrixColumn and TMatrixDiag.

The following constructors of TVector are added:

TVector(const TMatrixRow &mr);
TVector(const TMatrixColumn &mc);
TVector(const TMatrixDiag &md);

Operations like

TMatrix(a,2) *= TMatrix(b,3)

are now supported elements in TVector, TMatrix, TMatrixRow. They can be
accessed with operator () and [].

June 2003 v3.05 The ROOT Geometry Package 283

17 The ROOT Geometry
Package

The new ROOT geometry package is a tool designed for building, browsing, tracking and
visualizing detector geometry. The code works standalone with respect to any tracking
Monte-Carlo engine; therefore it does not contain any constraints related to physics.
However, the package defines a number of hooks in order to ease-up tracking, allowing
user-defined objects to be attached to the basic architectural structures or superimposed on
top of them. The modeling functionality was designed to optimize particle transport through
complex geometries and it is accessible in an easy and transparent way. The package is
currently under development and new features will be implemented, but the basic
functionality has already been extensively tested on several detector geometries. The final
goal is to be able to use the same geometry for several purposes, such as tracking,
reconstruction or visualization, taking advantage of the ROOT features related to
bookkeeping, I/O, histogramming, browsing and graphical interfaces.

Architecture

The geometrical modeler is the most important component of the package and it provides
answers to the basic questions like "Where am I ?" or "How far from the next boundary ?",
but also to more complex ones like "How far from the closest surface ?" or "On which angle
is crossed next boundary ?".

The architecture of the modeler is a combination between a GEANT-like containment
scheme and a normal constructive solid geometry (CSG) binary tree at the level of shapes.
An important common feature of all detector geometry descriptions is the mother-daughter
concept. This is the most natural approach when tracking is concerned and imposes a set
of constraints to the way geometry is defined. CSG composition is used only in order to
create more complex shapes from an existing set of primitives through Boolean operations.

Volumes and Nodes
Practically any geometry defined in GEANT style can be mapped by the modeler. The basic
components used for building the logical hierarchy of the geometry are called "volumes"
and "nodes". Volumes (sometimes called "solids") are fully defined geometrical objects
having a given shape and material and possibly containing a list of nodes. Nodes represent
just positioned instances of volumes inside a container volume and they are not directly
defined by user. They are automatically created as a result of adding one volume inside
other or as the result of dividing a volume according some pattern. A given volume can be
positioned several times in the geometry. The dividing operation is creating automatically
the list of division nodes inside. The elementary volumes created during this process follow
the same scheme as usual volumes, therefore it is possible to position further geometrical
structures inside or to divide them further more.

284 The ROOT Geometry Package June 2003 v3.05

Nodes are aware of their geometrical transformation which is always defined with respect to
their mother (relative positioning). Reflection matrices are allowed. In order to avoid
ambiguities in the point classification process, this architecture does not allow positioned
objects within the same container to overlap each other or to extrude their mother. An
exception to this rule is however allowed in order to produce Boolean operations among
solids without using Boolean composition. In this case the fact that a positioned volume
might overlap with other must be specified by the user. However, this feature can lead to
unpredictable results if not used with care and reduces the modeler tracking performance.

The structure defined in this way is a graph structure since volumes are replicable (same
volume can become daughter node of several other volumes), every volume becoming a
branch in this graph. Any volume in the logical graph can become the actual top volume at
run time, the modeler behaving in this case as if the geometry is represented by the graph
below this volume.

All volumes have to be fully aware of their containers when the geometry is closed. They
will build additional structures in order to fasten-up the search algorithms. In order to be
able to compute point and vector transformations between the master reference frame and
the local frame of a node, the global transformation of this node must be computed by
multiplying all transformations on the node path. This transformation can be only stored in a
physical tree that represents the expansion of the logical graph. The size of this tree is
proportional to the number of links in the graph and can lead to huge data structures for
complex geometries. In order to solve this problem, the modeler implements a caching
mechanism that expands with higher priority only the most frequently used parts of the
geometry. The global transformations are stored compressed in memory whenever it
contains just simple translations/rotations.

Shapes and Materials
The primitive shapes supported by the package are basically the GEANT3 shapes (boxes,
tubes, trapezoids, cones, spheres, polycones, and polygons) plus arbitrary wedges with
eight vertices on two parallel planes. All basic primitives inherit from the box class since the
bounding box of a solid is used for optimizing the tracking algorithms. They also implement
the virtual methods defined in the virtual class TGeoShape (point and segment
classification). User-defined primitives can be directly plugged into the modeler provided
that they override these methods.

Composite shapes can be created in a transparent way via Boolean expressions using
union (+), subtraction (-) and intersection (*) operations. These operations apply to existing
shapes identified by name which become components of the Boolean expression.
Transformation matrices can apply to each component and they can be appended to shape
names by using a colon (:).

June 2003 v3.05 The ROOT Geometry Package 285

Each matrix describes the relative transformation of a component with respect to the binary
combination to which it is applied. A valid Boolean expression can be:

(tube + tube:mat1) - box:mat2

A missing transformation identifier is automatically substituted by an identity transformation.

 Any shape must be associated with a material or mixture in order to create a volume.
Materials are defined by single elements with given atomic mass and charge, while
mixtures are deriving from the material class and represent combinations of elements. The
density, radiation and absorption lengths have to be specified. A list of default materials is
filled by the manager class at build time. User-defined materials are just added to this list
and can be retrieved by name.

An Interactive Session
Provided that geometry was successfully built and closed, the TGeoManager class will
register itself to ROOT and the logical/physical structures will become immediately
browsable. Starting from the geometry folder, the ROOT browser will display: the list of
transformations and materials, the top volume and the top logical node. These last two can
be fully expanded using the ROOT browser. All user utilities of classes TGeoManager,
TGeoVolume and TGeoNode can be called via the context menu.

Drawing the Geometry
Any logical volume can be drawn via its Draw() member function. Several drawing options
are currently supported and they can be directly accessed from the graphics user interface.
Visualization offers full interactivity, supporting on-line rotations and picking of objects.

Particle Tracking
Tracking is the modeler feature allowing the transport of a given particle knowing its
kinematics. A state is determined by any combination of the position ~r and direction ~n
with respect to the world reference frame. The direction ~n must be a unit vector having as
components the director cosines. The full classification of a given state will provide the
following information: the deepest physical node containing the position vector, the distance
to the closest boundary along the direction vector, the next physical node after propagating
the current point with this distance and the safety distance to the nearest boundary. This
information allows the propagation of particles inside a detector geometry by taking into
account both geometrical and physical constraints.

The two most important features of the geometrical modeler concerning tracking are
scalability and performance as function of the total number of physical nodes. The first
refers to the possibility to make use of the available memory resources and at the same

286 The ROOT Geometry Package June 2003 v3.05

time be able to resolve any geometrical query, while the second defines the capability of
the modeler to respond quickly even for huge geometries. These parameters can become
critical when simulating big experiments like those at LHC.

Table 1 presents the performance for finding a point for several tested geometries in
comparison with GEANT3. A sample of one million points produced by a GEANT3 based
tracking in a full simulation environment were collected. These points were supplied to both
GEANT3 and ROOT modelers and the timings for point classification were compared. In
order to determine if the answer of the two modelers was compatible, the full path for each
point was also compared.

Checking the Geometry
Several checking methods are accessible from the volume context menu or the class
interface. They generally apply only to the visible parts of the drawn geometry in order to
ease geometry checking, and their implementation is in the TGeoChecker class.

In order to check a given point, the method CheckPoint(x,y,z) of TGeoManager
draws the daughters of the volume containing the point one level down, printing the path to
the deepest physical node holding this point. It also computes the closest distance to any
boundary.

A method to check the validity of a given geometry is shooting random points. This can be
called with TGeoVolume::RandomPoints() and it draws a volume with the current
visualization settings. Random points are generated in the bounding box of the top drawn
volume. The points are classified and drawn with the color of their deepest container. Only
points inside visible nodes are drawn.

A ray tracing method can be called TGeoVolume::RandomRays(). This shoots rays
from a given point in the local reference frame with random directions. The intersections
with displayed nodes appear as segments having the color of the touched node.

Saving Geometry in a File
A new geometry package having geometrical modeling capabilities has been introduced in
the ROOT framework. It provides a compatible architecture with GEANT descriptions and
therefore allows mapping of existing detector geometries. It provides a simple user
interface for its building, tracking and visualization features and it is fully decoupled from
physics. It has a transparent and robust object-oriented design that was optimized in terms
of performance and resource management for the most complex experimental geometry
setups at LHC. These features are provided in order to be able to use an unique geometry
description for all applications requiring it within the software framework of an experiment,
such as simulation, reconstruction or event viewing.

Once geometry is successfully built, it can be saved in a root file calling:

TGeoManager::Export(const char *filename,
 const char*keyname="", Option_t *option="v")

where:
filename is the name of the file to be written (mandatory)
keyname is the name of the key in the file (default "")
option = "v" is an export voxelization (default), otherwise voxelization is recomputed
after loading the geometry

Loading geometry from file can be done via the static member function:

TGeoManager::Import(const char*filename,const char*keyname="",
 Option_t *option="")

June 2003 v3.05 The ROOT Geometry Package 287

Example:

... geometry definition
root[0] gGeoManager->CloseGeometry(); // geometry ready
...
root[1] gGeoManager->Export("MyGeom.root"); //file produced root[0]
TGeoManager::Import("MyGeom.root"); // geometry ready

Boolean composite shapes (class TGeoCompositeShape) can be produced out of any
shape known by the modeler, by using Boolean operators: union (+), intersection (*) and
subtraction (-) associated with shape names. Composite shapes are deriving from the
abstract TGeoShape class so they can be used also to define other composite shapes.
Local transformation matrices can apply to composite shape components. A full component
identifier looks like: shape_name:matrix_name. A composite shape is built using a
Boolean expression of component identifiers:

cs = new TGeoCompositeShape("cs_name", "(A:m1+B:m2)-C");

where: A,B,C are names of shapes previously defined, while m1, m2 are names of
transformations that should apply to shapes in the composition. Any valid Boolean
expression is accepted. Missing transformation identifiers are interpreted as identity matrix.
Transformations cannot be applied globally to such a Boolean expression (e.g.
"(A+B):m1" is not valid, while "(A+B):m1-C" is).

Composite shapes cannot be visualized in the current version, but they are "visible" by the
tracking methods FindNode() and FindNextBoundary() of the manager class.

Several improvements in shape classes make the tracking algorithms much more reliable.
Lego plots of radiation length can be globally computed for a given volume in the geometry
(see TGeoVolume::LegoPlot()). Voxelization can be computed optimally in cylindrical
coordinates in addition to Cartesian ones. For the time being this option is not fully stable,
so it is disabled, but in future it will be used in some cases in order to improve tracking
performance in geometries having this type of symmetry.

Visualization of geometry in the pad is using perspective view instead of parallel view. The
view is now scaled w.r.t the absolute proportions of the drawing objects. Double-clicking
volume vertices in the pad produces an animation so that the clicked volume grabs the focus
of the view. Navigation can be performed using the same keys as in x3d view (see
TViewerX3D::gHelpX3DViewer).

June 2003 v3.05 The Tutorials and Tests 289

18 The Tutorials and Tests

This chapter is a guide to the examples that come with the installation of ROOT. They are
located in two directories: $ROOTSYS/tutorials and $ROOTSYS/test.

$ROOTSYS/tutorials
The tutorials directory contains many example scripts. To have all examples
working you must have write permission and you will need to execute
hsimple.C first. If you do not have write permission in the directory
$ROOTSYS/tutorials, copy the entire directory to your area. The script
hsimple.C displays a histogram as it is being filled, and creates a ROOT file
used by the other examples.

To execute it type:

> cd $ROOTSYS/tutorials
> root

 * *
 * W E L C O M E to R O O T *
 * *
 * Version 3.05/03 25 March 2003 *
 * *
 * You are welcome to visit our Web site *
 * http://root.cern.ch *
 * *

FreeType Engine v2.1.3 used to render TrueType fonts.
Compiled for linux with thread support.

CINT/ROOT C/C++ Interpreter version 5.15.80, Mar 17 2003
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.

root[0] .x hsimple.C

Now execute demos.C, which brings up the button bar shown on the left. You
can click on any button to execute another example. To see the source, open
the corresponding source file (for example fit1.C). Once you are done, and
want to quit the ROOT session, you can do so by typing .q.

root[] .x demos.C
root[] .q

290 The Tutorials and Tests June 2003 v3.05

$ROOTSYS/test
The test directory contains a set of examples that represent all areas of the framework.
When a new release is cut, the examples in this directory are compiled and run to test the
new release's backward compatibility.

We see these source files:

hsimple.cxx Simple test program that creates and saves some
histograms

MainEvent.cxx Simple test program that creates a ROOT Tree
object and fills it with some simple structures but also
with complete histograms. This program uses the
files Event.cxx, EventCint.cxx and Event.h.
An example of a procedure to link this program is in
bind_Event. Note that the Makefile invokes the
rootcint utility to generate the CINT interface
EventCint.cxx

Event.cxx Implementation for classes Event and Track

minexam.cxx Simple test program to test data fitting

tcollex.cxx Example usage of the ROOT collection classes

tcollbm.cxx Benchmarks of ROOT collection classes

tstring.cxx Example usage of the ROOT string class

vmatrix.cxx Verification program for the TMatrix class

vvector.cxx Verification program for the TVector class

vlazy.cxx Verification program for lazy matrices

hworld.cxx Small program showing basic graphics

guitest.cxx Example usage of the ROOT GUI classes

Hello.cxx Dancing text example

Aclock.cxx Analog clock (a la X11 xclock)

Tetris.cxx The known Tetris game based on the ROOT
graphics

stress.cxx Important ROOT stress testing program

The $ROOTSYS/test directory is a gold mine of root-wisdom nuggets, and we encourage
you to explore and exploit it. These instructions will compile all programs in
$ROOTSYS/test:

1. If you do not have write permission in the $ROOTSYS/test directory, copy the entire
$ROOTSYS/test directory to your area. The Makefile is a useful example of how
ROOT applications are linked and built. Edit the Makefile to specify your architecture
by changing the ARCH variable, for example, on an SGI machine type: ARCH = sgikcc

2. Now compile all programs:

% gmake

This will build several applications and shared libraries. We are especially interested in
Event, stress, and guitest.

June 2003 v3.05 The Tutorials and Tests 291

Event – An Example of a ROOT Application
Event is created by compiling MainEvent.cxx, and Event.cxx. It creates a ROOT
file with a tree and two histograms. When running Event we have four optional arguments
with defaults:

 Argument Default

1 Number of Events (1 ... n) 400

2 Compression level:

0: no compression at all.

1: If the split level is set to zero, everything is
compressed according to the gzip level 1. If
split level is set to 1, leaves that are not floating
point numbers are compressed using the gzip
level 1.

2: If the split level is set to zero, everything is
compressed according to the gzip level 2. If
split level is set to 1, all non floating point leaves
are compressed according to the gzip level 2
and the floating point leaves are compressed
according to the gzip level 1 (gzip level –1).

Floating point numbers are compressed differently
because the gain when compressing them is
about 20 - 30%. For other data types it is generally
better and around 100%.

1

3 Split or not Split

0: only one single branch is created and the
complete event is serialized in one single buffer

1: a branch per variable is created.

1

(Split)

4 Fill

0: read the file

1: write the file, but don't fill the histograms

2: don't write, don’t fill the histograms

10: fill the histograms, don't write the file

11: fill the histograms, write the file

20: read the file sequentially

25: read the file at random

1

(Write, no fill)

Effect of Compression on File Size and Write Times
You may have noticed that a ROOT file has up to nine compression level, but here only
levels 0, 1, and 2 are described. Compression levels above 2 are not competitive. They
take up to much write time compared to the gain in file space. Below are three runs of
Event on a Pentium III 650 MHz and the resulting file size and write and read times.

292 The Tutorials and Tests June 2003 v3.05

No Compression:

> Event 400 0 1 1
400 events and 19153182 bytes processed.
RealTime=6.840000 seconds, CpuTime=3.560000 seconds
compression level=0, split=1, arg4=1
You write 2.800173 Mbytes/Realtime seconds
You write 5.380107 Mbytes/Cputime seconds

> ls -l Event.root
… 19752171 Feb 23 18:26 Event.root

> Event 400 0 1 20
400 events and 19153182 bytes processed.
RealTime=0.790000 seconds, CpuTime=0.790000 seconds
You read 24.244533 Mbytes/Realtime seconds
You read 24.244533 Mbytes/Cputime seconds

We see the file size without compression is 19.75 MB, the write time is 6.84 seconds and
the read time is 0.79 seconds.

Compression = 1: event is compressed:

> Event 400 1 1 1
400 events and 19153182 bytes processed.
RealTime=6.440000 seconds, CpuTime=4.020000 seconds
compression level=1, split=1, arg4=1
You write 2.974096 Mbytes/Realtime seconds
You write 4.764473 Mbytes/Cputime seconds

> ls -l Event.root
… 17728188 Feb 23 18:28 Event.root

> Event 400 1 1 20
400 events and 19153182 bytes processed.
RealTime=0.900000 seconds, CpuTime=0.900000 seconds
You read 21.281312 Mbytes/Realtime seconds
You read 21.281312 Mbytes/Cputime seconds

We see the file size 17.73, the write time was 6.44 seconds and the read time was 0.9
seconds.

Compression = 2: Floating point numbers are compressed with level 1:

> Event 400 2 1 1
400 events and 19153182 bytes processed.
RealTime=11.340000 seconds, CpuTime=9.510000 seconds
compression level=2, split=1, arg4=1
You write 1.688993 Mbytes/Realtime seconds
You write 2.014004 Mbytes/Cputime seconds

> ls -l Event.root
… 13783799 Feb 23 18:29 Event.root

> Event 400 2 1 20
400 events and 19153182 bytes processed.
RealTime=2.170000 seconds, CpuTime=2.170000 seconds
You read 8.826351 Mbytes/Realtime seconds
You read 8.826351 Mbytes/Cputime seconds

The file size is 13.78 MB, the write time is 11.34 seconds and the read time is 2.17
seconds.

June 2003 v3.05 The Tutorials and Tests 293

This table summarizes the findings on the impact of compressions:

Compression File Size Write Times Read Times

0 19.75 MB 6.84 sec. 0.79 sec.

1 17.73 MB 6.44 sec. 0.90 sec.

2 13.78 MB 11.34 sec. 2.17 sec.

Setting the Split Level
Split Level = 0:

Now we execute Event with the split parameter set to 0:

> Event 400 1 0 1
> root
root[] TFile f("Event.root")
root[] TBrowser T

We notice that only one branch is visible (event). The individual
data members of the Event object are no longer visible in the
browser. They are contained in the event object on the event
branch, because we specified no splitting.

Split Level = 1:

Setting the split level to 1 will create a branch for each data
member in the Event object. First we execute Event and set the
split level to 1 and start the browser to examine the split tree:

> Event 400 1 1 1
> root
root[] TFile f("Event.root")
root[] TBrowser browser

294 The Tutorials and Tests June 2003 v3.05

stress - Test and Benchmark
The executable stress is created by compiling stress.cxx. It completes sixteen tests
covering the following capabilities of the ROOT framework.

1. Functions, Random Numbers, Histogram Fits
2. Size & compression factor of a ROOT file
3. Purge, Reuse of gaps in TFile
4. 2D Histograms, Functions, 2D Fits
5. Graphics & PostScript
6. Subdirectories in a ROOT file
7. TNtuple, Selections, TCut, TCutG, TEventList
8. Split and Compression modes for Trees
9. Analyze Event.root file of stress 8
10. Create 10 files starting from Event.root
11. Test chains of Trees using the 10 files
12. Compare histograms of test 9 and 11
13. Merging files of a chain
14. Check correct rebuilt of Event.root in test 13
15. Divert Tree branches to separate files
16. CINT test (3 nested loops) with LHCb trigger

The program stress takes one argument, the number of events to process. The default
is 1000 events. Be aware that executing stress with 1000 events will create several files
consuming about 100 MB of disk space; running stress with 30 events will consume about
20 MB. The disk space is released once stress is done.

There are two ways to run stress:

From the system prompt or from the ROOT prompt using the interpreter. Start ROOT with
the batch mode option (-b) to suppress the graphic output.

> cd $ROOTSYS/test
> stress // default 1000 events
> stress 30 // test with 30 events

or

> root -b
root[] .x stress.cxx // default 1000 events
root[] .x stress.cxx (30) // test with 30 events

The output of stress includes a pass/fail conclusion for each test, the total number of bytes
read and written, and the elapsed real and CPU time. It also calculates a performance
index for your machine relative to a reference machine a DELL Inspiron 7500 (Pentium III
600 MHz) with 256 MB of memory and 18GB IDE disk in ROOTMARKS. Higher
ROOTMARKS means better performance. The reference machine has 200 ROOTMARKS,
so the sample run below with 53.7 ROOTMARKS is about four times slower than the
reference machine.

June 2003 v3.05 The Tutorials and Tests 295

Here is a sample run:

% root –b
root[] .x stress.cxx (30)

Test 1 : Functions, Random Numbers, Histogram Fits............. OK
Test 2 : Check size & compression factor of a Root file........ OK
Test 3 : Purge, Reuse of gaps in TFile......................... OK
Test 4 : Test of 2-d histograms, functions, 2-d fits........... OK
Test 5 : Test graphics & PostScriptOK
Test 6 : Test subdirectories in a Root file.................... OK
Test 7 : TNtuple, selections, TCut, TCutG, TEventList.......... OK
Test 8 : Trees split and compression modes..................... OK
Test 9 : Analyze Event.root file of stress 8................... OK
Test 10 : Create 10 files starting from Event.root.............. OK
Test 11 : Test chains of Trees using the 10 files............... OK
Test 12 : Compare histograms of test 9 and 11................... OK
Test 13 : Test merging files of a chain......................... OK
Test 14 : Check correct rebuilt of Event.root in test 13........ OK
Test 15 : Divert Tree branches to separate files................ OK
Test 16 : CINT test (3 nested loops) with LHCb trigger.......... OK
**
* IRIX64 fnpat1 6.5 01221553 IP27
**
stress : Total I/O = 75.3 Mbytes, I = 59.2, O = 16.1
stress : Compr I/O = 75.7 Mbytes, I = 60.0, O = 15.7
stress : Real Time = 307.61 seconds Cpu Time = 292.82 seconds
**
* ROOTMARKS = 53.7 * Root2.25/00 20000710/1022

guitest – A Graphical User Interface
The guitest example, created by compiling guitest.cxx, tests and illustrates the use
of the native GUI widgets such as cascading menus, dialog boxes, sliders and tab panels. It
is a very useful example to study when designing a GUI. Below are some examples of the
output of guitest, to run it type guitest at the system prompt in the $ROOTSYS/test
directory. We have included an entire chapter on this subject where we explore guitest in
detail and use it to explain how to build our own ROOT application with a GUI (see Chapter
Writing a Graphical User Interface).

June 2003 v3.05 Example Analysis 297

19 Example Analysis

This chapter is an example of a typical physics analysis. Large data files are chained
together and analyzed using the TSelector class.

Explanation
This script uses four large data sets from the H1 collaboration at DESY Hamburg. One can
access these data sets (277 Mbytes) from the ROOT web site at:
ftp://root.cern.ch/root/h1analysis/

The physics plots generated by this example cannot be produced using smaller data sets.

There are several ways to analyze data stored in a ROOT Tree

• Using TTree::Draw:
This is very convenient and efficient for small tasks. A TTree::Draw call produces
one histogram at the time. The histogram is automatically generated. The selection
expression may be specified in the command line.

• Using the TTreeViewer:
This is a graphical interface to TTree::Draw with the same functionality.

• Using the code generated by TTree::MakeClass:
In this case, the user creates an instance of the analysis class. He has the control over
the event loop and he can generate an unlimited number of histograms.

• Using the code generated by TTree::MakeSelector:
Like for the code generated by TTree::MakeClass, the user can do complex
analysis. However, he cannot control the event loop. The event loop is controlled by
TTree::Process called by the user. This solution is illustrated by the code below.
The advantage of this method is that it can be run in a parallel environment using
PROOF (the Parallel Root Facility).

A chain of four files (originally converted from PAW ntuples) is used to illustrate the various
ways to loop on ROOT data sets. Each contains a ROOT Tree named "h42". The class
definition in h1analysis.h has been generated automatically by the ROOT utility
TTree::MakeSelector using one of the files with the following statement:

h42->MakeSelector("h1analysis");

This produces two files: h1analysis.h and h1analysis.C. A skeleton of
h1analysis.C file is made for you to customize. The h1analysis class is derived from
the ROOT class TSelector. The following members functions of h1analyhsis (i.e.
TSelector) are called by the TTree::Process method.

• Begin: This function is called every time a loop over the tree starts. This is a
convenient place to create your histograms.

• Notify(): This function is called at the first entry of a new tree in a chain.
• ProcessCut: This function is called at the beginning of each entry to return a flag

true if the entry must be analyzed.
• ProcessFill: This function is called in the entry loop for all entries accepted by

Select.

298 Example Analysis June 2003 v3.05

• Terminate: This function is called at the end of a loop on a TTree. This is a
convenient place to draw and fit your histograms.

To use this program, try the following session.

