
14 - 16 Oct 2002 4th Intl. ROOT Workshop 1

New Infrastructure Features
Since ROOT 2001

Fons Rademakers

14 - 16 Oct 2002 4th Intl. ROOT Workshop 2

Plug-in Manager

! Where are plug-ins used?

! For example, to extend the base class TFile to
be able to read RFIO files one needs to load the
plug-in library libRFIO.so which defines the
TRFIOFile class

! Protocol part of the file name URI triggers
loading of plug-in. In these cases TRFIOFile and
TDCacheFile objects are used, which both derive
from TFile

TFile *rf = TFile::Open(“rfio://castor.cern.ch/alice/aap.root”)

TFile *df = TFile::Open(“dcache://main.desy.de/h1/run2001.root”)

14 - 16 Oct 2002 4th Intl. ROOT Workshop 3

Plug-in Manager

! Previously dependent on “magic strings”
in source, e.g. in TFile.cxx:

! Adding case or changing strings requires
code change and recompilation

! Not user customizable

if (!strncmp(name, "rfio:", 5)) {

if (gROOT->LoadClass("TRFIOFile", "RFIO")) return 0;

f = (TFile*) gROOT->ProcessLineFast(Form("new

TRFIOFile(\"%s\",\"%s\",\"%s\",%d)",

name, option, ftitle, compress));

} else if (!strncmp(name, "dcache:", 6)) {

14 - 16 Oct 2002 4th Intl. ROOT Workshop 4

Plug-in Manager (cont.)

! Plug-in manager solves these problems:

! Single if-statement to handle all cases
! No magic strings in code anymore

TPluginHandler *h;

if ((h = gROOT->GetPluginManager()->FindHandler("TFile", name))) {

if (h->LoadPlugin() == -1) return 0;

f = (TFile*) h->ExecPlugin(4, name, option, ftitle, compress);

}

14 - 16 Oct 2002 4th Intl. ROOT Workshop 5

Plug-in Manager (cont.)

! Magic strings moved to system.rootrc file

! Adding plug-in or changing strings does not
require code change and recompilation

! Can be customized by user in private .rootrc file

base class regexp plugin class plugin lib ctor or factory

Plugin.TFile: ^rfio: TRFIOFile RFIO "TRFIOFile(const

char*,Option_t*,const char*,Int_t)"

+Plugin.TFile: ^dcache: TDCacheFile DCache "TDCacheFile(const

char*,Option_t*,const char*,Int_t)"

14 - 16 Oct 2002 4th Intl. ROOT Workshop 6

Plug-in Manager (cont.)

! Currently 29 plug-ins are defined for 20
different (abstract) base classes

! Plug-in handlers can also be registered at
run time, e.g.:
! gROOT->GetPluginManager()->AddHandler("TSQLServer",

"^sapdb:","TSapDBServer", "SapDB",
"TSapDBServer(const char*)");

! A list of currently defined handlers can be
printed using:
! gROOT->GetPluginManager()->Print();

14 - 16 Oct 2002 4th Intl. ROOT Workshop 7

ROOT Build System

! To build ROOT on any platform do:
! ./configure <platform>; make; make install

! We don’t use autoconf and automake since
most platform ifdef’s are already in the source,
and we already have figured out how to build
shared libraries on all platforms, but the idea is
the same

! The configure script tries to discover the right
versions of the external libraries needed by the
system

! If a right external library is not found the
corresponding component is not build

14 - 16 Oct 2002 4th Intl. ROOT Workshop 8

Makefile Structure

! The ROOT Makefile has been structured as
described in the paper: "Recursive Make
Considered Harmful“

! http://www.tip.net.au/~millerp/rmch/recu-make-cons-harm.html

! The main philosophy is that it is better to have a
single large Makefile describing the entire
project than many small Makefiles, one for each
sub-project, that are recursively called from the
main Makefile. By cleverly using the include
mechanism the single Makefile solution is as
modular as the recursive approach without the
problems of incomplete dependency graphs.

