Solutions To ROOT Exercises

Session A

Question A1:

root [] f1.Derivative(2)
 (Double_t)(-4.35393825829554215e-01)

Question A2:

root [] f1.Integral(0,3)

 (Double_t)1.84865252799946833e+00

Question A3:

root [] f1.Eval(1.23456789)
 (Double_t)7.64644644211939339e-01

Question A4:

ACP is a concatenation of several TGraph::Draw options.

· 'A': Axis are drawn around the graph

· 'C': A smooth Curve is drawn

· 'P': Idem with the current marker

Question A5:

Add or change the following lines:

…

 // add two points

 const Int_t n = 22;

 Double_t x[n], y[n];

 for (Int_t i=0;i<n-2;i++) {

 x[i] = i*0.1;

 y[i] = 10*sin(x[i]+0.2);

 printf(" i %i %f %f \n",i,x[i],y[i]);

 }

 x[20] = 2.5;

 y[20] = 6;

 x[21] = 3;

 y[21] = 4;
…

 // Insert these lines after giving the axis a title.

 // Center the title by getting the x and y axis first and

 // calling the CenterTitle method of the TAxis class

 gr->GetXaxis()->CenterTitle();

 gr->GetYaxis()->CenterTitle();

Question A6:

At the end of the script (e.g., before drawing the TPaveText), add the following code:

Double_t *gx = gr->GetX();

Double_t *gy = gr->GetY();

TArrow *arrow1 = new TArrow(1,-5,gx[5],gy[5],0.03,"|>");

arrow1->Draw();

TArrow *arrow2 = new TArrow(1,-5,gx[19],gy[19],0.03,"|>");

arrow2->Draw();

Question A7:

Use the context menu for the graph:

1. Right click on the graph

2. To set the line thickness and color: select the SetLineAttributes option

3. To set the marker style and color: select the SetMarkerAttributes option

4. To set the back ground of the canvas right click on the canvas to bring up the context menu

5. Select SetFillAttributes and use the panel to change the color.

6. To zoom, left click and hold on the x-axis (the cursor changes to a hand) at 0.5. Drag the cursor to the right until 3.5 and let go.

Question A8:

1. Select the Edit from the canvas Edit menu.

2. Click on the Arrow in the Editor menu

3. Left-click in the frame at 3,0 and hold

4. Drag to 2,5 and let go.

Question A9:

You can add the following statements at the end of the script:

// fitting graph with polynomial function of degree 2 to 7

char function[8];

for (Int_t i=2;i<=7;i++) {

 sprintf(function,"pol%d",i);

 gr2->Fit(function,"q+");

 TF1 *f1 = gr2->GetFunction(function);

 f1->SetLineColor(i);

}

Question A10:

The lfits points to a TList of TObjects. TList is a polymorphic container that may contain any object derived from TObject. The return type of the function TList::FindObject returns the lowest common denominator TObject*. One can find the class name of the returned object with:

TObject *object = lfits->FindObject("pol4");

object->ClassName();

Question A11:

Locate the history file: $HOME/.root_hist
Question A12:

In a named script, like in normal C++, all objects created in the stack in the scope of the function are automatically deleted when exiting from the function. If an object is deleted and it is in one or more pad(s), it is automatically removed from the list of objects in the pad.

Session B

Question B1:

1. Once you have run the tutorial hsum.C, select the histogram "s2" with the right button.

2. Select the "FitPanel"

3. In the FitPanel, select "Landau" and "Same Picture", and use the slider to select the sub-range for s2.

Question B2:

1. Double click on hsimple.root to see the contents of the file

2. Double click on ntuple to see the contents of the ntuple

3. Double click on pz to see a histogram of pz.

These are the lines needed to do the same thing from the command line. This assumes the hsimple.root is not yet opened.

root [] TFile f("hsimple.root");
root [] ntuple->Draw("pz");
Question B3:

1. Drag the pz box to the X box.

2. Drag the px box to the Y box.

3. Right click on the white label in the Gopt box and select SetLabel
4. Type "prof"

5. Click on the Draw button.

These are the lines needed to do the same thing from the command line. This assumes the hsimple.root is not yet opened.

root [] TFile f("hsimple.root");
root [] ntuple->Draw("pz:px","","prof");
Question B4:
To add the fit:

1. Right click on the graph and select the Fit Panel from the context menu.

2. Select "pol2" and "same picture"
3. Click on Fit.

These are the lines needed to do the same thing from the command line. This assumes the hsimple.root is not yet opened.
root [] TFile f("hsimple.root");
root [] ntuple->Draw("pz:px","","prof");
root [] htemp->Fit("pol2");
Question B5:

1. In the Tree Viewer, drag the py box to the X box.

2. Drag the pz box to the Ybox

3. Set the label in the weight box to: px*px + py*py< 20
4. Look up the draw options and set the label in the Gopt box.
Question B6:

The first line finds the global list of contours using the naming service of gROOT. It cast it to a pointer to an array of TObjects. Each contour can have multiple disjoint poly lines. The second line gets the list of poly lines for the first contour. The third statement gets the first poly line in the list of poly lines for the contour and casts them to a graph.

TObjArray *contours =

 (TObjArray*)gROOT->GetListOfSpecials()->FindObject("contours");

TList *lcontour1 = (TList*)contours->At(0);

TGraph *gc1 = (TGraph*)lcontour1->First();
Question B7:

This loop fills the poly-marker using an infinite loop generating a flat distribution, but keeping only the points inside the cut.

while(1) {

 Double_t x = -4 +8*gRandom->Rndm();

 Double_t y = -4 +8*gRandom->Rndm();

 if (cutg->IsInside(x,y)) {

 pm->SetPoint(np,x,y);

 np++;

 if (np == npmax) break;

 }

 }

Question B8:

root [] TFile f("hsimple.root");
root [] ntuple.Draw(">>elist","pz > 10");
root [] TEventList *elist = (TEventList*)f->Get("elist");
root [] elist->Print("all"); //show the list of events
root [] elist->GetN(); //show the number of entries 148
Question B9:

To set the event list and draw px:

root [] ntuple->SetEventList(elist);
root [] ntuple->Draw("px");

The script:

{

 TFile f("hsimple.root");

 ntuple.Draw(">>elist","pz > 10");

 TEventList *elist = (TEventList*)f->Get("elist");
 elist->Print("all"); //show the list of events
 elist->GetN(); //show the number of entries 148

 ntuple->SetEventList(elist);

 ntuple->Draw("px");

}
Question B10:

root [] htemp->GetRMS(); //shows 2.407
Question B11:

Run the tutorial h1draw.C, click on the top right pad of the canvas containing the Lego plot. This will select this pad as being the current pad. You can rotate the Lego using the left button. To find the current viewing angle theta, you can type the following command:

root [] gPad->GetTheta();
see next page for B12.

Question B12:

An example of script hrandom1.C is the following:

//----------- hrandom.C

#include "TStopwatch.h"

#include "TRandom2.h"

#include "TRandom3.h"

#include "TH1.h"

void hrandom()

{

 // example of a script computing the CPU time to fill an histogram

 // with 3 random number generators.

 const Int_t nfills = 10000000;

 TStopwatch timer;

 // create an histogram and evaluate the time to fill nfills time

 TH1F h("h","h",100,0,1);

 Int_t i;

 timer.Start();

 for (i=0;i<nfills;i++) h.Fill(0.5);

 Double_t fillTime = timer.CpuTime();

 printf("Time for Fill = %f seconds\n",fillTime);

 //using TRandom

 timer.Start();

 TRandom r1;

 for (i=0;i<nfills;i++) h.Fill(r1.Rndm());

 printf("Time for TRandom = %f seconds\n",timer.CpuTime()-fillTime);

 //using TRandom2

 timer.Start();

 TRandom2 r2;

 for (i=0;i<nfills;i++) h.Fill(r2.Rndm());

 printf("Time for TRandom2 = %f seconds\n",timer.CpuTime()-fillTime);