First, turn the timer on to show the real and CPU time per command.

root[] gROOT->Time();

Step A: create a TChain with the four H1 data files. The chain can be created by executed
this short script h1chain.C below. $H1 is a system symbol pointing to the H1 data
directory.

{
 TChain chain("h42");
 chain.Add("$H1/dstarmb.root");
 //21330730 bytes, 21920 events
 chain.Add("$H1/dstarp1a.root");
 //71464503 bytes, 73243 events
 chain.Add("$H1/dstarp1b.root");
 //83827959 bytes, 85597 events
 chain.Add("$H1/dstarp2.root");

//100675234 bytes, 103053 events
}

Run the above script from the command line:

root[] .x h1chain.C

Step B: Now we have a directory containing the four data files. Since a TChain is a
descendent of TTree we can call TChain::Process to loop on all events in the chain.
The parameter to the TChain::Process method is the name of the file containing the
created TSelector class (h1analysis.C).

root[] chain.Process("h1analysis.C")

Step C: Same as step B, but in addition fill the event list with selected entries. The event list
is saved to a file "elist.root" by the TSelector::Terminate method. To see the list
of selected events, you can do elist->Print("all"). The selection function has
selected 7525 events out of the 283813 events in the chain of files. (2.65 per cent)

root[] chain.Process("h1analysis.C","fillList")

Step D: Process only entries in the event list. The event list is read from the file in
elist.root generated by step C.

root[] chain.Process("h1analysis.C","useList")

Step E: The above steps have been executed with the interpreter. You can repeat the steps
B, C, and D using ACLiC by replacing "h1analysis.C" by "h1analysis.C+" or
"h1analysis.C++".

Step F: If you want to see the differences between the interpreter speed and ACLiC speed
start a new session, create the chain as in step 1, then execute

 root[] chain.Process("h1analysis.C+","useList")

June 2003 v3.05 Example Analysis 299

The commands executed with the four different methods B, C, D and E produce two
canvases shown below:

300 Example Analysis June 2003 v3.05

Script
This is the h1analsysis.C file that was generated by TTree::MakeSelector and then
modified to perform the analysis.

#include "h1analysis.h"
#include "TH2.h"
#include "TF1.h"
#include "TStyle.h"
#include "TCanvas.h"
#include "TLine.h"
#include "TEventList.h"

const Double_t dxbin = (0.17-0.13)/40; // Bin-width
const Double_t sigma = 0.0012;
TEventList *elist = 0;
Bool_t useList, fillList;
TH1F *hdmd;
TH2F *h2;

//___
Double_t fdm5(Double_t *xx, Double_t *par)
{
 Double_t x = xx[0];
 if (x <= 0.13957) return 0;
 Double_t xp3 = (x-par[3])*(x-par[3]);
 Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,par[1])
 + par[2]/2.5066/par[4]*TMath::Exp(xp3/2/par[4]/par[4]));
 return res;
}

//___
Double_t fdm2(Double_t *xx, Double_t *par)
{
 Double_t x = xx[0];
 if (x <= 0.13957) return 0;
 Double_t xp3 = (x-0.1454)*(x-0.1454);
 Double_t res = dxbin*(par[0]*TMath::Power(x-0.13957,0.25)
 + par[1]/2.5066/sigma*TMath::Exp(xp3/2/sigma/sigma));
 return res;
}

//___
void h1analysis::Begin(TTree *tree)
{
// function called before starting the event loop
// -it performs some cleanup
// -it creates histograms
// -it sets some initialization for the event list

 //initialize the Tree branch addresses
 Init(tree);

 //print the option specified in the Process function
 TString option = GetOption();

 printf("Starting h1analysis with process option: %sn",option.Data());

 // continued…

June 2003 v3.05 Example Analysis 301

 //Some cleanup in case this function had already been executed
 //Delete any previously generated histograms or functions
 gDirectory->Delete("hdmd");
 gDirectory->Delete("h2*");
 delete gROOT->GetFunction("f5");
 delete gROOT->GetFunction("f2");

 //create histograms
 hdmd = new TH1F("hdmd","dm_d",40,0.13,0.17);
 h2 = new TH2F("h2","ptD0 vs dm_d",30,0.135,0.165,30,-3,6);

 //process cases with event list
 fillList = kFALSE;
 useList = kFALSE;
 fChain->SetEventList(0);
 delete gDirectory->GetList()->FindObject("elist");

 // case when one creates/fills the event list
 if (option.Contains("fillList")) {
 fillList = kTRUE;
 elist = new TEventList("elist","selection from Cut",5000);
 }
 // case when one uses the event list generated in a previous call
 if (option.Contains("useList")) {
 useList = kTRUE;
 TFile f("elist.root");
 elist = (TEventList*)f.Get("elist");
 if (elist) elist->SetDirectory(0);
 //otherwise the file destructor will delete elist
 fChain->SetEventList(elist);
 }
}
//___
Bool_t h1analysis::ProcessCut(Int_t entry)
{
// Selection function to select D* and D0.

 //in case one event list is given in input,
 //the selection has already been done.
 if (useList) return kTRUE;

 // Read only the necessary branches to select entries.
 // return as soon as a bad entry is detected
 b_md0_d->GetEntry(entry);
 if (TMath::Abs(md0_d-1.8646) >= 0.04) return kFALSE;
 b_ptds_d->GetEntry(entry);
 if (ptds_d <= 2.5) return kFALSE;
 b_etads_d->GetEntry(entry);
 if (TMath::Abs(etads_d) >= 1.5) return kFALSE;
 b_ik->GetEntry(entry); ik--;
 //original ik used f77 convention starting at 1
 b_ipi->GetEntry(entry);
 ipi--;
 b_ntracks->GetEntry(entry);
 b_nhitrp->GetEntry(entry);
 if (nhitrp[ik]*nhitrp[ipi] <= 1) return kFALSE;
 b_rend->GetEntry(entry);
 b_rstart->GetEntry(entry);
 if (rend[ik]-rstart[ik] <= 22) return kFALSE;
 if (rend[ipi]-rstart[ipi] <= 22) return kFALSE;
 b_nlhk->GetEntry(entry);
 if (nlhk[ik] <= 0.1) return kFALSE;
 b_nlhpi->GetEntry(entry); //continued…

302 Example Analysis June 2003 v3.05

 if (nlhpi[ipi] <= 0.1) return kFALSE;
 b_ipis->GetEntry(entry);
 ipis--;
 if (nlhpi[ipis] <= 0.1) return kFALSE;
 b_njets->GetEntry(entry);
 if (njets < 1) return kFALSE;

 // if option fillList, fill the event list

 if (fillList) elist->Enter(fChain->GetChainEntryNumber(entry));
 return kTRUE;
}

//___
void h1analysis::ProcessFill(Int_t entry)
{
// Function called for selected entries only

 // read branches not processed in ProcessCut

 b_dm_d->GetEntry(entry);
 //read branch holding dm_d
 b_rpd0_t->GetEntry(entry);
 //read branch holding rpd0_t
 b_ptd0_d->GetEntry(entry);
 //read branch holding ptd0_d

 //fill some histograms

 hdmd->Fill(dm_d);
 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
}

//___
void h1analysis::Terminate()
{
// Function called at the end of the event loop

 //create the canvas for the h1analysis fit

 gStyle->SetOptFit();
 TCanvas *c1 = new TCanvas("c1","h1analysis analysis",
 10,10,800,600);
 c1->SetBottomMargin(0.15);
 hdmd->GetXaxis()->SetTitle("m_{K#pi#pi}
 -m_{K#pi}[GeV/c^{2}]");
 hdmd->GetXaxis()->SetTitleOffset(1.4);

 //fit histogram hdmd with function f5 using
 //the loglikelihood option
 TF1 *f5 = new TF1("f5",fdm5,0.139,0.17,5);
 f5->SetParameters(1000000,.25,2000,.1454,.001);
 hdmd->Fit("f5","lr");

 //create the canvas for tau d0
 gStyle->SetOptFit(0);
 gStyle->SetOptStat(1100);
 TCanvas *c2 = new TCanvas("c2","tauD0",100,100,800,600);
 c2->SetGrid();
 c2->SetBottomMargin(0.15);
 //continued…

June 2003 v3.05 Example Analysis 303

 // Project slices of 2-d histogram h2 along X ,
 // then fit each slice with function f2 and make a
 // histogram for each fit parameter.
 // Note that the generated histograms are added
 // to the list of objects in the current directory.

 TF1 *f2 = new TF1("f2",fdm2,0.139,0.17,2);
 f2->SetParameters(10000,10);
 h2->FitSlicesX(f2,0,0,1,"qln");
 TH1D *h2_1 = (TH1D*)gDirectory->Get("h2_1");
 h2_1->GetXaxis()->SetTitle("#tau[ps]");
 h2_1->SetMarkerStyle(21);
 h2_1->Draw();
 c2->Update();
 TLine *line = new TLine(0,0,0,c2->GetUymax());
 line->Draw();

 // save the event list to a Root file if one was
 // produced
 if (fillList) {
 TFile efile("elist.root","recreate");
 elist->Write();
 }
}

June 2003 v3.05 Networking 305

20 Networking

In this chapter, you will learn how to send data over the network using the ROOT socket classes.

Setting-up a Connection
On the server side, we create a TServerSocket to wait for a connection request over the
network. If the request is accepted, it returns a full-duplex socket. Once the connection is
accepted, we can communicate to the client that we are ready to go by sending the string
"go", and we can close the server socket.

{ // server
 TServerSocket *ss = new TServerSocket(9090,kTRUE);
 TSocket *socket = ss->Accept();
 socket->Send("go");
 ss->Close();
}

On the client side, we create a socket and ask the socket to receive input.

{ // client
 TSocket *socket = new TSocket("localhost",9090);
 Char str[32];
 socket->Recv(str,32);
}

Sending Objects over the Network
We have just established a connection and you just saw how to send and receive a string
with the example "go". Now let’s send a histogram.

To send an object (in our case on the client side) it has to derive from TObject because it
uses the Streamers to fill a buffer that is then sent over the connection. On the receiving
side, the Streamers are used to read the object from the message sent via the socket.
For network communication, we have a specialized TBuffer, a descendant of TBuffer
called TMessage. In the following example, we create a TMessage with the intention to
store an object, hence the constant kMESS_OBJECT in the constructor. We create and fill
the histogram and write it into the message. Then we call TSocket::Send to send the
message with the histogram.

306 Networking June 2003 v3.05

…
// create an object to be sent
TH1F *hpx = new TH1F("hpx","px distribution",100,-4,4);
hpx->FillRandom("gaus",1000);

// create a TMessage to send the object
TMessage message(kMESS_OBJECT);

// write the histogram into the message buffer
message.WriteObject(hpx);

// send the message
socket->Send(message);
…

On the receiving end (in our case the server side), we write a while loop to wait and receive
a message with a histogram. Once we have a message, we call
TMessage::ReadObject, which returns a pointer to TObject. We have to cast it to a TH1
pointer, and now we have a histogram. At the end of the loop, the message is deleted, and
another one is created at the beginning.

while (1) {
 TMessage *message;
 socket->Recv(message);
 TH1 *h = (TH1*)message->ReadObject(message->GetClass());
 delete message;
}

Closing the Connection
Once we are done sending objects, we close the connection by closing the sockets at both
ends.

Socket->Close();

This diagram summarizes the steps we just covered:

{
TServerSocket *ss =
 new TServerSocket(9090, kTRUE);

TSocket *socket = ss->Accept();

socket->Send("go");
ss->Close();

while (1) {
 TMessage *message;
 socket->Recv(message);
 TH1 *h =
 (TH1*)mess->ReadObject
 (mess->GetClass());
 delete mess;
}

socket->Close();
}

{

 TSocket *socket =
 new TSocket("localhost", 9090);

 Char str[32];
 Socket->Recv(str,32);

 TH1F *hpx = new TH1F("hpx","px",100,-4,4);
 hpx->FillRandom("gaus",1000);
 // create a TMessage to send an object
 TMessage message(kMESS_OBJECT);
 // write the histogram into the message
 message.WriteObject(hpx);
 // send the message
 socket->Send(message)

 socket->Close();
}

connect

OK

send

Server Client

June 2003 v3.05 Networking 307

A Server with Multiple Sockets
Chances are that your server has to be able to receive data from multiple clients. The class
we need for this is TMonitor. It lets you add sockets and the TMonitor::Select
method returns the socket with data waiting. Sockets can be added, removed, or enabled
and disabled.

Here is an example of a server that has a TMonitor to manage multiple sockets:

{
 TServerSocket *ss = new TServerSocket (9090, kTRUE);

 // Accept a connection and return a full-duplex
 // communication socket.
 TSocket *s0 = ss->Accept();
 TSocket *s1 = ss->Accept();

 // tell the clients to start
 s0->Send("go 0");
 s1->Send("go 1");

 // Close the server socket (unless we will use it
 // later to wait for another connection).
 ss->Close();

 TMonitor *mon = new TMonitor;

 mon->Add(s0);
 mon->Add(s1);

 while (1) {
 TMessage *mess;
 TSocket *s;
 s = mon->Select();
 s->Recv(mess);
…
}

The full code for the example above is in $ROOTSYS/tutorials/hserver.cxx and
$ROOTSYS/tutorials/hclient.cxx.

June 2003 v3.05 Writing a Graphical User Interface 309

21 Writing a Graphical User
Interface

The ROOT GUI classes support an extensive and rich set of widgets with the Windows 95
look and feel. The widget classes interface to the underlying graphics system via a single
abstract class. Concrete versions of this abstract class have been implemented for X11 and
Win32, thereby making the ROOT GUI fully cross-platform. Originally the GUI classes were
based on Hector Peraza's Xclass'95 widget library http://xclass.sourceforge.net/

The ROOT GUI Classes
Features of the GUI classes in a nutshell:

• Originally based on the Xclass'95 widget library
• A rich and complete set of widgets
• Win'95 look and feel
• All machine dependent graphics calls abstracted via the TVirtualX "abstract" class
• Completely scriptable via the C++ interpreter (fast prototyping)
• Supports signal/slot event handling as pioneered by Trolltech’s Qt
• Full class documentation is generated automatically (as for all ROOT classes)
• Code generation for variety of GUI’s

Widgets and Frames
The ROOT GUI classes provide of set of components that allow an easy way to develop
cross-platform GUI applications with a Windows look and feel.

The main widgets are:

• Simple widgets: labels, icons, push buttons, either with text or pixmaps, check buttons,
radio buttons, menu bars and popup menus, scroll bars, list boxes, combo boxes, group
frames, text entry widgets, tab widgets, progress bars, sliders, tool tips

• Complex widgets: shutter, toolbar, status bar, list view, list tree
• Common dialogs: File Open/Save, File Properties, Font Selection, Color Selection,

About

The widgets are shown in frames:

• frame, composite frame, main frame, transient frame, group frame

Arranged by layout managers:

• horizontal layout, vertical layout, row layout, list layout, tile layout, matrix layout

Using a combination of layout hints:

• left, right, center x, center y, top, bottom, expand x, expand y, fixed offsets

Event handling by signals/slots and messaging (as opposed to callbacks):

310 Writing a Graphical User Interface June 2003 v3.05

• in response to actions widgets send messages and emit signals
• associated frames process these messages or the slot methods connected to the

signals are executed

TVirtualX
The GUI classes interface to the platform dependent low level graphics system via the semi-
abstract graphics base class TVirtualX. Currently concrete implementations exist for X11
and Win32 (MacOS X is fully supported via Apple’s X11 implementation). Thanks to this
single graphics interface, porting the ROOT GUI to a new platform requires only the
implementation of TVirtualX.

Abstract Graphics Base Class TVirtualX

The TGQt interface is currently still under development.

A Simple Example
We will start with a simple example that builds a small application containing a canvas and
two buttons: Draw and Exit. Its functionality will be very simple: every time you click on Draw
button, the graphics of the function sin(x)/x will be drawn in randomly chosen interval in
the canvas window, if you click on Exit - you close the application. This example shows the
basic concepts for almost any GUI-application in ROOT and it is important to understand
how it is constructed. The example program is written as a named script (see the chapter
"CINT the C++ Interpreter"). Remember that the named script can be executed via

root[] .x example.C

only if the filename (without extension) and the function entry point are both the same.

We need to say a few words about the parent-children relationship between the widgets
before going through the real code. The widgets' behaviors are based on this relationship.
Every parent widget is responsible for where the children are and it ensures all properties
and behavior for them. For example, if you want to hide several widgets, it will be enough to
hide their parent widget. Later you can show the parent and the children will appear too.
Writing your code you have to specify the parent-child relationship. Usually in a child
constructor the address of the parent is passed as an argument. In general frames are
parents of simple widgets. In this example you will see how we organize the parent-children
relationship by using frame widgets in addition to the canvas window and button widgets.

Let’s now go through the code of the example.C.

June 2003 v3.05 Writing a Graphical User Interface 311

The first lines include ROOT header files. The header file names are almost always as the
class names (TApplication, TF1, TCanvas), but there are cases when similar classes
are grouped together in one header file: all frames are declared in TGFrame.h, all buttons –
in TGButton.h, etc. Our small example is based on an object of the class MyMainFrame.

new MyMainFrame(gClient->GetRoot(),200,200);

The first parameter gClient->GetRoot() makes the initial connection to the window
server. It is a pointer to the root window of the screen, which is obtained from gClient. The
next two parameters initialize the width and height of the application window in pixels. Let
see what MyMainFrame is. The three arguments pass to the TGMainFrame constructor
when we create the fMain object.

The first thing to note is the inclusion of the RQ_OBJECT macro in the class declaration of
MyMainFrame. It is necessary to provide a standalone class signal/slot capability. The
signal/slot communication mechanism is described in a separate chapter ‘Event Processing:
Signals and Slots’.

example.C

#include <TGClient.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TRandom.h>
#include <TGButton.h>
#include <TGFrame.h>
#include <TRootEmbeddedCanvas.h>
#include <RQ_OBJECT.h>

class MyMainFrame {

RQ_OBJECT("MyMainFrame")

private:
 TGMainFrame *fMain;
 TRootEmbeddedCanvas *fEcanvas;
public:
 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);
 virtual ~MyMainFrame();
 void DoDraw();
};

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h)
{
 // Create a main frame
 fMain = new TGMainFrame(p,w,h);

 // Create canvas widjet
 fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fMain,200,200);
 fMain->AddFrame(fEcanvas, new TGLayoutHints(kLHintsExpandX
 | kLHintsExpandY,10,10,10,1));
 // Create a horizontal frame widget with buttons
 TGHorizontalFrame *hframe = new TGHorizontalFrame(fMain,200,40);
 TGTextButton *draw = new TGTextButton(hframe,"&Draw");
 draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");
 hframe->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,5,5,3,4));
 TGTextButton *exit = new TGTextButton(hframe,"&Exit",
 "gApplication->Terminate(0)");
 hframe->AddFrame(exit, new TGLayoutHints(kLHintsCenterX,5,5,3,4));
 fMain->AddFrame(hframe, new TGLayoutHints(kLHintsCenterX,2,2,2,2));
 // continued…

312 Writing a Graphical User Interface June 2003 v3.05

 // Set a name to the main frame
 fMain->SetWindowName("Simple Example");

 // Map all subwindows of main frame
 fMain->MapSubwindows();

 // Initialize the layout algorithm
 fMain->Resize(fMain->GetDefaultSize());

 // Map main frame
 fMain->MapWindow();
}
void MyMainFrame::DoDraw()
{
 // Draws function graphics in randomly choosen interval
 TF1 *f1 = new TF1("f1","sin(x)/x",0,gRandom->Rndm()*10);
 f1->SetFillColor(19);
 f1->SetFillStyle(1);
 f1->SetLineWidth(3);
 f1->Draw();
 TCanvas *fCanvas = fEcanvas->GetCanvas();
 fCanvas->cd();
 fCanvas->Update();
}
MyMainFrame::~MyMainFrame()
{
 // Clean up used widgets: frames, buttons, layouthints
 fMain->Cleanup();
 delete fMain;
}
void example()
{
 // Popup the GUI...
 new MyMainFrame(gClient->GetRoot(),200,200);
}

The TGMainFrame class defines a top level window that interacts with the system window
manager. Its method CloseWindow() is invoked when Alt+F4 are pressed or a window
manager close/exit command is used. To terminate the application when this happens you
need to override the CloseWindow() method and call gApplication->Terminate(0).

The main frame can be considered as a container where all widgets of the application are
organized with respect to their parent-child relationship. After the main frame we create
fEcanvas – an object of class TRootEmbeddedCanvas. It is a quite complex widget and
we will explain it in detail later. For the moment keep in mind only its main purpose – to
create a TCanvas – the ROOT basic whiteboard for drawing and editing different graphical
objects.

fEcanvas = new TRootEmbeddedCanvas("Ecanvas",fMain,200,200);

In the TRootEmbeddedCanvas constructor we pass the address of the main frame widget
fMain as a second parameter. This pass is important because it makes fMain the parent
of the canvas window. The first parameter Ecanvas is the name of the TCanvas, the last
two parameters give the width and height of canvas window in pixels. Next step is to add
fEcanvas to the parent frame defining its appearance inside the parent window. We use
the method AddFrame():

fMain->AddFrame(fEcanvas,new TGLayoutHints(kLHintsExpandX
 | kLHintsExpandY,10,10,10,1));

It adds the fEcanvas into the list of children widgets of the main frame fMain. The
specification of how it should be placed inside the parent frame is made by the
TGLayoutHints object.

June 2003 v3.05 Writing a Graphical User Interface 313

Setting its first parameter to kLHintsExpandX|kLHintsExpandY we define the canvas
window as expanded on x and y in the frame. The next four parameters define amounts of
padding in left, right, top and bottom in pixels. This means that the canvas window will be
expanded when the parent window expands, but it will keep around a frame of 10 pixels on
left, right, top and 1 pixel on bottom.

The laying out is always made with respect to the parent-children relationship. There is a
special chapter presenting the different layout managers, but we will quickly introduce the
concept here. The layout process will apply not to the embedded canvas window but to its
parent – the main frame. A popular layout manager and the one used in this case is the
vertical layout manager which arranges its widgets vertically in a column.

The next widget we create as a child of the main frame is the horizontal frame hframe:

TGHorizontalFrame *hframe=new TGHorizontalFrame(fMain,200,40);

The first parameter of its constructor is again the address of its parent, fMain. The next
ones define the frame width and height in pixels. The name of the class
TGHorizontalFrame gives a hint that a horizontal layout will apply on its children widgets.
The Draw and Exit buttons will be laid out horizontally. Here are their constructors:

TGTextButton *draw = new TGTextButton(hframe,"&Draw");
hframe ->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,5,5,3,4));

TGTextButton *exit = new TGTextButton(hframe,"&Exit",
 "gApplication->Terminate(0)");
hframe ->AddFrame(exit,new TGLayoutHints(kLHintsCenterX,5,5,3,4));

They are created as objects of the TGTextButton class that represent the command
buttons with a text label. When you click on a command button it performs the action shown
on its label. These buttons are well known as “push buttons” or just “buttons”. The parent
address hframe is passed as first parameter. The second one defines the button label and
normally indicates the action to be taken when the button is clicked. It is possible to define a
hot key for the button at that point using the hot string for its label. A hot string is a string with
a “hot” character underlined. This character we call the button hot key. It shows the assigned
keyboard mnemonic for the button choice. Following our example, this means that you can
use Alt+D to click on Draw button and Alt+E to click on Exit. There is a possibility to
specify a command string as third parameter of the button constructor. We use it to assign
the command gApplication->Terminate(0). The application will be terminated when
you click on the Exit button.

We call again AddFrame() to add the buttons to their parent widget giving layout hints for
each of them. This time we would like to have centered buttons with an amount of 5 pixels
on the left, 5 on the right, 3 on the top and 4 on the bottom.

You can feel already that the same steps are repeated three times: to create a new widget
with passing a parent address as a parameter, to define layout hints for it and to add it in the
parent list.

314 Writing a Graphical User Interface June 2003 v3.05

The next line is something new:

draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

Here we connect a signal to a slot. Whenever the draw button is clicked, it emits a signal
that something has happened (it is clicked) to whom might be interesting in the outside
world. The widget does not know who will use this information. On the other side of the
program world there is some code which should be executed when the button is clicked.
This code is called a slot. Think about slots as normal C++ functions or class methods. The
line above specifies that the slot MyMainFrame::DoDraw() will be executed when the
draw button is clicked. Our slot draws the graphics of sin(x)/x in randomly chosen interval
every time the draw button sends a signal “I am clicked”.

The signal/slot communication mechanism originally featured in Qt by TrollTech:
http://doc.trolltech.com/3.1/signalsandslots.html ROOT supports its own version of
signal/slot and we will return to that point in detail later.

We specified all child widgets of the horizontal frame (the Draw and Exit buttons in our
case). Next, we need to add their parent frame to the main frame:

fMain->AddFrame(hframe,new TGLayoutHints(kLHintsCenterX,2,2,2,2));

The last thing to do is to set the main window title and to make all widgets visible.
Commonly in all systems windows are assigned by name to be identified by users. This
name is displayed in the application’s title bar and can be set by:

fMain->SetWindowName("Simple Example");

The next lines make the widgets visible. The first one maps all child frames of the top-level
frame; the last one – the main frame itself, i.e. makes it appear on the screen.

fMain->MapSubwindows();
fMain->Resize(fMain->GetDefaultSize());
fMain->MapWindow();

The line in between has an important mission – to execute all layout specifications for the
widgets before the top-level window itself is shown on the screen. We can run the named
script via the CINT interpreter with the command:

root[] .x example.C

The event processing starts. If you change the state of a widget, it emits a signal and the
corresponding slot is executed ensuring the functionality we want for this small example.