14 - 16 Oct 2002 4th Intl. ROOT Workshop 9

Makefile Features

! The single Makefile is FAST
! about 0.5 sec to check if anything needs to

be recompiled on a 2GHz P4 (for 60
directories and 1400 files)

! The Makefile supports parallel builds
! make –j 24 on FermiLab’s SGI’s

! The ROOTBUILD shell variable can be
used to set debug build option:
! export ROOTBUILD=debug
! can also be set via --build option in configure

14 - 16 Oct 2002 4th Intl. ROOT Workshop 10

Important Makefile Targets
! make all (default)
! make install (install to path specified in ./configure)
! make dist (binary tar.gz distribution)
! make redhat (build binary rpm, by Christian Holm)
! make debian (build binary pkg, by Christian Holm)
! make distsrc (source tar.gz)
! make distclean (clean everything except configure info)
! make maintainer-clean (distclean + remove configure info)
! make cintdlls (build all CINT add-on dll’s)
! make html (generate HTML documentation of classes)

! make all-<module> (builds everything for specified module)
! make distclean-<module> (clean everything for specified module)

14 - 16 Oct 2002 4th Intl. ROOT Workshop 11

Supported Platforms

! New OS’s and CPU’s since last year:
! MacOS X
! GNU/Hurd
! Itanium 1 and 2

! New compilers since last year:
! Intel’s icc for ia-32 and ecc for ia-64

! Remarkable compiler: about 30% faster than gcc for ROOT
! For Linux the C/C++ and Fortran compilers can be

downloaded for free as "Non-commercial Unsupported
Software". See:
http://developer.intel.com/software/products/compilers/ and
http://developer.intel.com/software/products/eval/

! Total of 10 different CPU’s, 12 OS’s and 11 comp.

14 - 16 Oct 2002 4th Intl. ROOT Workshop 12

New ROOT GUI Widgets

! Color selector dialog: TGColorDialog

14 - 16 Oct 2002 4th Intl. ROOT Workshop 13

New ROOT GUI Widgets

! Number entry
widget:
TGNumberEntry

14 - 16 Oct 2002 4th Intl. ROOT Workshop 14

Support for HSM Systems

! Two popular HSM systems are now
supported:
! CASTOR

! developed by CERN, file access via RFIO API and
remote rfiod

! dCache
! developed by DESY, files access via dCache API

and remote dcached

TFile *rf = TFile::Open(“rfio://castor.cern.ch/alice/aap.root”)

TFile *df = TFile::Open(“dcache://main.desy.de/h1/run2001.root”)

14 - 16 Oct 2002 4th Intl. ROOT Workshop 15

TGrid –
Abstract Interface to GRIDs

class TGrid : public TObject {
public:

virtual Int_t AddFile(const char *lfn, const char *pfn) = 0;
virtual Int_t DeleteFile(const char *lfn) = 0;
virtual TGridResult *GetPhysicalFileNames(const char *lfn) = 0;
virtual Int_t AddAttribute(const char *lfn,

const char *attrname,
const char *attrval) = 0;

virtual Int_t DeleteAttribute(const char *lfn,
const char *attrname) = 0;

virtual TGridResult *GetAttributes(const char *lfn) = 0;
virtual void Close(Option_t *option="") = 0;

virtual TGridResult *Query(const char *query) = 0;

static TGrid *Connect(const char *grid, const char *uid = 0,
const char *pw = 0);

ClassDef(TGrid,0) // ABC defining interface to GRID services
};

Class TAlien
concrete implementation

for
AliEn (http://alien.cern.ch)

14 - 16 Oct 2002 4th Intl. ROOT Workshop 16

Authentication Issues

! Support for kerberos 5 authentication for
the rootd and proofd daemons
! Implemented by Johannes Muelmenstaedt of

MIT on special request by FermiLab

! Adding support for GRID authentication
services will be next
! Gerri Ganis, LCG project