 //using TRandom3

 timer.Start();

 TRandom3 r3;

 for (i=0;i<nfills;i++) h.Fill(r3.Rndm());

 printf("Time for TRandom3 = %f seconds\n",timer.CpuTime()-fillTime);

}

The output of the first session should be something like:

root [0] .x hrandom1.C
Time for Fill = 17.750000 seconds

Time for TRandom = 6.050000 seconds

Time for TRandom2 = 8.370000 seconds

Time for TRandom3 = 5.290000 seconds

The output of the second session should be something like:

root [0] .x hrandom1.C++
Creating shared library /export/apps/staff/brun/root/./hrandom.so

Note: operator new() masked 1c

Note: operator delete() masked 1c

Time for Fill = 3.410000 seconds

Time for TRandom = 0.660000 seconds

Time for TRandom2 = 4.220000 seconds

Time for TRandom3 = 1.250000 seconds

Question B13:

An example of script hrandom2.C is the following:

//----------- hrandom2.C

#include "TStopwatch.h"

#include "TRandom2.h"

#include "TRandom3.h"

#include "TH1.h"

void hrandom2()

{

 // example of a script computing the CPU time to fill an histogram

 // with 3 random number generators.

 const Int_t nfills = 10000000;

 TStopwatch timer;

 // create an histogram and evaluate the time to fill nfills time

 // change h to be a pointer and create it on the heap

 // change all operators of "h." to "h->"

 TH1F * h = new TH1F("h","h",100,0,1);

 Int_t i;

 timer.Start();

 for (i=0;i<nfills;i++) h->Fill(0.5);

 Double_t fillTime = timer.CpuTime();

 printf("Time for Fill = %f seconds\n",fillTime);

 //using TRandom

 timer.Start();

 TRandom r1;

 for (i=0;i<nfills;i++) h->Fill(r1.Rndm());

 printf("Time for TRandom = %f seconds\n",timer.CpuTime() fillTime);

 //using TRandom2

 timer.Start();

 TRandom2 r2;

 for (i=0;i<nfills;i++) h->Fill(r2.Rndm());

 printf("Time for TRandom2 = %f seconds\n",timer.CpuTime()-fillTime);

 //using TRandom3

 timer.Start();

 TRandom3 r3;

 for (i=0;i<nfills;i++) h->Fill(r3.Rndm());

 printf("Time for TRandom3 = %f seconds\n",timer.CpuTime()-fillTime);

 // add a draw command

 h->Draw();

 }

Session C

Question C1:

You can run the following session:

root [] TFile f("c1.root");
root [] c1->Draw();
root [] TH1F *hdmd = (TH1F*)c1->GetPrimitive("hdmd");
root [] TF1 *f5 = hdmd->GetFunction("f5");
root [] double hint = hdmd->Integral();
root [] double fint = f5->Integral(0.139,0.170);
root [] double ratio = fint/hint
 1.00072237393612740e-03

Session D

Question D1:

rootcint is called twice in the makefile (acctually in Make-Macros). It automatically generates C++ code for an interface between CINT and the compiled code. It creates a class dictionary of the compiled classes to make them available to CINT. It contains the class definition (RTTI) and the Streamer functions. You can look at the C code generated by rootcint in atlfastCint.cxx.
Question D2:

root [] .x umain.C(7)
Question D3:

atlfast.root file with 1000 events

size = 17.3 Mbytes.

Compression factor = 3.28

It is obtained with:

root [] TFile f("atlfast.root");
root [] f.GetCompressionFactor();
Question D4:

You get 414 reconstructed electrons

Question D5:

You get 2432 reconstructed jets

Question D6:

You see the status of the object ATLFElectronMaker when it was saved in the simulation session. You can retrieve the simulation parameters from this object and use them in the analysis code.

Question D7:

You can show all possible inter-class relationships by clicking with the right button on any "pave". This brings up the context menu of the TPave class. Then select "ShowLinks".

Solutions To ROOT Exercises
8