The steps we passed can be generalized as follows:

• Opening of the connection to the system
• Definition of main frame (top level window)
• Creation of widgets as children of the top-level frame; assign them desired properties

following the steps:
o Create a new widget passing its parent in the constructor
o Connect widget’s signals with desired slots to ensure desired functionality
o Define widget’s layout and add it to the parent list of children

• Set main window attributes
• Map all sub windows
• Initialize the layout algorithm via Resize(GetDefaultSize()) method
• Map the main frame
• Execution of the even-processing loop

June 2003 v3.05 Writing a Graphical User Interface 315

A Standalone Version
As usual a standalone program in C++ has to contain a main() function – the starting point
for the application execution. In this case it is better to separate the program code creating a
program header file example2a.h with the MyMainFrame class declaration and
example2a.cxx – with the class methods implementation. To run our simple example as a
standalone application we need to create in addition an object of class TApplication. It
will make a correct initialization of the dictionaries if it is not yet done. It will be responsible
for holding everything together and to handle all events in the application. Its environment
provides an interface to the ROOT graphics system and by calling the Run() method the
event loop starts and the application program is waiting for the user action. The application
exits only if the top level window is closed. Two header files are used in addition:
TApplication.h – for the class TApplication and TGClient.h that is used to make
initial connection to the graphics system. The class TApplication must be instantiated
only once in any given application. The original list of argument options can be retrieved via
the Argc() and Argv() methods.

example2a.h

#include <TQObject.h>
#include <RQ_OBJECT.h>

class TGWindow;
class TGMainFrame;
class TRootEmbeddedCanvas;

class MyMainFrame {

RQ_OBJECT("MyMainFrame")

private:
 TGMainFrame *fMain;
 TRootEmbeddedCanvas *fEcanvas;
public:
 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);
 virtual ~MyMainFrame();
 void DoDraw();
};

example2a.cxx

#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TRandom.h>
#include <TGButton.h>
#include <TRootEmbeddedCanvas.h>
#include “example2a.h”

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t) { ... }
MyMainFrame::~MyMainFrame() { ... }
void MyMainFrame::DoDraw() { ... }
void example() { ... }
int main(int argc, char **argv)
{
 TApplication theApp(“App”,&argc,argv);
 example();
 theApp.Run();
 return 0;
}

The class MyMainFrame could derive from TGMainFrame. The RQ_OBJECT macro is not
needed anymore, since the functionality it provides is obtained now via inheritance from

316 Writing a Graphical User Interface June 2003 v3.05

TGMainFrame. This will reflect in the MyMainFrame class declaration and in the code of the
MyMainFrame::MyMainFrame constructor as follows:

example2b.h

#include <TGFrame.h>

class MyMainFrame : public TGMainFrame {

private:
 TRootEmbeddedCanvas *fEcanvas;

public:
 MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h);
 virtual ~MyMainFrame();
 void DoDraw();
};

example2b.cxx

#include <TApplication.h>
#include <TGClient.h>
#include <TCanvas.h>
#include <TF1.h>
#include <TRandom.h>
#include <TGButton.h>
#include <TRootEmbeddedCanvas.h>
#include “example2b.h”

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t)
 : TGMainFrame(p,w,h)
{
 // Creates widgets of the example
 fEcanvas = new TRootEmbeddedCanvas ("Ecanvas",this,200,200);
 AddFrame(fEcanvas, new TGLayoutHints(kLHintsExpandX |
 kLHintsExpandY,10,10,10,1));
 TGHorizontalFrame *hframe=new TGHorizontalFrame(this, 200,40);
 TGTextButton *draw = new TGTextButton(hframe,"&Draw");
 draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");
 hframe->AddFrame(draw, new TGLayoutHints(kLHintsCenterX,
 5,5,3,4));
 TGTextButton *exit = new TGTextButton(hframe,"&Exit ",
 "gApplication->Terminate()");
 hframe->AddFrame(exit, new TGLayoutHints(kLHintsCenterX,
 5,5,3,4));
 AddFrame(hframe,new TGLayoutHints(kLHintsCenterX,2,2,2,2));

 // Sets window name and shows the main frame
 SetWindowName("Simple Example");
 MapSubwindows();
 Resize(GetDefaultSize());
 MapWindow();
}

Widgets Overview
The word widget is a contraction of windows and gadget. Almost all GUI elements are
widgets. A button is a widget, a menu item is a widget, a scrollbar is a widget, and a

June 2003 v3.05 Writing a Graphical User Interface 317

complete dialog box is a widget too. Some widgets may have sub widgets. For example, a
dialog box can contain buttons, text fields, a combo-box, etc.

On the screen widgets look like rectangular areas with special behaviors. In terms of the
object-oriented programming we can define a widget in ROOT as an object of a class
deriving from TGObject.

This section presents all currently supported widgets in ROOT and their most useful
methods. All of them can be considered as building blocks for an application, and most of
them can be found in dialogs. Provided snippets of the code will give you practical guidelines
where and how to use certain widgets. The macro $ROOTSYS/tutorials/guitest.C
contains the complete source code.

Any custom widget can be created by sub classing existing widgets. To achieve a better
understanding of the widgets’ properties they are separated by their type and their
inheritance. As all of them inherit from TGObject and most from TGWidget, these base
classes are described first.

TGObject
TGObject is the base class for all ROOT GUI classes. It inherits from TObject. The two
data members of this class contain important information about X11/Win32 window identifier
and the connection to the host’s graphics system. Every GUI element, which derives from
TGObject has access to the TGClient via the data member fClient of TGObject.
TGClient creates the connection with the host’s graphics system and sets up the complete
graphics system for all widgets.

TGWidget
The widgets base class TGWidget is typically used as a mix-in class via multiple
inheritances. Its properties are available for all deriving widgets: TGButton, TGComboBox,
TGColorPalette, TGColorPick, TGDoubleSlider, TGListBox, TGListTree,
TGNumberEntry, TGScrollBar, TGShutterItem, TGSlider, TGTab, TGTextEntry,
TGView.

This class has four data members keeping information about the widget id – important for
event processing, the window which handles the widget’s events, the widget status flags and
the assigned command (if there is any).

The general properties of TGWidget can be specified via the methods
SetFlags(Int_t flags) and ClearFlags(Int_t flags). Their names and the

318 Writing a Graphical User Interface June 2003 v3.05

names of the status flags are: kWidgetWantFocus, kWidgetHasFocus, and
kWidgetIsEnabled.

The method Associate(const TGWindow* w) – sets the window which handles the
widget events. SetCommand(const char* command) – sets the command to be
executed. The command string can be gathering via GetCommand() method. For example,
the third parameter in TGTextButton constructor can be omitted and set later in your
program, i.e. instead of:

TGTextButton *exit = new TGTextButton(hframe,"&Exit",
 "gApplication->Terminate()");

You will have the following the two lines:

TGTextButton *exit = new TGTextButton(hframe,"&Exit");
exit->SetCommand("gApplication->Terminate()");

The method IsEnabled() – returns kTRUE if the widget has flag kWidgetIsEnabled and
it accepts user events. This method is very important for creating a good user interface
because it allows you to disable or enable a widget depending on the situation of your
application. As a standard all disabled widgets are displayed “grayed out”. HasFocus() –
returns kTRUE if the widget has the input focus (i.e. flag kWidgetHasFocus is set).
Remember that only one item in a complex widget as a dialog can have the value of
HasFocus() sets as true. WantFocus() – returns kTRUE if the flag kWidgetWantFocus
is set.

TGWindow
TGWindow is a ROOT GUI window base class. It inherits from TGObject and TGFrame
derives from it. The application does not use it directly. It creates and registers a new
window within the system. This window has common characteristics: existing parent,
location, size in height and width (it has a default minimum size 1, 1 under which it cannot
shrink), border with particular view, state, specific attributes. If there are no specified
arguments their values will be taken from the parent. It receives events from the window
system and can paint a representation of itself on the screen.

Frames
Most of the frame classes are mainly created for arranging widgets in a window. The class
TGFrame is a subclass of TGWindow providing additional window characteristics and
overriding some methods of TGWindow. It is a base class for the simple widgets as buttons,
labels, etc. Its only purpose is to draw a frame around widgets that do not have a frame of
their own. The main groups of TGFrame member functions are:

• Window’s functions: DoRedraw(), DeleteWindow(), Activate(), etc.
• Geometry functions: Move(), Resize(), SetSize(), etc.
• Graphics handlers: ChangeBackground(), ChangeOptions(), etc.
• Mouse and keyboard functions: HandleButton(), HandleKey(),

HandleMotion(), HandleFocusChange(), etc.
• Event handlers: HandleEvent(), ProcessEvent(), GetSender(),

SendMessage(), ProcessMessage(), GetLastClick(), etc.

June 2003 v3.05 Writing a Graphical User Interface 319

Ones of TGFrame member functions provide direct functionality; others – will be overridden
by TGFrame subclasses to ensure particular widget’s functionality. There are two
constructors provided in TGFrame class. One creates a frame using an externally created
window:

TGFrame(TGClient *c,Window_t id,const TGWindow *parent = 0);

For example, it can register the root window (called by TGClient), or a window created via
TVirtualX::InitWindow() (window id is obtained by TVirtualX::GetWindowID()
method). The other TGFrame constructor is:

TGFrame(const TGWindow *p,UInt_t w,UInt_t h,UInt_t options=0,
 ULong_t back = GetDefaultBackground());

The options parameter is the bitwise OR between defined frame types. Here is a short
description of these types:

Frame Type Description

kChildFrame a frame embedded in a parent

kMainFrame a main frame interacting with the system Window
Manager

kTransientFrame a top level dialog’s frame

kVerticalFrame a frame that layouts its children in a column

kHorizontalFrame a frame that layouts its children in a row

kSunkenFrame a frame with a sunken board appearance

kRaisedFrame a frame with a raised board appearance

kFitWidth a frame with dynamically scaled width

kFitHeight a frame with dynamically scaled height

kFixedWidth a frame with fixed width

kFixedHeight a frame with fixed height

kFixedSize = kFixedWidth | kFixedHeight
a frame with fixed width and height

320 Writing a Graphical User Interface June 2003 v3.05

kDoubleBorder a frame having a double line border

kOwnBackground a frame having own background

kTempFrame a temporary frame shown in certain
circumstances; for example, it is used for creation
of tool tip widget

The method ChangeOpton(UInt_t options) allows you to change frame options. Next
example shows you how to change kVerticalFrame option to kHorizontalFrame:

frame->ChangeOptions((frame->GetOptions() & ~kVerticalFrame) |
 kHorizontalFrame);

The class TGCompositeFrame is the base class of all composite widgets as a menu bar, a
list box, a combo box, etc. It subclasses TGFrame and has in addition a layout manager and
a list of child frames/widgets. There are two steps to do the design using a composite frame
widget. First you put all widgets you need within this frame and assign them desired
properties using AddFrame(), then you lay them out by the Layout() method according
to the assigned layout manager. The method AddFrame() creates an instance of
TGFrameElement class for every child widget of a composite frame. This class has three
public data members: the child pointer, its layout hints, and a status variable showing if the
child is visible or hidden. If no hints are specified, the default layout hints are used. Because
the layout is very important part of any design we include a special section about layout
management and layout hints.

You can set a layout manager for the composite frame via:

compFrame->SetLayoutManager(TGLayoutManager *l);

The child widgets cannot be added to different composite frames.

Any child frame can be removed from the parent list by:

compFrame->RemoveFrame(TGFrame *f);

You can hide or show a child frame of a composite frame using the methods:
HideFrame(TGFrame *f) or ShowFrame(TGFrame *f). You should call, for example
HideFrame(TGFrame *f), only after the frames have been laid out and the sub windows
of the composite frame have been mapped via method MapSubwindows(), i.e.

frame->AddFrame(hFrame1,fLayout1);
frame->AddFrame(hFrame2,fLayout2);
frame->Resize(frame->GetDefaultSize()); // lays out frames
frame->MapSubwindows(); // maps subwindows
frame->HideFrame(hFrame2); // hides frame hFrame2
frame->MapWindow(); // maps main frame

The state information about a child frame can be obtained from the methods
GetState(TGframe *f), IsArranged(TGFrame *f), and
IsVisible(TGFrame *f).

The method Cleanup() deletes all objects of the composite frame added via AddFrame().
All TGFrameElement objects (frames and layout hints) must be unique, i.e. cannot be
shared.

We already mentioned that TGMainFrame class defines top level windows interacting with
the system window manager. It handles applications with a menu bar, toolbar, text entry
fields and other widgets surrounding a central area (e.g. a canvas widget). It lays out a set of
related widgets and provides the typical application main window behavior. As you can see
from the figure above, it inherits from TGCompositeFrame and is inherited by
TGTransientFrame and several ROOT interface classes: TViewerX3D,
TRootBrowser, TRootCanvas, TRootControlBar, TTreeViewer.

To fix the size of a top level window you have to use the method
TGMainFrame::SetWMSize(). This call tells the Window Manager that it should not

June 2003 v3.05 Writing a Graphical User Interface 321

resize the window. The option kFixedSize works only for embedded frames like
TGCompositeFrame and derived classes (in combination with layout hints).

The TGVerticalFrame and TGHorizontalFrame are composite frames that lay out their
child frames in vertical or horizontal way in the same order as they were added and
according to their hints preferences.

The TGTransientFrame class defines transient windows that typically are used for
dialogs. They extend and complete an interaction within a limited context. Always transient
frames are displayed from another window or another dialog. They may appear because of a
command button being activated or a menu item being selected. They may also present
automatically when an additional input and the user attention are required by a certain
condition.

The TGGroupFrame class presents a very convenient frame which surrounds visually a
group of logically connected widgets: radio buttons, related check boxes, two or more
functionally related controls.

It is a composite frame with a border and a title. The title explains the purpose of the group
and should be a noun or noun phrase. Here is an example taken from guitest.C:

groupFrame = new TGGroupFrame(tf,"Options",kVerticalFrame);
groupFrame->SetTitlePos(TGGroupFrame::kLeft);

The second line sets the title position on the left. You can change it to be centered or right
aligned if you use TGGroupFrame::kCenter or TGGroupFrame::kRight as a
parameter.

Be conservative in the use of borders because of the potential for clutter. Do not place them
around single entry fields, single combo boxes, list boxes and groups of command buttons.
The design of these widgets provides them with a border. The picture above provides kind of
borders to avoid.

Layout Management
The layout process is an integral part of any GUI. When you create a simple message
window, laying out its few buttons and text widgets is quite simple. However, this process
becomes increasingly difficult if you have to implement large GUI’s with many widgets that
should behave properly when the GUI is resized or uses a different font type or size. Layout
management is the process of determining the size and position of every widget in a
container.

322 Writing a Graphical User Interface June 2003 v3.05

A layout manager is an object that performs layout management for the widgets within a
container. You already know that when adding a component (child widget) to a container
(parent widget) you can provide alignment hints (or rely on the default ones). These hints are
used by the layout manager to correctly position the widgets in the container. The
TGLayoutManager is an abstract class providing the basic layout functionality.

The base “container” class is TGCmpositeFrame. You can easily change the layout
manager using the SetLayoutManager(TGLayoutManager *l) method. Setting the
proper layout manager for each container is the first step you have to do. The container uses
that layout manager to position and size the components before they are painted. ROOT
currently provides the layout managers shown on the picture above.

The next important step is to provide hints about every widget in the container, i.e. to provide
positions and right amount of space between the components. The TGLayotHints objects
set hints by specifying the white space in pixels around every widget.

Let’s see an example with five buttons. First you put them in a container, assign them
desired properties, and then you lay them out according to the layout manager. This process
can be repeated: you go back and add, remove or change some of the widgets and lay them
out again.

Once created, you can consider these widgets as elementary objects even though they are
compound ones. The pictures above present four different layouts of five buttons. The first
one shows laid out vertically buttons. Almost everywhere you can find this vertical
orientation. Looking at dialogs you see that often they consist of number of rows laid out
below each other. Some of the rows could have an internal vertical structure as well. The
second picture shows the same buttons laid out horizontally – the next common orientation.
The other two show different layouts based on mixed use of the vertical and horizontal
orientation. You might recognize their pattern: two (third picture) and three (last picture) rows
that are vertically laid out.

As we already explained the layout process is always applying to a container. It will be
enough to define the container frame with vertical or horizontal layout to have buttons as in
the first and second pictures.

To design them in several rows we need to use additional frames as invisible containers: two
horizontal frames, children of a vertical parent frame; or one horizontal frame laid out
vertically with the Draw and Exit buttons. For widgets in a group it is obvious to use a vertical
layout.

June 2003 v3.05 Writing a Graphical User Interface 323

The layout hints data member of TGLayoutHints is the bit wise OR between the hints:

Hints Description

kLHintsNoHints no specified layout hints, the default ones will be used

kLHintsLeft specifies the frame position to the left of the container
frame after other frames with the same hint into the list

kLHintsCenterX specifies the frame position centered horizontally (with
vertical containers only)

kLHintsRight specifies the frame position to the right of the container
frame before any other laid out frames with the same hint
into the list

kLHintsTop specifies the frame position to the top of the container
frame, below any laid out frames with the same hint

kLHintsCenterY specifies the frame position centered vertically (with
horizontal containers only)

kLHintsBottom specifies the frame position to the bottom of the container
frame, above any laid out frames with the same hint

kLHintsExpandX specifies the frame to be expanded up to the width of the
container frame. If the container frame is a vertical frame –
it will fit the whole width. If it is a horizontal frame – after
the positioning of all frames the available “free” width
space is shared between the frames having this hint

kLHintsExpandY specifies the frame to be expanded up to the height of the
container frame. If the container frame is a horizontal
frame – it will fit the whole height. If the container frame is
a vertical frame – after the arrangement of all frames the
available “free” height space is shared between the
frames having this hint

kLHintsNormal = kLHintsLeft | kLHintsTop – default hints

Layout policy:

Child frames never modify their container frame. The container frame can (or cannot) adapt
its size in the layout process. It can show all or a part of its frames. Every TGFrame object
has a default minimum size (1, 1) assured by TGWindow.

Event Processing: Signals and Slots
Event handling covers the interaction between different objects and between the user and
the objects in an application. There are two general ways for the user to interact with an
application: the keyboard and the mouse. The Graphical User Interface is as a bridge
between the user and the program - it provides methods to detect the user actions and
instruments that do something as a reaction of these actions. The user communicates with
an application through the window system. The window system reports interaction events to
the application. The application in turn forwards them to the currently active window. The
objects/widgets receive the events and react to them according to the application
functionality.

324 Writing a Graphical User Interface June 2003 v3.05

The signals/slot communication mechanism is an advanced object communication concept;
it largely replaces the concept of callback functions to handle actions in GUI’s. Signals and
slots are just like any object-oriented methods implemented in C++. The objects are the
instances of classes that don’t know anything about each other. They interact and allow
method calls of other object’s methods. The idea is simple: any object can send out (emit) a
signal in certain situations saying that something happened. This is all it does to
communicate and it does not know whether anything is interested in this information. On the
other side there might be an object waiting for that signal and ready to react to it. This object
disposes of special instruments to listen to the sent out signals. To have a communication
we need a message transmission between the objects. In this simple example we use
signals and slots. The code of the method TGButton::Clicked() is:

virtual void Clicked() { Emit("Clicked()"); } // *SIGNAL*

I.e. any button emits the signal Clicked() any time someone clicks on it. As you can see
this method is virtual and could be overridden if you need to. In our simple example we call
the Connect() method to connect the Clicked() signal of Draw button with
MyMainFrame::DoDraw():

draw->Connect("Clicked()","MyMainFrame",this,"DoDraw()");

In the same way we can connect to the signal Clicked() of the Exit button with the system
call gApplication->Terminate(0). We declare a new slot DoExit(), implement it to
invoke the termination call and associate this slot with the signal Clicked() of the Exit
button. The code of example.C can be changed as follows:

public:
 ...
 void DoExit(); // a new slot is added
}
void MyMainFrame::DoExit()
{
 gApplication->Terminate(0);
}

MyMainFrame::MyMainFrame(const TGWindow *p,UInt_t w,UInt_t h)
{ ...
 TGTextButton *exit = new TGTextButton(hframe,"&Exit ");
 // connects signal Clicked() with slot DoExit()
 exit->Connect("Clicked()","MyMainFrame",this,"DoExit()");
 ...
}

June 2003 v3.05 Writing a Graphical User Interface 325

Here is an abstract view of the signal/slots connections in example.C:

To benefit from this mechanism your classes must inherit from TQObject or otherwise the
class definition must start with RQ_OBJECT(“ClassName”) macro. This macro allows the
signals/slots communication mechanism to be applied between compiled and interpreted
classes in an interactive ROOT session without having the class derive from TQObject.
Every signal method declaration is followed by a comment “*SIGNAL*”. Only instances of
a class that defines a signal or instances of its subclasses can emit the signal. The ROOT
implementation of a popular example presenting signals and slots is the next. Let’s have a
minimal class declaration:

class MyClass {
private:
 Int_t fValue;
public:
 MyClass() { fValue=0; }
 Int_t GetValue() const { return fValue; }
 Void SetValue(Int_t);
};

It will become the following as interpreted:

class MyClass {
 RQ_OBJECT(“MyClass”)

private:
 Int_t fValue;
public:
 MyClass() { fValue=0; }
 Int_t GetValue() const { return fValue; }
 Void SetValue(Int_t); // *SIGNAL*
};

Both class declarations have the same data member and public methods to access the
value. By placing the RQ_OBJECT(“MyClass”) macro inside the MyClass body (MyClass
is not inherited from TQObject) we allow this class to use the signal/slot communication.
Any instance of this class can tell the outside world that the state of its data member has
changed by emitting a signal SetValue(Int_t). A possible implementation of
MyClass::SetValue() can be:

void MyClass::SetValue(Int_t v)
{
 if (v != fValue) {
 fValue = v;
 Emit("SetValue(Int_t)",v);
 }
}

The line Emit("SetValue(Int_t)",v) activates the signal SetValue(Int_t) with
argument v. You can use any of the methods

326 Writing a Graphical User Interface June 2003 v3.05

TQObject::Emit(“full_method_name”,arguments) to emit a signal. We create two
instances of MyClass and connect them together:

MyClass *objA = new MyClass();
MyClass *objB = new MyClass();
objA->Connect("SetValue(Int_t)","MyClass",b,"SetValue(Int_t)");
objB->SetValue(11);
objA->SetValue(79);
objB->GetValue(); // the value is 79

By calling the method objA->Connect(), objA connects its signal "SetValue(Int_t)"
to the "MyClass::SetValue(Int_t)" method (slot) of objB. Next, when you call
objA->SetValue(79) object objA emits a signal which objB receives and
objB->SetValue(79) is invoked. It is executed immediately, just like a normal function
call. objB will emit the same signal in turn, but nobody is interested in this signal, since no
slot has been connected to it. Signals are currently implemented for all ROOT GUI classes,
event handlers (TFileHandler, TSignalHandler, etc.), timers (TTimer) and pads
(TPad, TCanvas, etc.). To find all defined signals you just do:

grep ‘*SIGNAL*’ $ROOTSYS/include/*.h

As a programmer you build the sender-receiver part of object connections using the
TQObject::Connect() method. You can connect one signal to many different slots. The
slots will be activated in order they were connected to the signal. You can change this order
using the methods LowPriority() and HightPriority() of TQObject. Also, many
signals can be connected to one slot of a particular object or a slot can be connected to a
signal for all objects of a specific class. It is even possible to connect a signal directly to
another signal – this will emit the second signal immediately after the first one is emitted.

All signals and slots are normal class methods and can take any number of arguments of
any type. The common methods of TQObject that activate a signal with any number and
type of parameters are:

Emit(signal_name,param);

With no parameters param the method will be:

ApplyButton->Emit(“Clicked()”);

param can be a single parameter or an array of Long_t parameters as it is shown below:

TQObject *processor; // data processor
TH1F *hist; // filled with processor results
...
processor->Connect(“Evaluated(Float_t,Float_t)”,”TH1F”,hist,
 “Fill(Axis_t x,Axis_t y)”);
...
Long_t args[2];
args[0]=(Long_t)processor->GetValue(1);
args[0]=(Long_t)processor->GetValue(2);
...
processor->Emit(“Evaluated(Float_t,Float_t)”,args);
...

To use signals and slot you need something that brings them together. The class TQObject
has several methods creating sender-receiver connections. Some of them are static and can
be called without having an instance of the class. The ROOT implementation of signals and
slots allows connections to any known CINT object. The class name parameter in the
Connect() methods must be a class with a dictionary (interpreted classes have an implicit
dictionary).