14 - 16 Oct 2002 4th Intl. ROOT Workshop 17

Work on Thread Safety

! Introduction of TVirtualMutex and TLockGuard
classes in libCore

! Introduction of two global mutexes:
! gCINTMutex and gContainerMutex

! After loading of libThread they will point to real
TMutex objects, 0 otherwise

! Mutexes placed with TLockGuard via zero-cost
macro (when not compiled with thread support)

! Work done by Mathieu de Naurois

14 - 16 Oct 2002 4th Intl. ROOT Workshop 18

New Infrastructure Classes

! Class TMD5
! Implements the MD5 message-digest algorithm. Used

to generate checksums of a bunch of bytes (like files
or strings)

! Class TUUID
! Implements a UUID (Universally Unique IDentifier),

also known as GUIDs (Globally Unique IDentifier). A
UUID is 128 bits long, and if generated according to
this algorithm, is either guaranteed to be different
from all other UUIDs/GUIDs generated until 3400
A.D. or extremely likely to be different

14 - 16 Oct 2002 4th Intl. ROOT Workshop 19

Refresh of
ROOT Core System Services

! Many examples of user code not portable
due to direct usage of Unix/Win32 OS
system services

! Interface to operating system is provided
via an abstract base class: TSystem

! Accessible via
the gSystem singleton TSystem

TWinNTSystemTUnixSystem TVMSSystem

14 - 16 Oct 2002 4th Intl. ROOT Workshop 20

TSystem Services

! TSystem provides:
! System event handling

! signal handling (TSignalHandler)
! file and socket handling (TFileHandler)
! timer handling (sync, async) (TTimer)
! event processing and dispatching

! Process control
! fork, exec, wait, …

! File system access
! file creation and manipulation
! directory creation, reading, manipulation

14 - 16 Oct 2002 4th Intl. ROOT Workshop 21

More TSystem Services

! Environment variable manipulation
! getenv, putenv, unsetenv

! System logging
! syslog interface

! Dynamic loading
! load, unload, find symbol, …

! RPC primivitves
! open, close, option setting, read, write, …

! Please check TSystem carefully for the
right methods. Keep your code portable.

14 - 16 Oct 2002 4th Intl. ROOT Workshop 22

Refresh of Signals and Slots

! Integration of signal and slot mechanism
into the ROOT core
! TQObject, TQConnection, TQClass, …

! Signal and slots were pioneered by
Trolltech in their Qt GUI toolkit

! This mechanism facilitates component
programming since it allows a total
decoupling of the interacting classes

14 - 16 Oct 2002 4th Intl. ROOT Workshop 23

Signals and Slots Example:
Emitting a Signal

class A : public TQObject{

private:

Int_t fValue;

public:

A() { fValue = 0; }

Int_t GetValue() const { return fValue; }

void SetValue(Int_t); //*SIGNAL*

};

class A {

RQ_OBJECT(“A”)

private:

Int_t fValue;

public:

A() { fValue = 0; }

Int_t GetValue() const { return fValue; }

void SetValue(Int_t); //*SIGNAL*

};

14 - 16 Oct 2002 4th Intl. ROOT Workshop 24

Signals and Slots Example:
Emitting a Signal

void A::SetValue(Int_t v)
{

if (v != fValue) {
fValue = v;
Emit("SetValue(Int_t)", v);

}
}

void TGButton::Clicked()
{

Emit(“Clicked()");
}

14 - 16 Oct 2002 4th Intl. ROOT Workshop 25

Signals and Slots Example:
Connecting a Signal to a Slot

A *a = new A();

A *b = new A();

a->Connect("SetValue(Int_t)", "A", b, "SetValue(Int_t)");

a->SetValue(79);

b->GetValue(); // this is now 79

fButton->Connect("Clicked()", "MyFrame", this, "DoButton()");

14 - 16 Oct 2002 4th Intl. ROOT Workshop 26

Signals and Slots

! The ROOT signal and slot system uses the
dictionary information and interpreter to
connect signals to slots

! Many different signals are emitted by:
! TVirtualPad (TCanvas and TPad)
! TSysEvtHandler (TTimer, TFileHandler)
! All GUI widgets

! Let your classes emit signals whenever
they change a significant state that others
might be interested in