June 2003 v3.05 Writing a Graphical User Interface 327

TGButton *myButton;
TH2 *myHist;
...
TQObject::Connect(myButton,“Clicked()”,“TH2”,MyHist,“Draw(Option_t*)”);

You can replace it with 0 (zero) and in this case the slot string defines a global or interpreted
function name. The receiver parameter should be zero too. For example:

TQObject::Connect(myButton,“Clicked()”,0,0,“hsimple()”);

To make a single connection from all objects of a class you should write:

TQObject::Connect(“Channel”,“AllarmOn()”,“HandlerClass”,
 handler,“HandleAllarm()”);

The first argument specifies the class name Channel. The signal AllarmOn() of any object
of the class Channel is connected to the HandleAllarm() method of the handler object of
the class HandlerClass.

In example.C we have used the not-static Connect() method:

Bool_t Connect(const char *signal,const char *receiver_class,
 void *receiver,const char *slot);

It needs to know four things: the signal that should be connected, the receiver class, the
object that will receive the signal, and the slot that will be connected to the signal. Because
this method is non-static we can write this as a receiver parameter.

In all methods you have to specify the signal and the slot with their names and parameter
types. Do not write values instead of types in that place. It is possible to pass a parameter by
value to a slot method in the following way:

Connect(myButton,“Pressed()”,“TH1”,hist,“SetMaximum(=123)”);
Connect(myButton,“Pressed()”,“TH1”,hist,“Draw(=\”LEGO\”)”);

As you see the parameter’s value is preceded by the equation symbol (=).

You have the possibility to destroy a signal/slot connection by using Disconnect()
methods. There are three ways to do this: 1/ to destroy all connections to an object’s signals;
2/ to destroy all connections to a particular object’s signal; 3/ to detach an object from a
specific receiver:

Disconnect(myObgect); // case 1
Disconnect(myObgect,“mySignal”); // case 2
Disconnect(myObgect,0,myReceiver,0); // case 3

Three parameters of these methods could be replaced by 0. The meaning in these cases
would be “any signal”, “any receiving object”, “any slot of the receiving object”, i.e. 0 is used
as a wildcard. The sender parameter cannot be 0, because you can disconnect signals from
one given object. If the signal parameter is 0, the receiver and the slot are disconnected
from any signal. Giving the name of the signal you disconnect this signal.

In addition to all Qt features the ROOT version of signals/slots gives you the possibility to
connect slots to a class. The slots will be executed every time the specified signal is emitted
by any object of this class. A slot can have default arguments and it can be either a class
method or stand-alone function (compiled or interpreted).

The method TQObject::HasConnection(signale_name) checks if there is an object
connected to this signal and returns true if it is the case. Using
TQObject::NumberOfConnections(), TQObject::NumberOfSignals() you can
check how many signals or connections has the object.

328 Writing a Graphical User Interface June 2003 v3.05

The rules for using signals/slots mechanism in a standalone executable program do not
differ from what was described previously. Let’s remind that

• a slot can be any class method with a generated CINT dictionary
• a slot can be a function with a dictionary

Detailed information how to generate a dictionary can be found on
http://root.cern.ch/root/Cint.phtml?ref

The following example demonstrates how to use signals/slots mechanism in a standalone
executable program on linux platform with the gcc compiler.

tst.C

#include <TQObject.h>
#include <RQ_OBJECT.h>

class A
{
RQ_OBJECT("A")

private:
 Int_t fValue;
public:
 A():fValue(0) { }
 ~A() { }
 void SetValue(Int_t value); // *SIGNAL*
 void PrintValue() const { printf("value=%d\n",fValue); }
};

void A::SetValue(Int_t value) // Set new value
{
// Emit signal "SetValue(Int_t)" with a single parameter

 if(value!=fValue) {
 fValue=value;
 Emit("SetValue(Int_t)",fValue);
 }
}

// Main program
#ifdef STANDALONE

int main(int argc, char **argv)
{
 A* a = new A();
 A* b = new A();

 a->Connect("SetValue(Int_t)","A",b,"SetValue(Int_t)");

 printf("\n******* Test of SetValue(Int_t) signal *******\n");
 b->SetValue(10);
 printf("\n\t***** b before ******\n");
 b->PrintValue();
 a->SetValue(20);
 printf("\t***** b after a->SetValue(20) ******\n");
 b->PrintValue();
 return 0;
}
#endif

June 2003 v3.05 Writing a Graphical User Interface 329

ACLiC simplifies this procedure and allows the dictionary generation by:

root[] .L tst.C++

It will create the shared library tst_C.so.

The next line will create an executable:

g++ -o tst tst.C `root-config --cflags --libs` ./tst_C.so -DSTANDALONE

The library tst_C.so is a dynamically loaded library and should be located in
$LD_LIBRARY_PATH. The current working directory should be added to
$LD_LIBRARY_PATH via:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:./

To run it, you just do:
 ./tst

The Widgets in Details

Buttons
Buttons are a popular group of widgets designed to provide specific interfaces for user
interaction. TGButton is an abstract class defining the general button behavior: width,
height, state, its group, tool tip text, etc.

There are two main groups of buttons: command buttons with a text or graphics inside that
indicate the action to be accomplished and option buttons well known as radio and check
buttons that select or change properties. The first group is presented in ROOT by
TGPictureButton and TGTextButton classes. They yield an action as soon as they are
clicked. It can be opening/closing a dialog box or invoking a specific function in an
application. Remember the Draw button from the example. The radio and check buttons
from the second group are used to select an option. There is a visual difference between
these two groups: the text buttons appear “pressed in” only while they are clicked, while the
radio and check buttons change their appearance when they are selected and keep that
appearance afterwards.

A text button is represented by the class TGTextButton. We already used its constructor in
the example. The button label indicates the action to be taken when the button is selected or
pressed. The text can be a hot string defining a hot key (known as shortcut key also) for this
selection. The hot key is an underlined character in a button label that shows the assigned
keyboard mnemonic for its choice. A button that prompts more information for users has the
label generally followed by ellipsis (…).

As we saw the hot strings "&Draw" and "&Exit" define the text labels “Draw” and “Exit” and
keyboard mnemonics Alt+D, Alt+E for their selection. The letter D and E appear
underlined on the screen. All text buttons should have a unique shortcut key with the
exception of OK and Cancel.

330 Writing a Graphical User Interface June 2003 v3.05

These buttons are usually placed within a window to provide fast access to frequently used
or critical commands. They help in situations where a command is not available through the
menu bar. You already know that a command string can be passed in the text button via the
constructor:

TGTextButton(const TGWindow *p,const char *s,const char *cmd,
 Int_t id,GContext_t norm,FontStruct_t font,UInt_totions);

A button label can be changed by SetText(new_label). There are important guidelines
to be followed about a button label. The text has to provide a meaningful description of the
performed action. The single-word label should be used whenever possible, only two-three
words for clarity, if necessary. Do not number labels. Always follow all platform presentation
and usage guidelines for standard button functions. Let’s remember a few standard names
and definitions of well known buttons:

OK - any changed information in a window is accepted and the window is closed;
Cancel – closes window without implementing submitted changes;
Reset – resets defaults and cancels any changed information that has not be submitted;
Apply – any changed information is accepted and again displayed in the window that
remains open;
Close – closes the window;
Help – opens online Help.

Below are examples of text buttons. Note the two placement methods. The first example
should be used when there are one to three command buttons; the second one when there
are more than three buttons.

Picture buttons are usually rectangular in shape with an icon or graphics label. These
buttons may appear alone or placed in a group at the window’s top or side. They are most
frequently used to quickly access commands, many of which are normally accessed through
the tool bar. For example, the picture buttons below can be used to provide different styles
of a histogram drawing.

Here is the example how to create the first button:

TGPictureButton *fPicture = new TGPictureButton(parent,
 gClient->GetPicture("h1_s.xpm"),11);

The picture of file h1_s.xpm is used in the button. All .xpm files are located in the directory
$ROOTSYS/icons. You can assign a command directly as a parameter of the picture button
constructor. The picture of TGPictureButton can be changed by:

fPicture->SetPicture("h2_s.xpm");

The advantage of command buttons is that they are always visible, providing a reminder of
their existence. They can be inscribed with a meaningful description of what they do by
TGToolTip(“Some describing text”). Their activation is much easier and faster
than using a two-step menu bar/pull-down sequence. The only disadvantage of the text and
picture buttons is that they consume considerable screen space if they are many. Having no
more than six command buttons per window or dialog box helps to appropriately balance the
application’s effectiveness, its real efficiency, and the operational simplicity.

June 2003 v3.05 Writing a Graphical User Interface 331

The classes TGRadioButton and TGCheckButton present the option buttons in ROOT.
Like the text buttons, they have text or hot string as a label. Radio buttons are grouped in
logical sets of two or more and appear with a text label to the right. The choices are mutually
exclusive and only one setting is permitted at one time. They represent visually all
alternatives and it is easy to access and compare choices. They facilitate the situations
where all alternatives cannot be easily remembered or where displaying the alternatives
together helps to understand and select the proper choice. It is very useful to provide a
default setting whenever it is possible. When it is not possible to establish a default setting
because of the nature of the information, it is better to leave all radio buttons blank.

A columnar orientation is the preferred manner of radio buttons presentation. If the vertical
space on the window is limited, they can be oriented horizontally. Selection choices should
be organized logically in groups. Here is the example that produces the image above:

br = new TGButtonGroup(p,"Coordinate system",kVerticalFrame);
fR[0] = new TGRadioButton(bg,new TGHotString("&Pixel"));
fR[1] = new TGRadioButton(bg,new TGHotString("&NDC "));
fR[2] = new TGRadioButton(bg,new TGHotString("&User "));
fR[1]->SetState(kButtonDown);
br->Show();

It is enough to change kVerticalFrame to kHorizontalFrame in TGButtonGroup
constructor and you will have radio buttons aligned horizontally:

The class TGButtonGroup will help you to organize button widgets in a group. There is no
need to call AddFrame() since the buttons are added automatically with a default layout
hint to their parent by TGButtonGroup::Show() as shown above.

The example above shows that. The buttons in the group have assigned identifiers. Any
button in a group emits a Clicked() signal with this identifier when it is clicked. This giving
an ideal solution to connect several Clicked() signals to one slot.

An exclusive button group switches off all toggle buttons except the selected one. The group
is by default non-exclusive but its entire radio buttons will be mutually exclusive.

TGHButtonGroup and TGVButtonGroup are convenience classes that offer you a thin
layer on top of TGButtonGroup. TGHButtonGroup organize button widgets in a group of
one horizontal row, TGVButtonGroup in a group of one column. You can also organize
buttons in rows and columns using the provided constructor and TGMatrixLayout.

332 Writing a Graphical User Interface June 2003 v3.05

Do not use a radio button to indicate the presence or absence of a state – use a check box
instead.

To have the check button “Event Status” and to set it as selected we need to write:

TGCheckButton *estat = new TGCheckButton(p,“Event Status”,1);
estat->SetState(kButtonDown);

Check boxes show the selected choices and any number of them can be selected, including
none. Their proper usage is for setting attributes, properties or values; also for data or
choices that are discrete, small and fixed in number, not easily remembered. With check
boxes all alternatives are visible: it is easy to access and compare choices because they can
all be seen together. Each option acts as a switch and can be either “on” or “off”. It is never
changed in contents. Checkboxes differ from radio buttons in that they permit selection of
more than one alternative. Each box can be switched on or off independently. These buttons
can be used alone or grouped in sets. It is good practice to provide default settings for check
boxes whenever it is possible.

This can be done by:

SetState(EButtonState state)

The parameter state can be one of kButtonUp, kButtonDown, kButtonEngaged,
kButtonDisabled.

Check boxes can be used to affect other controls. The contents of a list can, for example, be
filtered by setting a check box. In any case, use a check box only when both states of a
choice are clearly opposite and unambiguous. If opposite states are not clear, it is better to
use two radio buttons.

Choice description, i.e. check box label, must be clear, meaningful, fully spelled out, and
displayed in mixed-type text. Whenever the use of a given button is inappropriate, for
whatever reason, that button should be disabled:

button->SetState(kButtonDisabled);

Never make a button appear and disappear.

In general, option buttons should not offer more than eight choices. If the number of choices
exceeds this maximum, it is better to use a multiple selection list box.

The method IsToggleButton() gives the information whether a radio button or a check
button is selected. An option button can be set or unset via its method
PSetState(EButtonState state).

The method HandleKey(event) is called when the defined hotkey is hit for any button. It
sets the selected option button or clicks the selected text button and invokes its defined
action.

June 2003 v3.05 Writing a Graphical User Interface 333

Menus
Menus provide a list of commands or options helping the user to select and to perform a
task. The menu system classes are TGMenuBar, TGManuTitle, TGPopupMenu, and
TGMenuEntry.

The TGMenuEntry derives from TObject, the others – as is shown on the next page:

The TGMenuBar class implements a menu bar widget. It is used to specify and provide
access to common and frequently used application actions described in menu titles,
implemented by TGMenuTitle class. The menu bar is the highest-level of the menu system
and it is a starting point for all interactions. Also, it is always visible and allows using the
keyboard equivalents. The geometry of the menu bar is automatically set to the parent
widget, i.e. the menu bar automatically resizes itself so that it has the same width as its
parent (typically TGMainFrame).

The menu bar is as a container for its menus – objects of the type TGPopupMenu. Popup
menus can appear in a menu bar. They can be a sub-menu of another popup menu
(cascading menus) or can be standalone (as a context menu). They are made of one or
more menu items choices. When displayed, the menu items are arranged in a vertical list.
Usually they correspond to actions (e.g. Open). These items can be labeled with text,
graphics or a combination of both. Each of them should have a character defined as its
unique key for access. Grouped logically by their functionality, they are separated visually by
menu separators in groups. For example, The File menu is a common menu title for tasks
that apply to a file, as Open, Save, Close, Print…

// a popup menu
fMenuFile = new TGPopupMenu(gClient->GetRoot());

// adding menu entries
fMenuFile->AddEntry("&Open...",M_FILE_OPEN);
fMenuFile->AddEntry("&Save",M_FILE_SAVE);
fMenuFile->AddEntry("S&ave as...",M_FILE_SAVEAS);
fMenuFile->AddEntry("&Close", -1);

// adding separator
fMenuFile->AddSeparator();

// next group of menu entries
fMenuFile->AddEntry("&Print",M_FILE_PRINT);
fMenuFile->AddEntry("P&rint setup...",M_FILE_PRINTSETUP);
. . .
fMenuFile->AddSeparator();
fMenuFile->AddEntry("E&xit",M_FILE_EXIT);

First we create the File menu by creating an object of class TGPopupMenu and adding
menu entries with AddEntry method. Its first parameter is a hot string, the second – a menu
ID. The ampersand character (&) denotes shortcut for each menu entry; you can use the
letter after it to manage the menu via keyboard. There are three groups of menu entries
separated visually by two separators.

334 Writing a Graphical User Interface June 2003 v3.05

You can add a sub-menu by using the method TGPopupMenu::AddPopup. Its first
parameter is again a string, the second one – a pointer to a TGPopupMenu object that will
appear as a sub-menu when the menu entry will be selected. The often used visual indicator
of a sub- menu is a right-facing arrow to the right of the parent menu item. Generally only
one level of cascading menus is recommended and you should be careful in using more.

Next lines show how to create a menu bar with File, Test and Help menus:

// menu bar item layout hints
fMenuBarItemLayout = new TGLayoutHints(kLHintsTop | kLHintsLeft,
 0, 4, 0, 0);
fMenuBarHelpLayout = new TGLayoutHints(kLHintsTop | kLHintsRight);

// menu bar
fMenuBar = new TGMenuBar(fMain,100,20,kHorizontalFrame);

// adding popup menus
fMenuBar->AddPopup(“&File”,fMenuFile,fMenuBarItemLayout);
fMenuBar->AddPopup(“&Test”,fMenuTest,fMenuBarItemLayout);
fMenuBar->AddPopup(“&Help”,fMenuHelp,fMenuBarHelpLayout);

Using the method TGMenuBar::AddPopup we add three TGPopupMenu objects to the
menu bar fMenuBar. The first parameter is a hot string used by TGMenuTitle object.
When you add a popup menu to the menu bar, a TGMenuTitle object is created by the
menu bar. It is the name of the popup menu. A menu title should have a one-word name that
reflects the purpose of all items within the corresponding popup menu. It should also have a
defined character as its unique access key. The second parameter is the popup menu we
would like to add. The third one is an object of TGLayoutHints type that defines how the
menu title will be laid out in the menu bar. In our example the File and Test menus will be
laid out to the left of the menu bar with 4 pixels distance in between, the Help menu – will
be laid out to the right.

The menu classes provide a very flexible menu system: you can enable, disable, add or
remove menu items dynamically. The method HideEntry(menuID) hides the menu entry
(the entry will not be shown in the popup menu). To enable a hidden entry you should call
EnableEntry(menuID) method. By default all entries are enabled. The method
DisableEntry(menuID) helps you to disable a menu entry – it will appear in sunken
relieve. The DeleteEntry(menuID) method will delete the specified entry from the menu.

A few words about the menu design. A menu should be kept consistent and simple. All
related items need to be in a popup menu. The cascade menus should be used judiciously.
Try to limit them to one, maximum two levels.

There are some rules for naming the menu objects:

• Define unique names within a menu
• Use capitalized one-word names allowing the quick scan of the menu
• Define unique access key for any menu item
• Indicate by ellipsis (…) after the title with no space when a menu item will pop-up a

dialog box

The proper kind of graphical menus is a critical point to every application success and
depends of three main factors:

• number of presented items in the menu
• how often the menu is used
• how often the menu contents may change

June 2003 v3.05 Writing a Graphical User Interface 335

Toolbar

A toolbar (TGToolBar) is a composite frame that contains TGPictureButton objects. It
provides easy and fast access to most frequently used commands or options across multiple
application screens. Also, it invokes easily a sub application within an application. All its
functions can be obtained by application menus. It is located horizontally at the top of the
main window just below the menu bar. All other subtask and sub-feature bars are positioned
along sides of window.

// toolbar icon files
const char *xpms[] = {
 "x_pic.xpm",
 "y_pic.xpm",
 "z_pic.xpm",
 0
};
// toolbar tool tip text
const char *tips[] = {
 "X Settings",
 "Y Settings",
 "Z Settings",
 0
};
// toolbar button separator
int separator = 5;

// structure containing toolbar button information
ToolBarData_t t[3];

// creation of a toolbar object as a child of main frame
TGToolBar *tb = new TGToolBar(fMain, 520, 80);

for (int i = 0; i < 3; i++) {
 // filling the ToolBarData_t with information
 t[i].fPixmap = xpms[i]; // icon file
 t[i].fTipText = tips[i]; // tool tip text
 t[i].fStayDown = kFALSE; // button behavior if clicked
 t[i].fId = i+1; // button id
 t[i].fButton = NULL; // button pointer

 if (strlen(xpms[i]) == 0) {
 separator = 5;
 continue;
 }
 tb->AddButton(fMain, &t[i], sp);
 separator = 0;
}
// adding the tool bar to the main frame
fMain->AddFrame(tb, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

// adding a horizontal line as a separator
TGHorizontal3DLine *lh = new TGHorizontal3DLine(fMain);
fMain->AddFrame(lh, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

To have a tool bar in your application you do not need to do anything special – only to create
objects: a tool bar and its picture buttons. This sample code creates the following three
toolbar buttons:

336 Writing a Graphical User Interface June 2003 v3.05

First we need to complete a ToolBarData_t structure for each tool bar button before
adding it to the tool bar. This structure contains:

• the icon file name “filename.xpm”
• the tool tip text – a short help message explaining the button purpose
• the Boolean variable defining the button behavior when is clicked

kFALSE – do not stay down
kTRUE – to stay down

• the button ID
• the button pointer (TGButton *) – should be NULL

We create an array *xpms[] containing the icon file names that will be used for a picture
button creation. If you write only the file names here ROOT will search these files in
$ROOTSYS/icons directory. If the icon files are not there, you should provide the full path
name also. The array *tips[] contains the tool tip texts for buttons. The integer variable
separator is used to set the distance between two groups of toolbar buttons. It defines the
amount of pixels to the left for each button.

We create a tool bar object and add the buttons using the AddButton method. The variable
separator helps us to define no space between the buttons in a group (0), and 5 pixels extra-
space before and after. All buttons added via this method will be deleted by the toolbar. On
return the TGButton field of the ToolBarData_t structure is filled in (if the icon pixmap
was valid). The first parameter is the window to which the button messages will be sent.

Lastly, we create an object of class TGHorizontal3DLine – a horizontal 3D line. It will
separate the toolbar from the menu bar because the layout hints we define as
kLHintsTop | kLHintsExpandX.

It is user friendly to allow the possibility for the tool bar to be turned on or off (via a menu). If
you use a single tool bar, it should fill the complete width of its parent. When using more
than one, you should also think about setting the bar size to the end of the most right button.
This way other bars can be displayed in the same row below the menu bar.

Tool bar buttons should have equal size, meaningful and unique icons, and short meaningful
tool tip text. The related buttons should be grouped together by frequency or sequence of
use, or importance. Potentially destructive buttons must be separated from them to avoid
accidental activation and potentially catastrophic results.

Temporarily not available items should be displayed grayed out.

List Boxes
The purpose of a list box is to display a collection of items from which single or multiple
selection can be made. It is always visible, having a scroll bar when the displayed area is not
enough to show all items. The choices may be mutually exclusive (a list box with single
selection) or not mutually exclusive (a list box with multiple selection).

The proper usage of the list boxes is for selecting values, or objects, or setting attributes.
You have to create them to display 4 to 8 choices at one time (3 is a required minimum in
case of lack of screen space). The list should contain not more than 40 items accessible by
scrolling view (vertical scroll bar). If more are required, you should provide a method for
using search criteria or scoping the options. The best list boxes use is for textual data or
choices. They should be wide enough to display fully all items. When it is not possible, break
the long items with ellipsis and provide tool tip that displays the full item text.

June 2003 v3.05 Writing a Graphical User Interface 337

The list box widget is represented by TGListBox, TGLBContainer, TGLBEntry and
TGTextLBEntry classes.

Currently entries are simple text strings (TGTextLBEntry). A TGListBox looks a lot like a
TGCanvas. It has a TGViewPort containing a TGLBContainer which contains the entries
and it also has a vertical scrollbar which becomes visible if there are more items than fit in
the visible part of the container. The TGListBox is user callable. The other classes are
service classes of the list box. Here is a sample code showing how to create a list box with
ten entries:

// list box widget containing 10 entries
int fFirstEntry = 0;
int fLastEntry = 10;
char tmp[20];

TGListBox *fListBox = new TGListBox(parent, 90);
for (i = fFirstEntry; i < fLastEntry; i++) {
 sprintf(tmp, "Entry %i", i+1);
 fListBox->AddEntry(tmp, i);
}
fListBox->Resize(150, 80);
parent->AddFrame(fListBox,
 new TGLayoutHints(kLHintsTop | kLHintsLeft,5,5,5,5));

We create the list box widget passing the parent window pointer and giving an ID number.
Next we add entries with specified string and ID to the list box. Before adding the list box to
its parent widget, it should be resized via Resize(width, height) method. The list box
width and height are in pixels. The default entry layout hints are kLHintsExpandX |
kLHintsTop. If you want to add entries using different ones, call the method:

TGListBox::AddEntry(TGLBEntry *lbe, TGLayoutHints *lhints);

It adds the specified TGLBEntry and TGLayoutHints to the list box. There are several
methods providing a flexible entry manipulation: you can insert, add or remove list box items
dynamically. The list box entry IDs are used in these methods and also in event processing
routines. In our example the integer variables fFirstEntry and fLastEntry contain the
information about the first and last entry IDs. You can add or remove a list box entry using
them in the following way:

// adding an entry
fLastEntry++;
sprintf(tmp, "Entry %i", fLastEntry);
fListBox->AddEntry(tmp, fLastEntry);
fListBox->MapSubwindows();
fListBox->Layout();
. . .
// removing an entry
if (fFirstEntry < fLastEntry) {
 fListBox->RemoveEntry(fFirstEntry);
 fListBox->Layout();
 fFirstEntry++;
}

A single-selection list box is used for selecting only one item in a list.

338 Writing a Graphical User Interface June 2003 v3.05

A multiple-selection list box permits selection of more than one item. The selected choices
should be visible – you have several choices to do this:

• to mark selected choices with a check mark or highlight them
• to provide a summary list box to the right of the list box, containing the selected choices
• to provide a display-only text control indicating the number of selected choices (its

position should be justified upper-right above the list box)
• if the actions Select All or Deselect All must be quickly or frequently performed,

use command buttons

Combo Boxes
A combo box is as single-selection list box that shows only the currently selected entry and a
prompt button displayed as a downward arrow. The prompt button provides a visual cue that
a list box is hidden. Its main advantage is consuming of quite a bit of screen space. When
the user clicks on it, a list pops up, from which a new choice can be made. After a new item
is chosen the combo box folds again showing the new selection.

The combo box widget is represented by the user callable class TGComboBox. The class
TGComboBoxPopup is a service class.

The combo box constructor is very similar to the list box one. The first parameter is a parent
widget pointer again, the second – an integer value that will be used as combo box ID. The
method used for adding entries is very similar to the list box method we used before. The
method Select(entryID) sets the current combo box entry.

char tmp[20];

// combo box layout hints
fLcombo = new TGLayoutHints(kLHintsTop | kLHintsLeft,5,5,5,5);

// combo box widget
TGComboBox *fCombo = new TGComboBox(parent,100);
for (i = 0; i < 10; i++) {
 sprintf(tmp, "Entry%i", i+1);
 fCombo->AddEntry(tmp, i+1);
}
fCombo->Resize(150, 20);

// Entry3 is selected as current
fCombo->Select(2);
parent->AddFrame(fCombo, fLcombo);

You have the same flexibility to add, insert or remove entries. As with list boxes you can
retrieve the information for currently selected item via GetSelected or
GetSelectedEntry methods. The first one returns the entry ID, the second – the current
entry pointer (TGLBEntry *).

June 2003 v3.05 Writing a Graphical User Interface 339

Sliders
A slider is a scale with an indicator (slider) that you can drag to choose a value from a
predefined range. It may be oriented horizontally or vertically. In both cases it provides an
excellent indication of where a value exists within a range of values.

The class TGHSlider represents the horizontal slider; TGVSlider – the vertical one. Both
inherit from the base class TGSlider that creates the main slider parameters: the range of
values within a value can be selected; the indicator type; the tick mark scale. Using its
methods SetRange, SetPosition and SetScale you can set these parameters. To
retrieve the set slider value you can call GetPosition method.

Next sample code creates a horizontal slider hslider with a tick mark of type kSlider1.
Its width is 150 pixels, and its scale is placed down (kScaleDownRight). The last
parameter in the TGHSlider constructor is the slider ID. It will be used for event processing.
The methods SetRange and SetPosition set the range and the current tick mark position
of the slider.

hslider = new TGHSlider(parent,150,kSlider1 | kScaleDownRight,sID);
hslider->SetRange(0,50);
hslider->SetPosition(39);

Slider values can be set by using the mouse to drag the slider across the scale until the
desired value is reached. Another way is to click in the slider trough instead of dragging.

Double Slider
Double slider widgets allow easy selection of a min and a max value out of a range. They
can be either horizontal or vertical oriented. There is a choice of different types of tick marks:
kDoubleScaleNo, kScaleDownRight, kDoubleScaleBoth.

To change the min value you should press the left mouse button near to the left
(TGDoubleHSlider) or bottom (TGDoubleHSlider) edge of the slider. Alternatively, to
change the max value you need to press the mouse near to the right (TGDoubleHSlider)
or top (TGDoubleHSlider) edge of the slider. To change both values simultaneously you
should press the left mouse button near to the center of the slider.

TGDoubleSlider is an abstract base class that creates the main slider parameters. The
concrete class to use for a vertical double slider is TGDoubleVSlider and
TGDoubleHSlider for a horizontal one. The double slider constructors are similar to those

340 Writing a Graphical User Interface June 2003 v3.05

of the other sliders. If you set kDoubleScaleNo as a scale parameter no scale will be
drawn. Here is an example:

vDslider = new TGDoubleVSlider(p,100,kDoubleScaleNo,dsliderID);
vDslider->SetRange(-10,10);

Progress Bars
A progress bar is a widget that shows that an operation is in progress and how much time is
left. It is a long rectangular bar, initially empty, that fills with a color as a process is being
performed. The filled-in area indicates the percentage of the process that has been
completed. You should use this widget for waits exceeding one minute. For a very time
consuming operation it is better to break the operation into subtasks and provide a progress
bar for each of them.

A progress bar may be oriented horizontally or vertically. The horizontally oriented progress
bar fills with a color from left to right; the vertically oriented – from bottom to top. A percent
complete message provides an indication of the completed part of the process. It is a good
practice to include some descriptive text of the process to keep users informed and
entertained while they are waiting for process completion.

The picture below shows the progress bars you can create using the classes
TGProgressBar, TGHProgressBar, and TGHProgressBar.

// vertical frame with three horizontal progressive bars
TGVerticalFrame *vframe = new TGVerticalFrame(fMain, 10, 10);

fHProg1 = new TGHProgressBar(vframe,TGProgressBar::kStandard,300);
fHProg1->ShowPosition();
fHProg1->SetBarColor("yellow");

fHProg2 = new TGHProgressBar(vframe,TGProgressBar::kFancy,300);
fHProg2->SetBarColor("lightblue");
fHProg2->ShowPosition(kTRUE,kFALSE,"%.0f events");

fHProg3 = new TGHProgressBar(vframe,TGProgressBar::kStandard,300);
fHProg3->SetFillType(TGProgressBar::kBlockFill);

vframe->AddFrame(fHProg1,new TGLayoutHints(kLHintsTop | kLHintsLeft
 | kLHintsExpandX,5,5,5,10));
vframe->AddFrame(fHProg2,new TGLayoutHints(kLHintsTop | kLHintsLeft
 | kLHintsExpandX,5,5,5,10));
vframe->AddFrame(fHProg3,new TGLayoutHints(kLHintsTop | kLHintsLeft
 | kLHintsExpandX,5,5,5,10));
vframe->Resize(200, 200);

June 2003 v3.05 Writing a Graphical User Interface 341

Static Widgets
The classes TGLabel and TGIcon show some information - text or graphics.

The line below creates a label object. The syntax is very simple: you specify the parent
widget and a string object holding the desired text.

TGLabel *label = new TGLabel(parentWidget,“Label’s string”);

Next sample creates an icon object. First we create an object of type TGPicture. The
TGPicture objects are never created directly by the application code. We call TGClient
telling it the pixmap’s file name to create a TGPicture object and, in turn, it will return a
pointer to the created object. If the pixmap file cannot be found the returned pointer will be
NULL. As usual, the first parameter of a TGIcon constructor is the parent frame. The second
one is the TGPicture object holding the pixmap we want to show. Last two parameters
define the width and height of pixmap in pixels. In the end we add the created icon object to
its parent.

// icon widget
const TGPicture *ipic =(TGPicture *)gClient->GetPicture("leaf.xpm");
TGIcon *icon = new TGIcon(parent,ipic,40,40);
parent->AddFrame(icon,new TGLayoutHints(kLHintsLeft | kLHintsBottom,
 1,15,1,1));

The TGPicture objects are cached by TGClient in order to keep the resource usage low
and to improve the efficiency of the client-server windowing systems. TGClient will check
whether a pixmap with the same name was already loaded before to register a new picture
object. If it finds it, it will return a pointer to the existing object. Also, it will increase the usage
counter for the object.

All TGPicture objects are managed by the class TGPicturePool. TGClient creates an
object of this type upon initialization. Normally your application program does not deal
directly with this class because all manipulations go through TGClient class.

Once you have finished with using of the TGPicture object, you should call the method
TGClient::FreePicture(const TGPicture *pic) to free it. The usage counter of
the picture object will be decreased and when it reaches zero – the TGPicture object will
be deleted.

Status Bar
The status bar widget is used to display some information about the current application
state: what is being viewed in the window, a descriptive message about selected objects, or
other no interactive information. It may also be used to explain highlighted menu and tool bar
items.

An application can only have one status bar at a time.

There is nothing special to create a status bar in your application. You should decide how
many fields you need to present the current application state to the user. By default a status
bar consists of one part. Multiple parts can be created by SetParts method. Its first
parameter is an array of integers that give the percentage size of each part. The second
parameter gives the number of status bar parts. Using SetText method you can set a text
for any part.

342 Writing a Graphical User Interface June 2003 v3.05

// status bar
Int_t parts[] = {33, 10, 10, 47};
fSStatusBar = new TGStatusBar(fMain,50,10,kHorizontalFrame);
fSbar->SetParts(parts,4);

fMain->AddFrame(fStatusBar,new TGLayoutHints(kLHintsBottom |
 kLHintsLeft | kLHintsExpandX,0,0,2,0));
. . .
// fill status bar fields with information; selected is the object
// below the cursor; atext contains pixel coordinates info
fStatusBar->SetText(selected->GetTitle(),0);
fStatusBar->SetText(selected->GetName(),1);
fStatusBar->SetText(atext,2);
fStatusBar->SetText(selected->GetObjectInfo(px,py),3);

Splitters
A window can be split into two parts (panes) by using a horizontal or a vertical splitter. A
horizontal splitter resizes the frames above and below of it; a vertical splitter resizes the
frames left and right of it.

This widget is represented by TGSplitter, TGHSplitter, and TGVSplitter classes.
Currently there is no special graphics representation for splitter widgets; only the cursor
changes when crossing a splitter.

There is nothing special to create a splitter – two lines of code only:

TGHSplitter *hsplitter = new TGHSplitter(fVf);
hsplitter->SetFrame(fH1,kTRUE);

You call a horizontal TGHSplitter or a vertical TGVSplitter splitter constructor and after
you set the frame to be resized via SetFrame method. In spite of that, there are rules to be
followed when you create a splitter in your application.

For a horizontal splitter they are:

• the parent of a horizontal splitter must inherit from TGCompoziteFrame and must have
a vertical layout

• the above resized frame must have kFixedHeight option set
• use layout hints kLHintsTop | kLHintsExpandX when adding the above resized

frame to its parent
• use layout hints kLHintsBottom | kLHintsExpandX | kLHintsExpandY when

adding the bottom resized frame to its parent
• set the above frame to be resized using SetFrame method; the second parameter

should be kTRUE

June 2003 v3.05 Writing a Graphical User Interface 343

You can see these rules in the code below:

// Create horizontal splitter
fVf = new TGVerticalFrame(fMain,10,10);
fH1 = new TGHorizontalFrame(fVf,10,10, kFixedHeight);
fH2 = new TGHorizontalFrame(fVf,10,10);
fFtop = new TGCompositeFrame(fH1,10,10, kSunkenFrame);
fFbottom = new TGCompositeFrame(fH2,10,10,kSunkenFrame);

fLtop = new TGLabel(fFtop,"Top Frame");
fLbottom = new TGLabel(fFbottom,"Bottom Frame");

fFtop->AddFrame(fLtop,
 new TGLayoutHints(kLHintsLeft | kLHintsCenterY,3,0,0,0));
fFbottom->AddFrame(fLbottom,
 new TGLayoutHints(kLHintsLeft | kLHintsCenterY,3,0,0,0));

fH1->AddFrame(fFtop,new TGLayoutHints(kLHintsTop
 | kLHintsExpandY | kLHintsExpandX,0,0,1,2));
fH2->AddFrame(fFbottom,new TGLayoutHints(kLHintsTop
 | kLHintsExpandY | kLHintsExpandX,0,0,1,2));

fH1->Resize(fFtop->GetDefaultWidth(),fH1->GetDefaultHeight()+20);
fH2->Resize(fFbottom->GetDefaultWidth(),fH2->GetDefaultHeight()+20);

fVf->AddFrame(fH1, new TGLayoutHints(kLHintsTop | kLHintsExpandX));

TGHSplitter *hsplitter = new TGHSplitter(fVf);
hsplitter->SetFrame(fH1,kTRUE);
fVf->AddFrame(hsplitter,
 new TGLayoutHints(kLHintsTop | kLHintsExpandX));
fVf->AddFrame(fH2,
new TGLayoutHints(kLHintsBottom | kLHintsExpandX | kLHintsExpandY));

For a vertical splitter the rules are:

• the parent of a vertical splitter must inherit from TGCompoziteFrame and must have a
horizontal layout

• the left resized frame must have kFixedWidth option set
• use layout hints kLHintsLeft | kLHintsExpandY when adding the left resized

frame to the parent
• use layout hints kLHintsRight|kLHintsExpandX |kLHintsExpandY when

adding the right resized frame to the parent
• set the left frame to be resized using SetFrame method; the second parameter

should be kTRUE

344 Writing a Graphical User Interface June 2003 v3.05

Next is a sample code for a vertical splitter:

// Create vertical splitter
fHf = new TGHorizontalFrame(fMain, 50, 50);

fV1 = new TGVerticalFrame(fHf, 10, 10, kFixedWidth);
fV2 = new TGVerticalFrame(fHf, 10, 10);

fFleft = new TGCompositeFrame(fV1, 10, 10, kSunkenFrame);
fFright = new TGCompositeFrame(fV2, 10, 10, kSunkenFrame);

fLleft = new TGLabel(fFleft, "Left Frame");
fLright = new TGLabel(fFright, "Right Frame");

fFleft->AddFrame(fLleft,
 new TGLayoutHints(kLHintsLeft | kLHintsCenterY,3,0,0,0));
fFright->AddFrame(fLright,
 new TGLayoutHints(kLHintsLeft | kLHintsCenterY,3,0,0,0));
fV1->AddFrame(fFleft,new TGLayoutHints(kLHintsTop
 | kLHintsExpandX | kLHintsExpandY,0,0,5,5));
fV2->AddFrame(fFright,new TGLayoutHints(kLHintsTop
 | kLHintsExpandX | kLHintsExpandY,0,0,5,5));

fV1->Resize(fFleft->GetDefaultWidth()+20, fV1->GetDefaultHeight());
fV2->Resize(fFright->GetDefaultWidth(), fV1->GetDefaultHeight());

fHf->AddFrame(fV1,new TGLayoutHints(kLHintsLeft | kLHintsExpandY));

splitter = new TGVSplitter(fHf,2,30);
splitter->SetFrame(fV1, kTRUE);

fHf->AddFrame(splitter,
 new TGLayoutHints(kLHintsLeft | kLHintsExpandY));
fHf->AddFrame(fV2,
 new TGLayoutHints(kLHintsRight | kLHintsExpandX | kLHintsExpandY));

June 2003 v3.05 Automatic HTML Documentation 345

22 Automatic HTML
Documentation

The class descriptions on the ROOT website have been generated automatically by ROOT
itself with the THtml class. With it, you can automatically generate (and update) a
reference guide for your ROOT classes. Please read the THtml class description and the
paragraph on Coding Conventions.

The following illustrates how to generate an html class description using the MakeClass
method. In this example class name is TBRIK.

root[] THtml html; // instanciate a THtml object
root[] html->MakeClass("TBRIK")

How to generate html code for all classes, including an index?

root[] html->MakeAll();

This example shows how to convert a script to html, including the generation of a "gif" file
produced by the script. First execute the script.

root[] .x htmlex.C

Invoke the TSystem class to execute a shell script. Here we call the "xpick" program to
capture the graphics window into a gif file.

root[] gSystem->Exec("xpick html/gif/shapes.gif")

Convert this script into html.

root[] html->Convert("htmlex.C","Auto HTML document generation")

For more details see the documentation of the class THtml.

June 2003 v3.05 PROOF: Parallel Processing 347

23 PROOF: Parallel Processing

Building on the experience gained from the implementation and operation of the PIAF
system we have developed the parallel ROOT facility, PROOF. The main problems with
PIAF were because its proper parallel operation depended on a cluster of homogenous
equally performing and equally loaded machines. Due to PIAF's simplistic portioning of a
job in N equal parts, where N is the number of processors, the overall performance was
governed by the slowest node. The running of a PIAF cluster was an expensive operation
since it required a cluster dedicated solely to PIAF. The cluster could not be used for other
types of jobs without destroying the PIAF performance.

In the implementation of PROOF, we made the slave servers the active components that
ask the master server for new work whenever they are ready. In the scheme the parallel
processing performance is a function of the duration of each small job, packet, and the
networking bandwidth and latency. Since the bandwidth and latency of a networked cluster
are fixed the main tunable parameter in this scheme is the packet size. If the packet size is
too small the parallelism will be destroyed by the communication overhead caused by the
many packets sent over the network between the master and the slave servers. If the
packet size is too large, the effect of the difference in performance of each node is not
evened out sufficiently.

Another very important factor is the location of the data. In most cases, we want to analyze
a large number of data files, which are distributed over the different nodes of the cluster. To
group these files together we use a chain. A chain provides a single logical view of the
many physical files. To optimize performance by preventing huge amounts of data being
transferred over the network via NFS or any other means when analyzing a chain, we make
sure that each slave server is assigned a packet, which is local to the node. Only when a
slave has processed all its local data will it get packets assigned that cause remote access.
A packet is a simple data structure of two numbers: begin event and number of events. The
master server generates a packet when asked for by a slave server, taking into account t
the time it took to process the previous packet and which files in the chain are local to the
lave server. The master keeps a list of all generated packets per slave, so in case a slave
dies during processing, all its packets can be reprocessed by the left over slaves.

June 2003 v3.05 Threads 349

24 Threads

A thread is an independent flow of control that operates within the same address space as
other independent flows of controls within a process. In most UNIX systems, thread and
process characteristics are grouped into a single entity called a process. Sometimes,
threads are called "lightweight processes''.

Note: This introduction is adapted from the AIX 4.3 Programmer's Manual.

Threads and Processes
In traditional single-threaded process systems, a process has a set of properties. In multi-
threaded systems, these properties are divided between processes and threads.

Process Properties
A process in a multi-threaded system is the changeable entity. It must be considered as an
execution frame. It has all traditional process attributes, such as:

• Process ID, process group ID, user ID, and group ID
• Environment
• Working directory

A process also provides a common address space and common system resources:

• File descriptors
• Signal actions
• Shared libraries
• Inter-process communication tools (such as message queues, pipes, semaphores, or

shared memory)

Thread Properties
A thread is the schedulable entity. It has only those properties that are required to ensure its
independent flow of control. These include the following properties:

• Stack
• Scheduling properties (such as policy or priority)
• Set of pending and blocked signals
• Some thread-specific data (TSD)

An example of thread-specific data is the error indicator, errno. In multi-threaded systems,
errno is no longer a global variable, but usually a subroutine returning a thread-specific
errno value. Some other systems may provide other implementations of errno. With
respect to ROOT, a thread specific data is for example the gPad pointer, which is treated in
a different way, whether it is accessed from any thread or the main thread.

Threads within a process must not be considered as a group of processes (even though in
Linux each thread receives an own process id, so that it can be scheduled by the kernel
scheduler). All threads share the same address space. This means that two pointers having
the same value in two threads refer to the same data. Also, if any thread changes one of

350 Threads June 2003 v3.05

the shared system resources, all threads within the process are affected. For example, if a
thread closes a file, the file is closed for all threads.

The Initial Thread
When a process is created, one thread is automatically created. This thread is called the
initial thread or the main thread. The initial thread executes the main routine in multi-
threaded programs.

Note: At the end of this chapter is a glossary of thread specific terms

Implementation of Threads in ROOT
The TThread class has been developed to provide a platform independent interface to
threads for ROOT.

Installation
For the time being, it is still necessary to compile a threaded version of ROOT to enable
some very special treatments of the canvas operations. We hope that this will become the
default later.

To compile ROOT, just do (for example on a debian Linux):

./configure linuxdeb2 --with-thread=/usr/lib/libpthread.so
gmake depend
gmake

This configures and builds ROOT using /usr/lib/libpthread.so as the Pthread
library, and defines R__THREAD. This enables the thread specific treatment of gPad, and
creates $ROOTSYS/lib/libThread.so.

Note: The parameter linuxdeb2 has to be replaced with the appropriate ROOT keyword
for your platform.

Classes

TThread
This class implements threads. The platform dependent implementation is in the
TThreadImp class and its descendant classes (e.g. TPosixThread).

TMutex
This class implements mutex locks. A mutex is a mutually exclusive lock. The platform
dependent implementation is in the TMutexImp class and its descendant classes (e.g.
TPosixMutex)

TCondition
This class implements a condition variable. Use a condition variable to signal threads. The
platform dependent implementation is in the TConditionImp class and its descendant
classes (e.g. TPosixCondition).

June 2003 v3.05 Threads 351

TSemaphore
This class implements a counting semaphore. Use a semaphore to synchronize threads.
The platform dependent implementation is in the TMutexImp and TConditionImp
classes.

TThread for Pedestrians
To run a thread in ROOT, follow these steps:

Initialization
Add these lines to your rootlogon.C:

{
 …
 // The next line may be unnecessary on some platforms
 gSystem->Load("/usr/lib/libpthread.so");
 gSystem->Load("$ROOTSYS/lib/libThread.so");
 …
}

This loads the library with the TThread class and the pthread specific implementation file
for Posix threads.

Coding
Define a function (e.g. void* UserFun(void* UserArgs)) that should run as a thread.
The code for the examples is at the web site of the authors (Jörn Adamczewski, Marc
Hemberger). After downloading the code from this site, you can follow the example below.
http://www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html

Loading
Start an interactive ROOT session

Load the shared library:

root[] gSystem->Load("mhs3.so");

Or

root[] gSystem->Load("CalcPiThread.so");

Creating
Create a thread instance (see also example RunMhs3.C or RunPi.C) with:

root[] TThread *th = new TThread(UserFun,UserArgs);

When called from the interpreter, this gives the name “UserFun” to the thread. This name
can be used to retrieve the thread later. However, when called from compiled code, this
method does not give any name to the thread. So give a name to the thread in compiled
use:

root[] TThread *th = new TThread("MyThread", UserFun, UserArgs);

You can pass arguments to the thread function using the UserArgs-pointer. When you
want to start a method of a class as a thread, you have to give the pointer to the class
instance as UserArgs.

352 Threads June 2003 v3.05

Running

root[] th->Run();
root[] TThread::Ps(); // like UNIX ps c.ommand;

With the mhs3 example, you should be able to see a canvas with two pads on it. Both pads
keep histograms updated and filled by three different threads. With the CalcPi example,
you should be able to see two threads calculating Pi with the given number of intervals as
precision.

TThread in More Detail
CINT is not thread safe yet, and it will block the execution of the threads until it has finished
executing.

Asynchronous Actions
Different threads can work simultaneously with the same object. Some actions can be
dangerous. For example, when two threads create a histogram object, ROOT allocates
memory and puts them to the same collection. If it happens at the same time, the results
are undetermined. To avoid this problem, the user has to synchronize these actions with:

TThread::Lock() // Locking the following part of code
... // Create an object, etc...
TThread::UnLock() // Unlocking

The code between Lock() and UnLock() will be performed uninterrupted. No other
threads can perform actions or access objects/collections while it is being executed. The
TThread::Lock() and TThread::UnLock() methods internally use a global TMutex
instance for locking. The user may also define his own TMutex MyMutex instance and
may locally protect his asynchronous actions by calling MyMutex.Lock() and
MyMutex.UnLock().

Synchronous Actions: TCondition
To synchronize the actions of different threads you can use the TCondition class, which
provides a signaling mechanism.

The TCondition instance must be accessible by all threads that need to use it, i.e. it
should be a global object (or a member of the class which owns the threaded methods, see
below). To create a TCondition object, a TMutex instance is required for the Wait and
TimedWait locking methods. One can pass the address of an external mutex to the
TCondition constructor:

TMutex MyMutex;
TCondition MyCondition(&MyMutex);

If zero is passed, TCondition creates and uses its own internal mutex:

TCondition MyCondition(0);

June 2003 v3.05 Threads 353

You can now use the following methods of synchronization:

• TCondition::Wait() waits until any thread sends a signal of the same condition
instance: MyCondition.Wait() reacts on MyCondition.Signal() or
MyCondition.Broadcast(). MyOtherCondition.Signal() has no effect.

• If several threads wait for the signal from the same TCondition MyCondition, at
MyCondition.Signal() only one thread will react; to activate a further thread
another MyCondition.Signal() is required, etc.

• If several threads wait for the signal from the same TCondition MyCondition, at
MyCondition.Broadcast() all threads waiting for MyCondition are activated at
once.

In some tests of MyCondition using an internal mutex, Broadcast() activated only one
thread (probably depending whether MyCondition had been signaled before).

• MyCondition.TimedWait(secs,nanosecs) waits for MyCondition until the
absolute time in seconds and nanoseconds since beginning of the epoch (January,
1st, 1970) is reached; to use relative timeouts ``delta'', it is required to calculate the
absolute time at the beginning of waiting ``now''; for example:

Ulong_t now,then,delta; // seconds
TDatime myTime; // root daytime class
myTime.Set(); // myTime set to "now"
now=myTime.Convert(); // to seconds since 1970
then=now+delta; // absolute timeout
wait=MyCondition.TimedWait(then,0); // waiting

• Return value wait of MyCondition.TimedWait should be 0, if

MyCondition.Signal() was received, and should be nonzero, if timeout was
reached.

The conditions example shows how three threaded functions are synchronized using
TCondition: a ROOT script condstart.C starts the threads, which are defined in a
shared library (conditions.cxx, conditions.h).

Xlib Connections
Usually Xlib is not thread safe. This means that calls to the X could fail, when it receives
X-messages from different threads. The actual result depends strongly on which version of
Xlib has been installed on your system. The only thing we can do here within ROOT is
calling a special function XInitThreads() (which is part of the Xlib), which should (!)
prepare the Xlib for the usage with threads.

To avoid further problems within ROOT some redefinition of the gPad pointer was done
(that's the main reason for the recompilation). When a thread creates a TCanvas, this
object is actually created in the main thread; this should be transparent to the user. Actions
on the canvas are controlled via a function, which returns a pointer to either thread specific
data (TSD) or the main thread pointer. This mechanism works currently only for gPad and
will be implemented soon for other global Objects as e.g. gVirtualX, gDirectory,
gFile.

Canceling a TThread
Canceling of a thread is a rather dangerous action. In TThread canceling is forbidden by
default. The user can change this default by calling TThread::SetCancelOn().

354 Threads June 2003 v3.05

There are two cancellation modes:

Deferred
Set by TThread::SetCancelDeferred() (default): When the user knows safe places in
his code where a thread can be canceled without risk for the rest of the system, he can
define these points by invoking TThread::CancelPoint(). Then, if a thread is
canceled, the cancellation is deferred up to the call of TThread::CancelPoint() and
then the thread is canceled safely. There are some default cancel points for pthreads
implementation, e.g. any call of TCondition::Wait(), TCondition::TimedWait(),
TThread::Join().

Asynchronous
 Set by TThread::SetCancelAsynchronous(): If the user is sure that his application is
cancel safe, he could call:

TThread::SetCancelAsynchronous();
TThread::SetCancelOn();
// Now cancelation in any point is allowed.
...
// Return to default
TThread::SetCancelOff();
TThread::SetCancelDeferred();

To cancel a thread TThread* th call:

th−>Kill();

To cancel by thread name:

TThread::Kill(name);

To cancel a thread by ID:

TThread::Kill(tid);

To cancel a thread and delete th when cancel finished:

th−>Delete();

Deleting of the thread instance by the operator delete is dangerous. Use th->Delete()
instead. C++ delete is safe only if thread is not running. Often during the canceling, some
clean up actions must be taken. To define clean up functions use:

void UserCleanUp(void *arg){
 // here the user cleanup is done
 ...
}

TThread::CleanUpPush(&UserCleanUp,arg);
 // push user function into cleanup stack“last in, first out”

TThread::CleanUpPop(1); // pop user function out of stack and execute it,
 // thread resumes after this call

TThread::CleanUpPop(0); // pop user function out of stack
 // _without_ executing it

Note: CleanUpPush and CleanUpPop should be used as corresponding pairs like
brackets; unlike pthreads cleanup stack (which is not implemented here), TThread does
not force this usage.

June 2003 v3.05 Threads 355

Finishing thread
When a thread returns from a user function the thread is finished. It also can be finished by
TThread::Exit(). Then, in case of thread-detached mode, the thread vanishes
completely. By default, on finishing TThread executes the most recent cleanup function
(CleanUpPop(1) is called automatically once).

Advanced TThread: Launching a Method in a
Thread

Consider a class Myclass with a member function

void* Myclass::Thread0((void* arg)

that shall be launched as a thread. To start Thread0 as a TThread, class Myclass may
provide a method:

Int_t Myclass::Threadstart(){
 if(!mTh){
 mTh= new TThread("memberfunction",(void(*) (void *))&Thread0,
 (void*) this);
 mTh->Run();
 return 0;
 }
 return 1;
}

Here mTh is a TThread* pointer which is member of Myclass and should be initialized to
0 in the constructor. The TThread constructor is called as when we used a plain C function
above, except for the following two differences.

First, the member function Thread0 requires an explicit cast to (void(*) (void *)).
This may cause an annoying but harmless compiler warning:

Myclass.cxx:98: warning: converting from
 "void (Myclass::*)(void *)" to "void *")

Strictly speaking, Thread0 must be a static member function to be called from a thread.
Some compilers, for example gcc version 2.95.2, may not allow the (void(*)
(void*))s cast and just stop if Thread0 is not static. On the other hand, if Thread0 is
static, no compiler warnings are generated at all.

Because the 'this' pointer is passed in 'arg' in the call to Thread0(void *arg),
you have access to the instance of the class even if Thread0 is static. Using the 'this'
pointer, non static members can still be read and written from Thread0, as long as you
have provided Getter and Setter methods for these members.

For example:

Bool_t state = arg->GetRunStatus();
arg->SetRunStatus(state);

Second, the pointer to the current instance of Myclass, i.e. (void*) this, has to be
passed as first argument of the threaded function Thread0 (C++ member functions
internally expect the this pointer as first argument to have access to class members of the
same instance). pthreads are made for simple C functions and do not know about
Thread0 being a member function of a class. Thus, you have to pass this information by
hand, if you want to access all members of the Myclass instance from the Thread0
function.

356 Threads June 2003 v3.05

Note: Method Thread0 cannot be a virtual member function, since the cast of Thread0 to
void(*) in the TThread constructor may raise problems with C++ virtual function table.
However, Thread0 may call another virtual member function
 virtual void Myclass::Func0()
which then can be overridden in a derived class of Myclass. (See example TMhs3).

Class Myclass may also provide a method to stop the running thread:

Int_t Myclass::Threadstop(){
 if(mTh){
 TThread::Delete(mTh);
 delete mTh;
 mTh=0;
 return 0;
 }
 return 1;
}

Example TMhs3: Class TThreadframe (TThreadframe.h, TThreadframe.cxx) is a
simple example of a framework class managing up to four threaded methods. Class TMhs3
(TMhs3.h, TMhs3.cxx) inherits from this base class, showing the mhs3 example 8.1
(mhs3.h, mhs3.cxx) within a class.

The Makefile of this example builds the shared libraries libTThreadframe.so and
libTMhs3.so. These are either loaded or executed by the ROOT script TMhs3demo.C,
or are linked against an executable: TMhs3run.cxx.

Known Problems
Parts of the ROOT framework, like the interpreter, are not yet thread-safe. Therefore, you
should use this package with caution. If you restrict your threads to distinct and `simple'
duties, you will able to benefit from their use.

The TThread class is available on all platforms, which provide a POSIX compliant thread
implementation. On Linux, Xavier Leroy's Linux Threads implementation is widely used, but
the TThread implementation should be usable on all platforms that provide pthread.

Linux Xlib on SMP machines is not yet thread-safe. This may cause crashes during
threaded graphics operations; this problem is independent of ROOT.

Object instantiation: there is no implicit locking mechanism for memory allocation and
global ROOT lists. The user has to explicitly protect his code when using them.

Glossary
The following glossary is adapted from the description of the Rogue Wave Threads.h++
package.

Process
A process is a program that is loaded into memory and prepared for execution. Each
process has a private address space. Processes begin with a single thread.

Thread
A thread of control, or more simply, a thread, is a sequence of instructions being executed
in a program. A thread has a program counter and a private stack to keep track of local
variables and return addresses. A multithreaded process is associated with one or more
threads. Threads execute independently. All threads in a given process share the private
address space of that process.

June 2003 v3.05 Threads 357

Concurrency
Concurrency exists when at least two threads are in progress at the same time. A system
with only a single processor can support concurrency by switching execution contexts
among multiple threads.

Parallelism
Parallelism arises when at least two threads are executing simultaneously. This requires a
system with multiple processors. Parallelism implies concurrency, but not vice-versa.

Reentrant
A function is reentrant if it will behave correctly even if a thread of execution enters the
function while one or more threads are already executing within the function. These could
be the same thread, in the case of recursion, or different threads, in the case of
concurrency.

Thread-specific Data
Thread-specific data (TSD) is also known as thread-local storage (TLS). Normally, any data
that has lifetime beyond the local variables on the thread's private stack are shared among
all threads within the process. Thread-specific data is a form of static or global data that is
maintained on a per-thread basis. That is, each thread gets its own private copy of the data.

Synchronization
Left to their own devices, threads execute independently. Synchronization is the work that
must be done when there are, in fact, interdependencies that require some form of
communication among threads. Synchronization tools include mutexes, semaphores,
condition variables, and other variations on locking.

Critical Section
A critical section is a section of code that accesses a non-sharable resource. To ensure
correct code, only one thread at a time may execute in a critical section. In other words, the
section is not reentrant.

Mutex
A mutex, or mutual exclusion lock, is a synchronization object with two states locked and
unlocked. A mutex is usually used to ensure that only one thread at a time executes some
critical section of code. Before entering a critical section, a thread will attempt to lock the
mutex, which guards that section. If the mutex is already locked, the thread will block until
the mutex is unlocked, at which time it will lock the mutex, execute the critical section, and
unlock the mutex upon leaving the critical section.

Semaphore
A semaphore is a synchronization mechanism that starts out initialized to some positive
value. A thread may ask to wait on a semaphore in which case the thread blocks until the
value of the semaphore is positive. At that time the semaphore count is decremented and
the thread continues. When a thread releases semaphore, the semaphore count is
incremented. Counting semaphores are useful for coordinating access to a limited pool of
some resource.

358 Threads June 2003 v3.05

Readers/Writer Lock
A multiple-reader, single-writer lock is one that allows simultaneous read access by many
threads while restricting write access to only one thread at a time. When any thread holds
the lock for reading, other threads can also acquire the lock reading. If one thread holds the
lock for writing, or is waiting to acquire the lock for writing, other threads must wait to
acquire the lock for either reading or writing.

Condition Variable
Use a condition variable in conjunction with a mutex lock to automatically block threads
until a particular condition is true.

Multithread Safe Levels
A possible classification scheme to describe thread-safety of libraries:

• All public and protected functions are reentrant. The library provides protection against
multiple threads trying to modify static and global data used within a library. The
developer must explicitly lock access to objects shared between threads. No other
thread can write to a locked object unless it is unlocked. The developer needs to lock
local objects. The spirit, if not the letter of this definition, requires the user of the library
only to be familiar with the semantic content of the objects in use. Locking access to
objects that are being shared due to extra-semantic details of implementation (for
example, copy-on-write) should remain the responsibility of the library.

• All public and protected functions are reentrant. The library provides protection against
multiple threads trying to modify static and global data used within the library. The
preferred way of providing this protection is to use mutex locks. The library also locks
an object before writing to it. The developer is not required to explicitly lock or unlock a
class object (static, global or local) to perform a single operation on the object. Note
that even multithread safe level II hardly relieves the user of the library from the burden
of locking.

Deadlock
A thread suffers from deadlock if it is blocked waiting for a condition that will never occur.
Typically, this occurs when one thread needs to access a resource that is already locked by
another thread, and that other thread is trying to access a resource that has already been
locked by the first thread. In this situation, neither thread is able to progress; they are
deadlocked.

Multiprocessor
A multiprocessor is a hardware system with multiple processors or multiple, simultaneous
execution units.

June 2003 v3.05 Threads 359

List of Example Files
Here is a list of the examples that you can find on the thread authors' web site (Jörn
Adamczewski, Marc Hemberger) at:
www-linux.gsi.de/~go4/HOWTOthreads/howtothreadsbody.html#tth_sEc8

Example: mhs3
• Makefile.mhs3
• mhs3.h
• mhs3LinkDef.h
• mhs3.cxx
• rootlogon.C
• RunMhs3.C

Example: conditions
• Makefile.conditions
• conditions.h
• conditionsLinkDef.h
• conditions.cxx
• condstart.C

Example: TMhs3
• Makefile.TMhs3
• TThreadframe.h
• TThreadframeLinkDef.h
• TThreadframe.cxx
• TMhs3.h
• TMhs3LinkDef.h
• TMhs3.cxx
• TMhs3run.cxx
• TMhs3demo.C

Example: CalcPiThread
• Makefile.CalcPiThread
• CalcPiThread.h
• CalcPiThreadLinkDef.h
• CalcPiThread.cxx
• rootlogon.C
• RunPi.C

June 2003 v3.05 Appendix A: Install and Build ROOT 361

25 Appendix A: Install and
Build ROOT

ROOT Copyright and Licensing Agreement:
This is a reprint of the copyright and licensing agreement of ROOT:

Copyright (C) 1995-2003, René Brun and Fons Rademakers.

All rights reserved.

ROOT Software Terms and Conditions

The authors hereby grant permission to use, copy, and distribute this software and its
documentation for any purpose, provided that existing copyright notices are retained in all
copies and that this notice is included verbatim in any distributions. Additionally, the authors
grant permission to modify this software and its documentation for any purpose, provided
that such modifications are not distributed without the explicit consent of the authors and
that existing copyright notices are retained in all copies. Users of the software are asked to
feed back problems, benefits, and/or suggestions about the software to the ROOT
Development Team: rootdev@root.cern.ch Support for this software - fixing of bugs,
incorporation of new features - is done on a best effort basis. All bug fixes and
enhancements will be made available under the same terms and conditions as the original
software.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY
DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-
INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE
AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

362 Appendix A: Install and Build ROOT June 2003 v3.05

Installing ROOT
To install ROOT you will need to go to the ROOT website at:
http://root.cern.ch/root/Availability.html

You have a choice to download the binaries or the source. The source is quicker to transfer
since it is only 3.4 MB, but you will need to compile and link it. The binaries range from 7.4
MB to 11 MB depending on the target platform.

Choosing a Version
The ROOT developers follow the principle of "release early and release often", however a
very large portion of a user base requires a stable product therefore generally three
versions of the system is available for download – new, old and pro:

• The new version evolves quickly, with weekly or bi-weekly releases. Use this to get
access to the latest and greatest, but it may not be stable. By trying out the new
version you can help us converge quickly to a stable version that can then become the
new pro version. If you are a new user we would advice you to try the new version.

• The pro (production) version is a version we feel comfortable with to exposing to a
large audience for serious work. The change rate of this version is much lower than for
the new version, it is about 3 to 6 months.

• The old version is the previous pro version that people might need for some time
before switching the new pro version. The old change rate is the same as for pro.

Supported Platforms
For each of the three versions the full source is available for these platforms. Precompiled
binaries are also provided for most of them:

• Intel x86 Linux (g++, egcs and KAI/KCC)
• Intel Itanium Linux (g++)
• HP HP-UX 10.x (HP CC and aCC, egcs1.1 C++ compilers)
• IBM AIX 4.1 (xlc compiler and egcs1.2)
• Sun Solaris for SPARC (SUN C++ compiler and egcs)
• Sun Solaris for x86 (SUN C++ compiler)
• Sun Solaris for x86 KAI/KCC
• Compaq Alpha OSF1 (egcs1.2 and DEC/CXX)
• Compaq Alpha Linux (egcs1.2)
• SGI Irix (g++, KAI/KCC and SGI C++ compiler)
• Windows NT and Windows95 (Visual C++ compiler)
• Mac MkLinux and Linux PPC (g++)
• Hitachi HI-UX (egcs)
• LynxOS
• MacOS (CodeWarrior, no graphics)

Installing Precompiled Binaries
The binaries are available for downloading from http://root.cern.ch/root/Availability.html

Once downloaded you need to unzip and de-tar the file. For example, if you have
downloaded ROOT v2.25 for HPUX:

% gunzip root_v2.25.00.HP-UX.B.10.20.tar.gz
% tar xvf root_v2.25.00.HP-UX.B.10.20.tar

This will create the directory root. Before getting started read the file README/README.
Also, read the Introduction chapter for an explanation of the directory structure.

June 2003 v3.05 Appendix A: Install and Build ROOT 363

Installing the Source
You have a choice to download a compressed (tar ball) file containing the source, or you
can login to the source code change control (CVS) system and check out the most recent
source. The compressed file is a one time only choice; every time you would like to
upgrade you will need to download the entire new version. Choosing the CVS option will
allow you to get changes as they are submitted by the developers and you can stay up to
date.

Installing and Building the Source from a Compressed File
To install the ROOT source you can download the tar file containing all the source files from
the ROOT website. The first thing you should do is to get the latest version as a tar file.
Unpack the source tar file, this creates directory ‘root’:

% tar zxvf root_v2.25.xx.source.tar.gz

Set ROOTSYS to the directory where you want root to be installed:

% export ROOTSYS=<path>/root

Now type the build commands:

% cd root
% ./configure --help
% ./configure <target>
% gmake
% gmake install

Add $ROOTSYS/bin to PATH and $ROOTSYS/lib to LD_LIBRARY_PATH:

% export PATH=$ROOTSYS/bin:$PATH
% export LD_LIBRARY_PATH=$ROOTSYS/lib:$LD_LIBRARY_PATH

Try running root:

% root

It is also possible to setup and build ROOT in a fixed location. Please check
README/INSTALL for more a detailed description of this procedure.

Target directory
By default, ROOT will be built in the $ROOTSYS directory. In that case the whole system
(binaries, sources, tutorials, etc.) will be located under the $ROOTSYS directory.

Makefile targets
The Makefile is documented in details in the README/BUILDSYSTEM file. It explains
the build options and targets.

More Build Options
To build the library providing thread support you need to define either the environment
variable ‘THREAD=-lpthread’ or the configure flag ‘--with-thread=-lpthread’
(it is the default for the linuxegcs architecture). [Note: this is only tested on Linux for the
time being.] To build the library providing CERN RFIO (remote I/O) support you need to
define either the environment variable ‘ RFIO=<path>/libshift.a’ or the configure
flag ‘--with-rfio=<path>/libshift.a’. For pre-built version of libshift.a see
ftp://root.cern.ch/root/shift/

364 Appendix A: Install and Build ROOT June 2003 v3.05

To build the PAW and Geant3 conversion programs h2root and g2root you need to
define either the environment variable ‘CERNLIB=<cernlibpath>’ or the configure
flag ‘--with-cern-libdir=<cernlibpath>’.

To build the MySQL interface library you need to install MySQL first. Visit
http://www.mysql.com/ for the latest versions.

To build the strong authentication module used by rootd, you first have to install the SRP
(Secure Remote Password) system. Visit http://jafar.stanford.edu/srp/index.html

To use the library you have to define either the environment variable ‘SRP=<srpdir>’ or
the configure flag ‘--with-srp=<srpdir>’.

To build the event generator interfaces for Pythia and Pythia6, you first have to get the
Pythia libraries available from ftp: ftp://root.cern.ch/root/pythia/

To use the libraries you have to define either ‘PYTHIA=<pythiadir>’ or the configure
flag ‘--with-pythia=<pythiadir>’. The same applies for Pythia6.

Installing the Source from CVS
This paragraph describes how to checkout and build ROOT from CVS for UNIX systems.
For description of a checkout for other platforms, please see ROOT installation web page:
http://root.cern.ch/root/CVS.html.

Note: The syntax is for ba(sh), if you use a t(csh) you have to substitute export with
setenv.

% export CVSROOT=:pserver:cvs@root.cern.ch:/user/cvs
% cvs login
% (Logging in to cvs@root.cern.ch)
% CVS password: cvs
% cvs –z3 checkout root
U root/…
U …
% cd root
% ./configure –-help
% ./configure <platform>
% gmake

If you are a part of collaboration, you may need to use setup procedures specific to the
particular development environment prior to running gmake. You only need to run cvs login
once. It will remember anonymous password in your $HOME/.cvspass file. For more
install instructions and options, see the file README/INSTALL.

CVS for Windows
Although there exists a native version of CVS for Windows, we only support the build
process under the Cygwin environment. You must have CVS version 1.10 or newer. The
checkout and build procedure is similar to that for UNIX. For detailed install instructions,
see the file REAMDE/INSTALL.

Converting a tar ball to a working CVS sandbox
You may want to consider downloading the source as a tar ball and converting it to CVS
because it is faster to download the tar ball than checking out the entire source with CVS.
Our source tar ball contains CVS information. If your tar ball is dated June 1, 2000 or later,
it is already set up to talk to our public server (root.cern.ch). You just need to download and
unpack the tar ball and then run following commands:

% cd root
% cvs -z3 update -d -P
% ./configure <platform>

June 2003 v3.05 Appendix A: Install and Build ROOT 365

Staying up-to-date
To keep your local ROOT source up-to-date with the CVS repository you should regularly
run the command:

% cvs -z3 update -d –P

Setting the Environment Variables
Before you can run ROOT you need to set the environment variable ROOTSYS and change
your path to include root/bin and library path variables to include root/lib. Please
note: The syntax is for ba(sh), if you are running t(csh) you will have to use setenv
and set instead of export.

1. Define the variable $ROOTSYS to the directory where you unpacked the ROOT:

% export ROOTSYS=/root

2. Add ROOTSYS/bin to your PATH:

% export PATH=$PATH:$ROOTSYS/bin

3. Set the Library Path

On HP-UX, before executing the interactive module, you must set the library path:

% export SHLIB_PATH=$SHLIB_PATH:$ROOTSYS/lib

On AIX, before executing the interactive module, you must set the library path:

% [-z "$LIBPATH"] && export LIBPATH=/lib:/usr/lib
% export LIBPATH=$LIBPATH:$ROOTSYS/lib

On Linux, Solaris, Alpha OSF and SGI, before executing the interactive module, you must
set the library path:

% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib

On Solaris, in case your LD_LIBRARY_PATH is empty, you should set it:

% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ROOTSYS/lib:/usr/dt/lib

ROOTSYS is an environment variable pointing to the ROOT directory. For example, if you
use the HPUX-10 AFS version you should set:

% export ROOTSYS=/afs/cern.ch/na49/library.4/ROOT/v2.23/hp700_ux102/root

To run the program just type: root

366 June 2003 v3.05

Documentation to Download

PostScript Documentation
The following PostScript files have been generated by automatically scanning the ROOT
HMTL files. This documentation includes page numbers, table of contents and an index.

• The latest revision of the Users Guide (5MB, 350 pages):
http://root.cern.ch/root/RootDoc.html

• ROOT Overview: Overview of the ROOT system (365 KB, 81 pages)
ftp://root.cern.ch/root/ROOTMain.ps.gz

• ROOT Tutorials: The ROOT tutorials with graphics examples (320 KB, 81 pages)
ftp://root.cern.ch/root/ROOTTutorials.ps.gz

• ROOT Classes: Description of all the ROOT classes (1.47 MB, 661 pages)
ftp://root.cern.ch/root/ROOTClasses.ps.gz

HTML Documentation
In case you only have access to a low-speed connection to CERN, you can get a copy of
the complete ROOT html tree (24 MB):

ftp://root.cern.ch/root/ROOTHtmlDoc.ps.gz

June 2003 v3.05 Index 367

26 Index

A
accent symbols... 118
Accept

TServerSocket... 305, 307
ACLiC ..91, 95, 242, 257, 298
Activate (TGFrame)... 318
active pad......16, 20, 101, 105, 107, 109, 110, 112, 143
Add

TBrowser .. 100
TChain .. 244
TCollection ... 261
TFolder ... 100, 153
TH1... 29
THStack .. 45
TList.. 170, 265
TMonitor... 307
TMultiGraph ... 58
TObjArray... 157
TTask .. 155

AddAfter (TList).. 265
AddBefore (TList) ... 265
AddBinContent (TH1) ... 28
AddButton

TGToolBar.. 335
AddDirectory (TH1) 26, 97, 169
AddEntry

TGComboBox... 338
TGListBox .. 337
TGPopupMenu.. 333
TLegend.. 145

AddFirst (TList)... 265
AddFolder (TFolder) 152, 153
AddFrame

TGHorizontalFrame...................................... 311, 313
TGMainFrame .. 311

AddFriend
TChain .. 245
TTree... 216, 217

adding a class
ACLiC... 257
shared library .. 255

AddLast (TList) ... 265
AddPopup

TGMenuBar.. 334
TGPopupMenu.. 334

AddSeparator

TGPopupMenu.. 333
AddText (TPaveText) .. 120
Angle (TVector3)... 271
AppendPad (TObject) 100, 106
arrow .. 113, 142
AsSQLString

TDatime .. 129
asymmetric errors in graphs....................................... 56
At

TList.. 36
TObjArray... 180, 266

automatic class descriptions..................................... 345
automatic schema evolution..................................... 185
Autosave (TTree) ... 201
axis

alphanumber bin labels ... 43
binning .. 128
labels ... 126
tick marks.................................. 31, 32, 125, 126, 127
time format.. 134
title .. 33, 103, 124

B
bar

chart... 37
graph ... 52

batch mode... 11
Begin (TSelector)... 242, 297
benchmark.. 294
Boost

TLorentzRotation .. 278
TVector3 ... 276

branch... 201
Branch (TTree)... 196, 201, 205
Broadcast (TCondition) ... 353
Browse (TBranch).. 248
browser... 82, 158, 171, 293
BypassStreamer (TClonesArray) 177
byte count... 202, 256

C
CancelPoint (TThread)... 354
canvas... 13, 101, 106

dividing ... 15, 109
list of canvases .. 166
modified .. 111

368 Index June 2003 v3.05

print... 16
transparent... 111
update.. 111
updating .. 29

cd
TCanvas .. 16, 45
TDirectory... 165
TFile.. 171
TPad.. 16

CenterTitle (TAxis) ... 58
chain239, 242, 244, 294, 295, 297, 298, 347
change directory... 97, 169
ChangeBackground (TGFrame)............................... 318
ChangeOptions

TGFrame... 318, 320
check buttons ... 309
CheckPoint (TGeoManager).................................... 286
CINT.. 81

commands ... 16
debugger ... 5, 82, 89
dictionary .. 95, 252, 253
library.. 6

class 75
class index.. 9
ClassDef............................104, 173, 185, 250, 252, 255
ClassImp .. 188
ClassName (TObject) .. 247
ClassVersionID.. 249
Cleanup

TGCompositeFrame.. 320
TGMainFrame .. 312

Clear
TCollection ... 261
TList.. 99

ClearFlags
TGWidget ... 318

Clicked
TGButton .. 324

client .. 305
Clone

TH1F... 41
TObject ... 248

Close
TFile.. 170
TPostScript ... 146
TSocket ... 306

coding conventions .. 18, 19
collections.. 259

ordered .. 260
sorted... 261
unordered .. 261

color 140
color palettes.. 140
column-wise ntuples .. 23
combo boxes .. 309
command line .. 16, 82

history ... 21
multi-line command.. 17, 84
quit .. 12
short cuts ... 17

command options... 11
Compare (TObject).. 262
compression ... 189

Connect
TQObject... 324, 326, 327

contact
mailing list .. 1

context menu..... 14, 103, 104, 108, 122, 135, 138, 139,
142, 143

toggle... 104
contour ... 30, 31, 35, 36, 37
Convert

TDatime .. 353
THtml.. 345

CosTheta (TVector3) ... 270
Cross (TVector3) ... 271
curly arc ... 117, 142
curly lines... 116, 142
current directory.... 20, 86, 97, 164, 167, 169, 171, 196,

233, 234
current style.. 148
cursor ... 102
cut . .. 225
CVS ... 364
cycle number.. 164
cylindrical coordinates

TVector3 ... 275

D
debugging... 89
Delete

TCollection ... 261
TDirectory... 172
TList.. 99
TThread... 354, 356

DeleteEntry
TGPopupMenu.. 334

DeleteWindow
TGFrame ... 318

Derivative (TF1) .. 13
diamond ... 142
DisableEntry

TGPopupMenu.. 334
Disconnect

TQObject... 327
DistanceToPrimitive (TCanvas) 105
Divide

TCanvas .. 15, 16, 45
TH1 ... 29
TPad .. 110, 111

documentation.. 366
DoRedraw

TGFrame ... 318
Dot (TVector3)... 271
Draw

TArrow.. 77
TBox ... 115
TChain... 245, 246
TEllipse ... 115
TF1.. 13, 63, 68
TGaxis... 41
TGraph .. 52
TGraphAsymmErrors.. 57
TH1 ... 29, 32, 106, 141
TH2F... 59

June 2003 v3.05 Index 369

THStack .. 45
TLine... 76
TMarker .. 54
TMultiGraph ... 58
TObject ... 248
TPaveText... 120
TProfile ... 48
TProfile2D .. 49
TTree....28, 30, 44, 210, 214, 217, 224, 225, 226, 297

draw options for graphs ... 51
draw options for histograms 30
draw panel

slider ... 14
DrawClass (TObject) ... 247
DrawClone

TH1... 29, 144
TObject ... 143, 248

DrawClonePad (TCanvas) 143
drawing objects.. 101
DrawLatex (TLatex) .. 119
DrawLineNDC (TLine) ... 109
DrawNormalized (TH1)... 29
Dump

TLine... 83
TObject ... 247

E
E (TLorentzVector) ... 274
EErrorCode (TInterpreter) ... 86
ellipse... 114, 142
Emit

TQObject .. 326
EnableEntry

TGPopupMenu.. 334
environment settings.. 21
errors in graphs .. 55
Eval (TF1).. 13
event list... 233
example.. 7, 289, 290

analysis ... 297
axis.. 132, 133
bar graph ... 52
creating a file .. 157
creating histogram... 290
fitting... 67
fitting subranges.. 65
fitting with user defined function............................ 64
graph ... 51
graph with continuous line...................................... 52
GUI application... 295
latex .. 119, 120
MakeProject .. 186
mathematical expression....................................... 119
physics vector ... 279
PostScript .. 147, 148
remote access to a file ... 191
threads... 356, 359
tree read/write ... 207
tree with a struct.. 211
tree with an event list .. 234
tree with Event .. 219
tree with friends .. 216

TRef .. 181
ExecuteEvent

TArrow.. 106
TButton ... 105
TLine... 106

exit 12
Exit (TThread) ... 355
exponential... 62

F
Feynman... 116
file

access via web server .. 192
close .. 170
compression .. 189
current directory.. 165
cycle numbers ... 164
free block .. 161
header .. 159
list of objects ... 97, 169
objects in memory... 165
objects on disk... 165
out of scope ... 170
physical layout .. 157
read mode.. 165
record .. 160
recovery... 162
retrieving objects... 170
saving collections .. 169
saving histograms.. 167
saving objects.. 169
streamer... 173
subdirectories .. 171
write .. 167, 170

Fill
TH1 ... 27, 43
TH2 ... 27
TH3 ... 27
TProfile ... 46, 48
TProfile2D .. 49
TTree... 200, 207, 211

fill attributes... 139
FillRandom (TH1F) 28, 42, 45
FindObject

TCollection ... 261
TList.. 169
TROOT ... 87

FindObjectAny (TROOT).. 153
First (TList).. 36
Fit

TH1 ... 61, 62, 64, 65
TH1F... 66

Fit Panel ... 61
FitSlicesX (TH2).. 29
FitSlicesY (TH2).. 29
FitSlicesZ (TH3) .. 29
fitting...See histogram fitting

draw options.. 62
exponential .. 62
function ... 62
gaussian... 62
histogram... 61

370 Index June 2003 v3.05

initial parameters... 63
landau.. 62
options... 62
polynomial .. 62
predefined function ... 62
quiet .. 62
range ... 62
verbose.. 62

FixParameter (TF1) ... 65
folders .. 151

hierarchy ... 152
search .. 153

fonts 136
ForceStyle (TROOT) ... 30, 149
format characters

date.. 128
time ... 128

fractions ... 117
frame.. 309
frame types .. 319, 320
framework.. 2

components ... 3
organization .. 4

FreePicture
TGClient ... 341

function
derivative .. 13
integral .. 13
number of points ... 13

G
Gaussian... 28, 42, 61, 62, 157
gDirectory..2, 20, 86, 97, 164, 165, 169, 171, 172, 301,

353
current directory.. 97
deleting objects ... 301
finding objects... 86, 301
getting objects 169, 172, 226, 234
saving current directory .. 176

gEnv .. 19, 21, 138
Get

TDirectory... 86, 169, 172
TFile...42, 64, 123, 162, 210

GetAngleAxis (TRotation) 273
GetAsymmetry (TH1).. 42
GetBin (TH3)... 27
GetBinCenter (TAxis) ... 27
GetBinContent

TH1... 28
TH1F... 41

GetBinError (TH1) .. 69
GetBranch

TTree... 214
GetBranch (TTree)... 210
GetChisquare (TF1) ... 69
GetClass (TROOT).. 186
GetClassName (TKey)... 163
GetDefaultSize

TGMainFrame .. 312, 316
GetDict (TClassTable)... 221
GetDrawOption (TObject)....................................... 248
GetEntries

TChain... 245
TTree... 210

GetEntries (TH1) ... 42
GetEntry

TBranch... 210, 214
TTree... 209, 210

GetEvent (TChain)... 245
GetExec (TROOT)... 181
GetFile (TDirectory) .. 171
GetFrame (TCanvas).. 56
GetFunction (TH1)... 69
GetHistogram (TGraph)... 111
GetLastClick

TGFrame ... 318
GetLinkedLibs (TSystem).. 93
GetList

TDirectory................................. 86, 97, 167, 169, 301
GetListOf... (TROOT) ... 20
GetListOfBrowsables

TROOT ... 155
GetListOfBrowsables (TROOT)................................ 98
GetListOfCanvases (TROOT) 98
GetListOfCleanUps (TROOT)................................. 100
GetListOfColors (TROOT)...................................... 140
GetListOfFriends

TChain... 245
TTree... 217

GetListOfKeys (TFile)... 162
GetListOfPrimitives (TPad)..................................... 108
GetListOfTasks (TROOT) 155
GetMaximum

TH1F... 41
TSlider... 123

GetMean (TH1).. 42
GetMinimum

TSlider... 123
GetMinimum (TSlider) .. 123
GetName (TKey) ... 163
GetNbins (TAxis)... 123
GetObject

TRef .. 181
GetObject (TRef) ... 180
GetObjectCount (TProcessID)................................. 180
GetObjectFit (TMinuit).. 70
GetObjectWithID (TProcessID)............................... 180
GetOption (TH1).. 32
GetOptions

TGFrame ... 320
GetParameter (TF1) ... 69
GetParameters (TF1).. 66
GetParError (TF1).. 69
GetPicture

TGClient ... 341
GetPlot (TMinuit) .. 70
GetPosition

TGSlider.. 339
GetPrimitive

TPad .. 110, 143
GetPrimitive (TPad)... 107
GetRMS (TH1) .. 42
GetRoot

TGClient ... 312
GetRootFolder (TROOT)... 153

June 2003 v3.05 Index 371

GetSeekKey (TKey) .. 163
GetSelected

TGComboBox... 338
GetSelectedEntry

TGComboBox... 338
GetSender

TGFrame... 318
GetSize

TCollection ... 261
TList.. 36
TObjArray... 36

GetState
TGCompositeFrame.. 320

GetStreamerInfo
TClass ... 183, 187
TH1... 183

GetStyle (TROOT) .. 149
GetTickx (TPad) .. 32
GetTicky (TPad) .. 32
GetUymax (TPad).. 41
GetWebHistogram (TRef) 181
GetX (TGraph)... 54
GetX1 (TLine) ... 101
GetXaxis

TGraph.. 59
TH1... 27, 33, 124
TH1F... 134
TH2F... 123

GetY (TGraph)... 54
GetYaxis

TGraph.. 59
TH1... 33
TH2F... 123

gFile 20, 171, 353
gGeoManager .. 287
gHtml... 345
global variables.. 20

print current settings ... 22
gRandom.. 21
graph .. 51

asymmetric errors ... 56
axis.. 52
axis titles ... 58
bar graph ... 52
collection... 57
draw options.. 51
errors ... 55
filling... 53
fitting... 58
markers ... 53
superimposing... 54
zoom ... 59

graphical cut .. 142
graphical editor .. 142
graphical objects

adding events .. 105
coordinate system

conversion .. 109
global setting.. 108
pixel coordinates .. 109

moving .. 102
resizing.. 102
selecting .. 103

greek font ... 118, 147
gROOT................................. 20, 93, 100, 140, 141, 166
GUI Application... 295

H
H1FitChisquare (TMinuit) ... 70
H1FitLikelihood (TMinuit).. 70
h2root ... 23, 364
HandleButton

TGFrame ... 318
HandleEvent

TGFrame ... 318
HandleFocusChange

TGFrame ... 318
HandleInput (TCanvas).. 105
HandleKey

TGFrame ... 318
HandleMotion

TGFrame ... 318
HasConnection

TOQbject... 327
HasFocus

TGWidget ... 318
Hash (TObject)... 262
HBOOK ... 23
heap . .. 77, 86, 87, 170
HideEntry

TGPopupMenu.. 334
HideFrame

TGCompositeFrame.. 320
HightPriority

TQObject... 326
histogram ... 25

1-D histograms.. 25
2-D histograms.. 25
3-D histograms.. 25
addition ... 29
alphanumber bin labels ... 43
axis title... 33
BAR .. 37
batch mode .. 226
change default directory.................................. 97, 169
clone.. 41
color palette... 39, 141
contour .. 35
coordinate systems .. 36
division.. 29
draw options.. 30
drawing ... 29

draw options ... 30
setting default... 32

refreshing ... 29
superimpose.. 29

drawing sub-range... 40
error bars ... 29
filling... 27

with random numbers... 28
first bin .. 27
Fit Panel .. 61
fitting... 61, 62

combining functions... 67
errors .. 69

372 Index June 2003 v3.05

function .. 62
function list .. 66
initial parameters.. 63
options.. 62
parameter bounds ... 65
parameters .. 69
range... 65
statistics.. 69
user defined function...................................... 63, 64

last bin... 27
legend.. 144
lego plot .. 36
list of functions ... 62
log scale .. 112
multiplication .. 29
profile histograms ... 25
projection .. 29
reading .. 42
re-binning.. 27

automatic re-binning .. 28
remove from directory 97, 169
saving to file ... 167
scatter plot... 33
second bin ... 27
second to last bin... 27
style... 30
sub-range... 40
superimpose .. 40
surface plot.. 37
variable bin sizes... 27
writing... 42

history file.. 21
home directory... 165
horizontal splitter ... 342

I
I/O redirection.. 83
icons 309
IgnoreObjectStreamer (TObject) 177, 179, 249
in memory objects.. 167
include path.. 93
Inheritance ... 76, 247
InheritsFrom (TClass).. 247
input/output.. 157
Inspect

TFile.. 90
TObject ... 90, 247

inspecting... 90
Inspector (TInspectCanvas) 100
install ROOT.. 362
Integral

TF1.. 13
TH1... 42

interpreter... 81
Introspection .. 247
Inverse (TRotation).. 273
Invert (TRotation).. 273
IsA (TClass)... 247
IsBatch (TROOT) .. 210
IsEnabled

TGTextButton... 318
IsEqual (TObject) .. 262

IsFolder (TObject) ... 248
IsSortable (TObject)... 262
IsVisible

TGCompositeFrame.. 320
iterators .. 261, 263

J
Join (TThread) ... 354

K
kCanDelete... 99, 249
kCanRebin (TH1)... 28
key 160, 163, 164, 168, 169, 176, 259
Kill (TThread).. 354
kMustCleanup.. 99, 100, 249
KolmogorovTest (TH1) ... 42
kOverwrite ... 168

L
label ... 142
labels .. 121
LabelsDeflate (TH1) .. 44
LabelsOption (TH1)... 44
landau... 62
latex ... 117, 142
Layout

TGCompositeFrame.. 320
layout hints... 323
layout managers ... 309
legends ... 144
lego plot ... 36
LegoPlot (TGeoVolume) ... 287
libraries .. 6

CINT ... 6
dependencies ... 6

license .. 361
line 113, 142
line attributes.. 138
LinkDef.. 8, 175, 254, 255

options... 255
list boxes .. 309
Load

TSystem .. 93, 188, 198, 221
Lock (TThread).. 352
logarithmic scale .. 112
Lorentz vector .. 274
LowPriority

TQObject... 326
ls

TDirectory... 165, 171
TFile.. 91, 164, 165, 167
TList.. 166
TNamed... 167
TObject ... 99, 167

M
macro path.. 22
Mag (TVector3) ... 270
Mag2 (TVector3) ... 270

June 2003 v3.05 Index 373

mailing list ... 1
MakeAll (THtml)... 345
MakeClass ... 237

THtml.. 345
TTree... 224, 237, 241, 297

MakeIterator (TCollection)...................................... 261
MakeProject (TFile)... 186, 187
MakeSelector (TTree)...................................... 224, 297
manual schema evolution... 185
Map (TFile).. 158, 162
MapSubwindows

TGMainFrame .. 312
MapWindow

TGMainFrame .. 312
marker.. 53, 115, 142
mathematical expressions .. 117
mathematical symbols ... 118
MatrixMultiplication (TLorentzRotation) 278
memory checker... 23
memory leaks... 22
menu bars... 309
method overriding.. 76
Minus (TLorentzVector).. 277
mkdir (TDirectory) .. 171
mnplot (TMinuit) ... 70
Modified (TPad) .. 111
Move

TGFrame... 318
multi-line command... 17
multi-pad canvas.. 15
multiple sockets ... 307
Multiply (TH1) .. 29
mutex ... 350, 352

N
networking ... 305
NewPage (TPostScript) ... 148
Next

TIter .. 263
TIterator .. 262

next (TIter)... 265
normalized coordinate system (NDC) 109
Notify (TSelector).. 242, 297
ntuple ... 195
NumberOfConnections

TOQbject .. 327
NumberOfSignals

TOQbject .. 327

O
OBJ . .. 164, 166
object

in memory... 165
number .. 180
on disk... 165
ownership.. 97

Open (TFile) .. 191, 193
operator() (Titer).. 265
operator[] (TObjArray) .. 266
ordered collections... 260
Orthogonal (TVector3) .. 271

P
pad

coordinate system.. 108
copy/paste ... 143
dividing ... 109
find an object... 107
hide an object .. 108
modified .. 111
transparent... 111
update.. 111
updating... 29

Paint
TF1.. 13
TObject ... 107, 248

PaintAxis (TGaxis) .. 128
palette... 140
pave . .. 142
PAW .. 1, 23, 297, 364
Perp (TVector3) ... 270
Perp2 (TVector3) ... 270
Phi (TVector3) ... 270
PhiX (TRotation) ... 273
PhiY (TRotation) ... 273
PhiZ (TRotation).. 273
physics vector .. 269
pixel coordinate system.. 109
PixeltoX (TPad) ... 109
PixeltoXY (TPad) .. 109
PixeltoY (TPad) ... 109
Plus (TLorentzVector) ... 277
poly-line ... 114, 142
poly-marker.. 116
polynomial ... 62
popup menus .. 309
PostScript ... 146
Print

TEnv.. 138
TLine... 83, 84
TTree... 196

print . .. 16
active classes ... 23
current settings .. 21

private .. 76
Process

TChain... 298
TTree... 241, 297

Process ID .. 179
ProcessCut (TSelector) 242, 297
ProcessEvent

TGFrame ... 318
ProcessEvents (TSystem)... 134
ProcessFill (TSelector)..................................... 242, 297
ProcessLine (TROOT) ... 86, 93
ProcessMessage

TGFrame ... 318
profile histograms .. 46

2D ... 48
from a tree ... 48

ProfileX (TH2)... 48
ProfileY (TH2)... 29, 48
Project (TTree)... 236
Project3D (TH3) .. 29

374 Index June 2003 v3.05

ProjectionX
TH2... 29
TProfile ... 29, 48

ProjectionXY (TProfile2D) 29, 48
ProjectionZ (TH3) ... 29
PROOF .. 347
PseudoRapidity (TVector3) 270
PutObjectWithID (TProcessID)............................... 180
pwd

TDirectory... 165
TFile.. 171

Px (TLorentzVector).. 274
Py (TLorentzVector).. 274
Pz (TLorentzVector) .. 274

R
radio buttons .. 309
ramdom numbers ... 21
RandomPoints (TGeoVolume) 286
RandomRays (TGeoVolume) 286
Range

TPad.. 108
TPostScript ... 146

Rannor
TRandom .. 48, 207

Rebin (TH1)... 27
Recover (TFile).. 162
rectangles ... 115
Recv (TSocket) .. 305
RedrawAxis (TPad) ... 32
Remove

TCollection ... 261
TList.. 108

RemoveEntry
TGListBox .. 337

RemoveFrame
TGCompositeFrame.. 320

ReOpen (TFile).. 193
Reset

TH1... 43
TIter .. 263
TIterator .. 262
TROOT... 56, 80, 86

ResetBit (TObject)... 99
Resize

TGComboBox... 338
TGFrame... 318
TGListBox .. 337
TGMainFrame .. 312, 316

Rint . .. 165
rootalias.C.. 22
rootcint................95, 104, 173, 175, 253, 254, 255, 257

help ... 256
rootd .. 5, 190, 191, 364

command line arguments 192
rootlogoff.C ... 22
rootlogon.C .. 22, 149
rootrc.. 11, 21, 22, 84, 138
Rotate

TLorentzRotation.. 278
TLorentzVector... 276
TRotation .. 273

TVector3 ... 271
RotateAxes (TRotation) ... 273
RotateUz

TLorentzVector... 276
TVector3 ... 272

RotateX
TLorentzRotation .. 278
TLorentzVector... 276
TRotation .. 272
TVector3 ... 271

RotateY
TLorentzVector... 276
TVector3 ... 271

RotateZ
TLorentzVector... 276
TVector3 ... 271

row-wise ntuples .. 23
RQ_OBJECT ... 325
RTTI .. 3, 82, 247, 249, 260
Rtypes.h ... 250
Run (TThread) ... 352

S
saving collections to disk ... 169
Scale (TH1F).. 41
scatter plot.. 33
scope 84, 86, 87, 168, 170, 176
script .. 84

debugger.. 89
named.. 85, 86, 87
path.. 22
un-named... 84, 85, 86, 87

scroll bars... 309
Select

TGComboBox... 338
Select (TMonitor)... 307
selectors ... 241
semaphore .. 351
Send (TSocket)... 305
SendMessage

TGFrame ... 318
server.. 305
Set (TDatime) .. 353
SetAclicMode (TSystem)... 92
SetAction (TExec) ... 181
SetActive (TTask).. 156
SetAddress

TBranch... 210, 214
TChain... 245

SetArrowSize (TArrow)... 77
SetAutoDelete (TTree)... 209
SetAutosave (TTree) .. 201
SetAxisColor (TAxis) .. 125
SetBarColor

TGHProgressBar... 340
SetBarOffset (TH1).. 38
SetBarWidth (TH1).. 38
SetBinContent

TH1 ... 28
TH1F... 41, 66, 67, 134

SetBinError (TH1F) ... 67
SetBinLabel (Taxis) ... 43

June 2003 v3.05 Index 375

SetBit (TObject) .. 28, 99
SetBorderSize (TPaveLabel) 121
SetBranchAddress

TChain .. 245
TTree... 209, 210

SetCancelAsynchronous (TThread)......................... 354
SetCancelDeferred (TThread).................................. 354
SetCancelOn (TThread)... 353
SetCanvasBorderMode (TStyle).............................. 148
SetCanvasColor (TStyle) ... 148
SetColorPalette (TStyle) .. 36
SetCommand

TGWidget ... 318
SetCompressionLevel (TFile).................................. 189
SetContour

TF2.. 141
TH1... 31

SetCursor (TPad) ... 106
SetDirectory

TH1... 97, 169
TTree... 97

SetEditable (TPad)... 113
SetEstimate (TTree)... 237
SetEventList (TTree) ... 234
SetFCN (TMinuit) ... 70
SetFillAttributes (TAttFill) 139
SetFillColor

TArrow ... 114
TCanvas .. 56
TGraph.. 53
TH1F... 45, 139
TPad.. 21, 123

SetFillColor (TAttFill)... 139
SetFillStyle

TAttFill ... 140
TH1F... 140
TPad.. 111

SetFillType
TGHProgressBar... 340

SetFlags
TGWidget ... 318

SetFolder (TTree) .. 200
SetFrame

TGHSplitter .. 343
TGVSplitter .. 344

SetFrameFillColor (TPad) 123
SetGraphicsMode (TMinuit)...................................... 70
SetGrid

TCanvas .. 56, 134
SetHeader (TLegend)... 146
SetHistFillColor (TStyle)... 30
SetHistFillStyle (TStyle) ... 30
SetHistLineColor (TStyle)... 30
SetHistLineStyle (TStyle).. 30
SetHistLineWidth (TStyle) .. 30
SetIncludePath (TSystem) ... 93
SetIndiceSize (TLatex) .. 117
SetLabel (TPaveText).. 120
SetLabelColor

TAxis .. 125
TGaxis... 41

SetLabelFont
TAxis .. 125

TStyle.. 149
SetLabelOffset

TAxis... 125
TGaxis... 131, 132
TStyle.. 149

SetLabelSize
TAxis... 125, 129
TGaxis... 131, 132, 133

SetLabelSize (TAxis)... 39
SetLayoutManager

TGCompositeFrame.. 320
SetLimitIndiceSize (TLatex).................................... 117
SetLineColor

TAttLine.. 139
TF1.. 68
TGaxis... 41
TGraph .. 55
TH1F... 41, 134
TLine... 139

SetLineStyle (TAttLine) .. 139
SetLineStyleString (TStyle) 149
SetLineWidth

TAttLine.. 139
TGraph .. 55
TLine... 139

SetLinkedLibs (TSystem) .. 93
SetLogx (TPad).. 112
SetLogy (TPad).. 112
SetLogz (TPad) .. 112
SetMag (TVector3) .. 270
SetMarkerColor

TGraph .. 59
TGraphAsymmErrors.. 57
TGraphErrors .. 56
TMarker .. 54

SetMarkerSize
TMarker .. 54, 115

SetMarkerStyle
TGraph .. 54, 55, 59
TGraphAsymmErrors.. 57
TGraphErrors .. 56
TStyle.. 142

SetMaxDigits (TGaxis) ... 127
SetMaximum

TH1F... 66, 134
SetMethod (TSlider) .. 123
SetMinimum (TH1F) ... 134
SetName

TGaxis... 132
TH1F... 41

SetNDC (TText)... 109
SetNdivisions (TAxis) 125, 134
SetNoExponent

TAxis... 125, 127
TGaxis... 127

SetNpx (TF1) ... 13
SetObject (TRef).. 181
SetObjectCount (TProcessID).................................. 180
SetObjectFit (TMinuit) .. 70
SetOptDate (TStyle)... 149
SetOptFit (TStyle).. 69
SetOption (TH1) .. 32
SetOptStat (TStyle).............................. 32, 41, 133, 149

376 Index June 2003 v3.05

SetOwner (TCollection)... 99
SetPadBorderMode (TStyle).................................... 148
SetPadColor (TStyle)... 148
SetPalette (TStyle)31, 34, 36, 39, 141, 149
SetPaperSize (TStyle).. 147
SetParameter (TF1).. 65
SetParameters (TF1) 63, 64, 68
SetParLimits (TF1) .. 65
SetParNames (TF1) ... 64
SetParts

TGStatusBar ... 341
SetPasswd (TNetFile) .. 190
SetPerp (TVector3).. 270
SetPhi (TVector3).. 270
SetPicture

TGPictureButton... 330
SetPosition

TGHSlider... 339
TGSlider ... 339

SetPxPyPzE (TVector3) .. 275
SetRange

TAxis .. 123, 125
TF1.. 14
TGDoubleVSlider... 340
TGHSlider... 339
TGSlider ... 339

SetRangeUser (TAxis)... 125
SetRGB (TColor)... 141
SetRightMargin (TPad) ... 39
SetScale

TGSlider ... 339
SetSize

TGFrame... 318
SetStatColor (TStyle)... 148
SetState

TGCheckButton .. 332
TGRadioButton... 331

SetStats
TH1... 32
TH1F... 134
TH2F... 59

SetStatW (TStyle).. 149
SetStatX (TStyle)... 149
SetStripDecimals (TStyle) 128
SetStyle (TROOT) ... 149
SetText

TGStatusBar ... 341
SetTextAlign (TLatex)..................................... 119, 135
SetTextAngle (TLatex) .. 136
SetTextColor

TAttText ... 136
SetTextFont

TAttText ... 136
TGaxis... 132

SetTextSize
TAttText ... 138
TLatex... 119

SettFillColor
TPad.. 107

SetTheta (TVector3) .. 270
SetTickLength (TAxis) .. 125
SetTicks (TPad) ... 32
SetTimeDisplay (TAxis).......................... 128, 129, 134

SetTimeFormat
TAxis... 128, 129
TGaxis... 131

SetTimeOffset
TGaxis... 131
TStyle.. 129

SetTitle
TAxis... 33, 58, 103, 124
TGaxis... 133
TGraphAsymmErrors.. 57
TGraphErrors .. 56

SetTitleColor (TStyle) ... 148
SetTitleH

TStyle.. 129
SetTitleOffset

TAxis... 125
TGaxis... 133
TStyle.. 149

SetTitlePos
TGGroupFrame... 321

SetTitleSize
TAxis... 125
TGaxis... 133

SetUser (TNetFile)... 190
SetVect (TVector3) .. 275
SetWindowName

TGMainFrame... 312
SetWMSize

TGMainFrame... 320
SetX (TVector3)... 270
SetX1 (TLine) .. 83, 84
SetX1NDC (TPaveStats).. 32
SetX2NDC (TPaveStats).. 32
SetXYZ (TVector3) ... 270
SetXYZM (TVector3).. 275
SetXYZT (TVector3)... 275
SetY (TVector3)... 270
SetY1 (TLine) .. 83, 84
SetZ (TVector3) ... 270
Show

TGButtonGroup .. 331
Show (TTree) ... 224
ShowFrame

TGCompositeFrame.. 320
ShowPosition

TGHProgressBar... 340
ShowStreamerInfo (TFile) 160, 186
Signal (TCondition) ... 353
sliders ... 123
socket ... 305
sorted collections ... 261
special characters ... 147
spherical coordinates

TVector3 ... 275
split-level ... 203
Sqrt (TMath) .. 67
square root symbol... 117
stack 77, 86, 87, 122, 170, 356, 357
StartViewer (TTree)... 198, 210
statistics

fitting... 69
STL . .. 268
streamer.. 176, 305

June 2003 v3.05 Index 377

Streamer (TObject) 177, 179, 254
StreamerInfo .. 160, 183
StreamerInfoElement ... 183
streamers.. 173

automatic... 173
custom... 175
exclude TObject.. 177
pointers ... 173, 178
prevent splitting .. 175
TClonesArray.. 177
transient data members ... 174
variable length arrays.. 175
writing objects... 176

style ... 148
subdirectories... 171
Sumw2 (TH1) .. 28, 29, 69
superimposing graphs .. 54
superscripts .. 117
supported platforms ... 4, 362
surface plot .. 37

T
T (TLorentzVector) ... 274
tab completion ... 17
TApplication.. 315
TArc .. 116
TArrayC... 26
TArrayD... 26
TArrayF ... 26
TArrayS ... 26
TArrow .. 76, 77, 113
tasks 154
TAttFill .. 32, 139, 148, 184

SetFillColor... 139
SetFillStyle ... 140

TAttLine .. 32, 138, 148, 184
SetLineAttributes .. 104
SetLineColor... 139
SetLineStyle.. 139
SetLineWidth.. 139

TAttMarker .. 32, 116, 148, 184
TAttText .. 32, 135, 148

SetTextAlign... 135
SetTextAngle .. 136
SetTextColor... 136
SetTextFont... 136
SetTextSize ... 138

TAxis ... 27, 44, 124
CenterLabels ... 126
CenterTitle .. 58
SetAxisColor... 125
SetBinLabel .. 43
SetLabelColor ... 125
SetLabelFont... 125
SetLabelOffset .. 125
SetLabelSize ... 125, 129
SetNdivisions .. 125
SetNoExponent ... 125, 127
SetRange ... 125
SetRangeUser.. 125
SetTickLength... 125
SetTimeDisplay .. 128, 129

SetTimeFormat.. 128, 129
SetTitle.. 33, 103
SetTitleOffset .. 125
SetTitleSize ... 125

TBox .. 115
TBranch ... 201, 207, 248

GetEntry.. 210, 214
SetAddress .. 210, 222
SetAutoDelete ... 210

TBranchElement .. 204
TBrowser 16, 100, 155, 158, 210, 293
TBtree .. 261
TBuffer............................. 176, 185, 254, 256, 257, 305
TCanvas ... 312, 353

cd .. 16, 99, 123, 215, 225
Clear.. 147
Divide.. 15, 99, 148, 215, 224
DrawClonePad .. 143
HandleInput... 105
ls ... 99
MakeDefCanvas.. 101, 166
Modified.. 134
Range .. 132
SaveAs .. 248
SetBottomMargin.. 302
SetFillColor... 134, 215
SetFrameFillColor... 134
SetGrid .. 134, 302
Update ... 111, 134, 147
Write ... 169

TChain 98, 239, 240, 244, 298, See chain
AddFriend ... 245
Draw.. 245, 246
GetListOfFriends .. 245
Process .. 298
SetBranchAdress... 245
SetBranchStatus .. 245

TClass .. 247
GetStreamerInfo.. 183
InheritsFrom.. 247
IsA... 247
kIgnoreTobjectStreamer.. 249
ReadBuffer .. 174
WriteBuffer ... 174, 177

TClonesArray...177, 204, 205, 206, 209, 219, 220, 223,
242, 243, 260, 267

BypassStreamer... 177
TCollection 169, 206, 261, 264

Add.. 261
Clear.. 261
Delete .. 261
FindObject... 261
GetSize.. 261
Remove ... 261
Write ... 169

TColor
SetRGB ... 39, 141

TCondition ... 350, 352, 353
Broadcast... 353
Signal .. 353
TimedWait .. 353, 354
Wait... 353

TConditionImp... 350, 351

378 Index June 2003 v3.05

TCurlyArc.. 116, 117
TCurlyLine .. 116
TCut 98, 226, 294
TCutG .. 31, 40, 142, 294
TDatime

AsSQLString... 129
TDirectory ... 164

cd . .. 165
Delete.. 172
gDirectory ... 171
GetFile .. 171
GetList .. 97, 167, 169
ls ... 165, 166
mkdir... 171
Write ... 169, 176

TEllipse.. 115
template support .. 250
TEnv .

Print .. 22
Terminate

TApplication ... 312, 313
Terminate (TSelector)...................................... 242, 298
TestBit (TObject)... 99
TEventList97, 166, 233, 234, 294, 301
TExec... 180, 181
Text (TPostScript) ... 147
text attributes ... 135
TF1

Paint .. 13
SetNpx .. 13
SetRange ... 14

TFile .. 91, 157, 164, 171
Close ... 170
Get .. 162
global scope of .. 170
Inspect... 90
ls 91, 165, 167, 169, 224, 238
MakeProject .. 186
Map... 158, 161, 162
mkdir... 171
Open.. 191, 193
Recover ... 162
ReOpen ... 193
SetCompressionLevel ... 189
ShowStreamerInfo .. 160, 186
Write ... 167, 170, 303

TFile .
pwd ... 171

TFolder .. 151, 153
Add ... 100
AddFolder ... 152, 153
find.. 154
SetOwner .. 154

TFormula ... 63, 225
TFrame .. 14, 166
TFree.. 176, 266
TGaxis ... 124, 126

Draw ... 132
PaintAxis... 128
SetLabelColor ... 41
SetLabelOffset .. 132
SetLabelSize ... 131, 132, 133
SetLineColor... 41

SetMaxDigits .. 127
SetName.. 132
SetNoExponent ... 127
SetTextFont... 132
SetTimeFormat.. 131
SetTimeOffset ... 131
SetTitle.. 124, 133
SetTitleOffset .. 133
SetTitleSize ... 133
time axis .. 131

TGButton ... 329, 336
Clicked .. 324

TGButtonGroup
Show ... 331

TGCheckButton ... 331
TGClient .. 317, 319

FreePicture .. 341
GetPicture ... 341

TGCmpositeFrame... 322
TGComboBox.. 338

AddEntry... 338
Select... 338

TGComboBoxPopup.. 338
TGCompositeFrame... 320

Layout ... 320
RemoveFrame ... 320
SetLayoutManager .. 320

TGDoubleHSlider .. 340
TGDoubleVSlider

SetRange ... 340
TGeoChecker ... 286
TGeoCompositeShape ... 287
TGeoManager .. 285, 286

CloseGeometry.. 287
Export.. 286
Import.. 286

TGeoNode.. 285
TGeoShape... 284, 287
TGeoVolume ... 285, 287

RandomRays ... 286
TGFrame.. 318

ChangeOptions.. 319
GetOptions .. 319
options... 319

TGFrameElement... 320
TGGroupFrame.. 321

SetTitlePos .. 321
TGHButtonGroup .. 331
TGHorizontal3DLine....................................... 335, 336
TGHorizontalFrame... 313, 321
TGHProgressBar

SetBarColor... 340
SetFillType.. 340
ShowPosition .. 340

TGHSlider.. 339
SetPosition .. 339
SetRange ... 339

TGHSplitter
SetFrame ... 342

TGIcon ... 341
TGLabel ... 341
TGLayotHints .. 322
TGLayoutHints .. 312

June 2003 v3.05 Index 379

hints .. 323
TGLayoutManager .. 322
TGLBContainer ... 337
TGLBEntry.. 337
TGListBox

AddEntry... 337
RemoveEntry .. 337
Resize.. 337

TGMainFrame ... 311, 320
SetWMSize ... 320

TGMatrixLayout.. 331
TGMenuBar... 333

AddPopup ... 334
TGMenuTitle ... 333, 334
TGObject ... 317, 318
TGPicture... 341
TGPictureButton.. 329

SetPicture.. 330
TGPicturePool ... 341
TGPopupMenu

AddEntry... 333
AddPopup ... 334
AddSeparator .. 333
DeleteEntry ... 334
DisableEntry ... 334
EnableEntry .. 334
HideEntry.. 334

TGProgressBar .. 340
TGQt.. 310
TGRadioButton ... 331

SetState ... 331
TGraph....................................31, 36, 51, 57, See graph

draw options.. 51
GetHistogram.. 111

TGraphAsymmErrors .. 51, 56
TGraphErrors... 51, 55
TGSlider

GetPosition ... 339
SetRange ... 339
SetScale... 339

TGStatusBar
SetParts ... 342
SetText.. 342

TGTextButton.. 318, 329
TGToolBar

AddButton... 335
TGToolTip... 330
TGTransientFrame... 321
TGVButtonGroup.. 331
TGVerticalFrame... 321
TGVSlider ... See TGHSlider
TGVSplitter

SetFrame ... 344
TGWidget .. 317

ClearFlags ... 318
SetFlags... 318

TGWindow .. 318
TH1 ... 25, 26, 166

AddBinContent ... 28
AddDirectory .. 26, 97
Draw ... 29, 62, 106, 141
DrawClone.. 29, 144
DrawNormalized... 29

FillRandom ... 28
Fit . .. 58, 61, 62, 65, 69, 97
GetAsymetry ... 42
GetAxis ... 124
GetBinContent .. 28
GetEntries ... 42
GetFunction... 69
GetMean.. 42
GetOption.. 32
GetRMS .. 42
Integral .. 42
kCanRebin... 28
KolmogorovTest ... 42
LabelsDeflate .. 44
LabelsOption... 44
Rebin... 27
Reset.. 43
SetBarOffset.. 38
SetBarWidth.. 38
SetBinContent ... 28
SetContour .. 31, 36
SetOption .. 32
SetStats.. 32
Smooth .. 42
StreamerInfo.. 184
Sumw2 .. 28, 29, 69
UseCurrentStyle .. 30
Write ... 168

TH1C ... 25, 28
TH1D ... 25, 48, 166, 303
TH1F................................ 25, 26, 28, 41, 64, 66, 67, 86

FillRandom ... 306
SetFillColor... 139
SetFillStyle.. 140

TH1S.. 25, 28
TH2

FitSlicesX.. 29
FitSlicesY.. 29
ProfileX... 29, 48
ProfileY... 29, 48
ProjectionX ... 29
ProjectionY ... 29

TH2C ... 25, 28
TH2D ... 25, 226, 227
TH2F.. 25, 26
TH2S.. 25, 28
TH3

FitSlicesZ .. 29
Project3D .. 29
ProjectionZ.. 29

TH3C ... 25, 28
TH3D ... 25
TH3F.. 25
TH3S.. 25, 28
THashList... 44, 260, 262
THashTable.. 261, 262
Theta (TVector3) ... 270
ThetaX (TRotation).. 273
ThetaY (TRotation).. 273
ThetaZ (TRotation) .. 273
THistPainter ... 29
thread ... 349
threads.. 356

380 Index June 2003 v3.05

asynchronous action.. 352
concurrency... 357
deadlock.. 358
lock ... 358
mutex .. 357
reentrant code.. 357
semaphore ... 357
synchronization... 357

THStack... 45
Add ... 45
Draw ... 45

THtml .. 345
Convert ... 345
MakeAll .. 345
MakeClass... 345

TimedWait (TCondition) 353, 354
TInspectCanvas ... 100
TIter 163, 261, 263, 264, 265, 266

kIterBackward... 266
next ... 265
Next .. 263, 264
Reset ... 263

TIterator ... 262, 263, 264
Next .. 262
Reset ... 262

TKey .. 160, 162, 163, 176
TLatex...33, 117, 121, 135, 142

fonts precision... 136
mathematical symbols... 118
SetTextFont... 137

TLeaf ... 201
TLegend... 144, 146

AddEntry... 146
TLegendEntry.. 144, 145
TLine ... 75, 113

ClassDef macro... 249
ClassImp macro .. 250
Draw ... 75, 76, 101, 113
DrawLineNDC.. 109
Dump .. 83
InheritsFrom ... 247
method overriding... 76
Print .. 83
SetLineColor... 139
SetLineStyle.. 139
SetLineWidth.. 139
SetX1 .. 83
SetY1 .. 83
subclassing.. 76

TList .. 260, 261
Add ... 170, 265
AddAfter ... 265
AddBefore... 265
AddFirst .. 265
AddLast... 265
After.. 266
Before ... 266
Clear.. 99
Delete.. 99
iterating over ... 265
Write ... 170

TListIter ... 261, 265
TLorentzRotation............................. 269, 277, 278, 279

TLorentzVector.. 274
Beta ... 276
Gamma.. 276
operators.. 275
Rotate .. 276
RotateX ... 276
RotateY ... 276
RotateZ.. 276
Vect ... 274
VectorMultiplication... 279

TMap.. 261, 262
TMapIter .. 261
TMarker ... 115

Draw.. 54
SetMarkerColor... 54
SetMarkerSize... 54, 115

TMatrix .. 281, 290
TMatrixColumn ... 281
TMatrixFlat .. 281
TMatrixRow... 281
TMessage ... 305

ReadObject.. 306
WriteObject... 306

TMinuit .. 70
GetObjectFit.. 70
GetPlot .. 70
mnplot ... 70
SetFCN.. 70
SetGraphicsMode.. 70
SetObjectFit .. 70

TMinuitOld .. 70
TMonitor.. 307

Add.. 307
Select... 307

TMultiDimFit... 98
TMultiGraph .. 51, 57

Add.. 57
TMutex... 350, 352
TMutexImp .. 350, 351
TNamed 42, 107, 159, 184, 226

ls ... 167
TNetFile ... 157, 190, 191, 193

remote files access .. 191
rootd .. 192
SetPasswd ... 190
SetUser.. 190
URL's .. 190

TNtuple .. 195, 294
TObjArray................ 179, 180, 182, 206, 263, 264, 266
TObjArrayIter .. 263, 264
TObject 7, 19, 41, 89, 107, 153, 247, 260

AppendPad.. 100, 106
Clone ... 248
Compare.. 262
Draw.. 101, 248
DrawClone .. 143, 248
Dump... 219
fBits... 99, 177, 249
fUniqueID ... 177
Hash .. 262
inheritance... 219
Inspect ... 90
interpreted classes inheritance................................. 89

June 2003 v3.05 Index 381

IsEqual .. 262
IsFolder ... 248
IsSortable .. 262
kCanDelete ... 99, 249
kMustCleanup... 99
kOverwrite .. 216
kSingleKey ... 169
ls ... 99, 167
Paint .. 107, 248
ResetBit... 99
Streamer.. 177, 179
Streamers .. 305
Write ... 176, 248

TObject (TestBit)... 99
TObjLink ... 265, 266
toolbar structure ToolBarData_t 335
ToolBarData_t ... 336
TOrdCollection .. 260
TPad

cd . .. 16, 103, 112
coordinate systems .. 108, 109
Draw ... 112
DrawClone.. 144
GetListOfPrimitives.. 108
GetPrimitive.................................. 107, 110, 143, 226
GetTickx ... 32
GetTicky ... 32
getting current pad .. 144
GetUxmax... 41
GetUymax... 41
GetUymin ... 41
Modified ... 111
PaintPadFrame.. 100
PixeltoX .. 109
PixeltoXY ... 109
PixeltoY .. 109
Print .. 146
Range .. 108, 109
RedrawAxis .. 32
SetCursor .. 106
SetEditable .. 113
SetFillColor... 20, 107, 215
SetFillStyle ... 112
SetLogx... 112
SetLogz ... 112
SetRightMargin... 39
SetTicks .. 32
Update... 29, 227
UtoPixel .. 109
VtoPixel .. 109
WaitPrimitive.. 112
x3d .. 215
XtoPixel .. 109
XYtoPixel ... 109
YtoPixel .. 109

TPaletteAxis .. 39
TPave... 140, 145
TPaveLabel .. 121, 122

SetBorderSize ... 121
TPaves ... 121
TPaveStats ... 32, 166
TPavesText .. 122
TPaveText...................................14, 104, 122, 140, 142

AddText .. 120
TPolyLine .. 114
TPolyMarker .. 116
TPosixCondition .. 350
TPosixMutex.. 350
TPosixThread... 350
TPostScript... 136, 146, 148

Close ... 148
format options ... 147
NewPage ... 148
special characters .. 147
Text ... 147

TPrincipal... 98
TProcessID... 179, 180

GetObjectCount .. 180
SetObjectCount ... 180

TProfile .. 25
Draw.. 48
Fill 46
ProjectionX ... 29, 48
redirected output ... 236

TProfile2D ... 25, 226
Fill 49
ProjectionXY .. 29, 48

TQObject ... 325
Connect ... 326
Disconnect... 327
Emit... 326
HasConnection .. 327
HightPriority ... 326
LoadRQ_OBJECT .. 327
LowPriority ... 326
NumberOfConnections ... 327
NumberOfSignals.. 327

TRandom
Gaus .. 41, 134, 222
Rannor... 48, 207
Rndm... 207

Transform
TLorentzVector... 276
TRotation .. 271
TVector3 ... 274

transient data members .. 174
treads

initialization .. 351
installation... 350

trees
Autosave ... 201
branches .. 201

array of objects ... 205
array of variables.. 202
identical names... 205
list of variables ... 201
objects .. 202
split-level.. 203

creating.. 200
creating a profile histogram 236
creating histograms ... 235
cut ... 225
draw... 224
draw options.. 226

profiles ... 48
event list .. 233

382 Index June 2003 v3.05

folders ... 200
friends ... 216
histogram style.. 225, 235
MakeClass..............................237, 238, 241, 242, 297
selection .. 225
selectors .. 241
Show ... 197
static class members.. 203
tree viewer .. 198

TRef 178, 179, 180, 181
action... 180
GetObject .. 180, 181
SetObject... 181

TRefArray.. 181, 182
TROOT

cd . .. 165
collections ... 20, 98
fCleanups .. 100
finding object .. 36
FindObject .. 87, 91
FindObjectAny.. 153, 154
ForceStyle ... 30, 149
GetClass.. 186
GetColor ... 141
GetExec... 181
GetFunction .. 301
GetListOf... methods... 20, 98
GetListOfColors.. 140
GetRootFolder .. 153
GetStyle .. 149
gROOT ... 20, 97
IsBatch .. 210
Macro.. 257
ProcessLine... 86, 93, 155
Reset ... 55, 86, 87
SetStyle ... 149
Time.. 298

TRootEmbeddedCanvas .. 312
TRotation ... 269, 272, 273, 277

Inverse... 273
Invert... 273
Transform ... 271

true type fonts .. 138
TSelector.. 242, 297, 298

Begin... 242, 297
Notify.. 242, 297
ProcessCut .. 242, 297
ProcessFill... 242, 297
Terminate .. 242, 297, 298

TSemaphore... 351
TServerSocket ... 305, 307
TSlider ... 123

GetMaximum.. 123
GetMinimum... 123
SetMethod... 123

TSocket.. 305, 307
Recv .. 307
Select... 307
Send .. 305

TSortedList .. 163, 261
TStreamerElement ... 180
TStreamerInfo.. 160
TStyle .. 30, 148

changing histogram's style 30
constructor... 148
current style... 148
define parameters in rootlogon.C 149
font .. 35
forcing the current style .. 149
getting the current style... 149
SetCanvasBorderMode ... 148
SetCanvasColor... 148
SetLabelFont ... 149
SetLineStyleString .. 149
SetOptDate.. 149
SetOptFit ... 69
SetOptStat ... 149
SetPadBorderMode ... 148
SetPadColor .. 148
SetPalette............................... 31, 34, 36, 39, 141, 149
SetStatColor .. 148
SetStripDecimals... 128
setting a style... 149
SetTitleColor... 148
SetTitleOffset .. 149

TSystem
AccessPathName... 86
Exec... 148, 345
GetLinkedLibs .. 93
Load .. 188, 198, 351
ProcessEvents.. 134
SetAclicMode.. 92
SetIncludePath .. 93
SetLinkedLibs ... 93

TTask ... 154, 156
Exec... 154, 156
ExecuteTask.. 156
ExecuteTasks .. 156
SetActive... 156

TText.. 117, 135
SetNDC... 109

TThread.. 350, 351, 356
CancelPoint ... 354
CleanUpPop .. 354
CleanUpPush... 354
Delete .. 354
Exit.. 355
Join.. 354
Kill .. 354
Lock .. 352
Ps .. 352
Run.. 352
SetCancelAsynchronous 354
SetCancelDeferred .. 354
SetCancelOff... 354
SetCancelOn.. 353
Unlock... 352

TThreadframe .. 356
TThreadImp ... 350
TTimer ... 326
TTree.. 6, 195, 200

AddFriend ... 216, 246
Branch 196, 201, 203, 207, 218
Draw......28, 30, 44, 48, 210, 211, 214, 217, 224, 225,

227, 233, 297
Fill 200, 207, 211

June 2003 v3.05 Index 383

GetBranch ... 222
GetEntries ... 237
GetEntry.. 209
GetListOfFriends .. 217
GetV1.. 236
GetV2.. 236
GetV3.. 236
GetW... 236
MakeClass..................................... 224, 237, 238, 297
MakeSelector 224, 241, 297, 300
Print .. 197, 238
Process .. 241, 242, 297
Project ... 236
Scan .. 197
SetAutosave .. 201
SetBranchAddress... 209
SetEstimate ... 237
SetFolder... 200
SetSelectedRows... 236
Show ... 197
StartViewer ... 198
tree viewer .. 198
UseCurrentStyle...................................... 30, 225, 235
Write ... 217

TTreeViewer.. 198, 297
tutorials .. 7
TUUID... 179
TVector3...................................269, 270, 271, 273, 275
TViewerX3D ... 287
TVirtualX... 310, 319

GetWindowID... 319
InitWindow ... 319

TWbox... 115, 140
TWebFile ... 157, 191, 192, 193
types .. 19

U
UnCheckedAt (TObjArray) 266
Unit (TVector3) ... 271
UnLock (TThread)... 352
unordered collections... 261
Update

TCanvas .. 111
TPad.. 29

UseCurrentStyle
TH1... 30
TTree... 30, 225, 235

user coordinate system... 108
UtoPixel (TPad) ... 109

V
variable length array .. 175
Vect (TLorentzVector)... 274
VectorMultiplication (TLorentzVector)................... 279
vertical splitter ... 343
VtoPixel (TPad) ... 109

W
Wait (TCondition).. 353, 354
WaitPrimitive

TPad .. 112
WantFocus

TGWidget ... 318
web server .. 192
web site .. 9
widgets ... 309, 317
Write

TCollection ... 169
TDirectory... 169, 176
TFile.. 42, 167
TH1F... 42
TList.. 169
TObjArray... 157
TObject ... 176, 248
TTree... 207, 216

WriteBuffer (TClass) ... 177
WriteVersion (TBuffer) .. 185

X
X (TLorentzVector) ... 274
x3d (TPad) ... 215
Xclass'95 .. 309
XtoPixel (TPad) ... 109
XYtoPixel (TPad) .. 109

Y
Y (TLorentzVector) ... 274
YtoPixel (TPad) ... 109

Z
Z (TLorentzVector).. 274
zoom .. 13, 14, 59

