[=T
(77

A

!'_ ROOT Tutorials — Session 3

Internals of ROOT

Fons Rademakers

ROOT Tutorials - Session 3

i What is ROOT? £

= The ROOT system is an Object Oriented framework for
large scale data handling applications
= Written in C++

= Provides, among others,
= An efficient hierarchical OO database
= A C++ interpreter

= Advanced statistical analysis (multi dimensional histogramming,
fitting, minimization and cluster finding algorithms)

Visualization tools

And much, much more (GUI, geometry, networking, image

processing, ...)

= The user interacts with ROOT via a graphical user interface, the
command line or batch scripts

= The command and scripting language is C++, thanks to the
embedded CINT C++ interpreter and large scripts can be
compiled and dynamically loaded

ROOQOT Tutorials - Session 3 2

Prehistory

In the beginning there was PAW
= HBOOK

= ZEBRA

= KUIP

= COMIS

= SIGMA

Mini/Micro-DST analysis was done using Ntuples
= Ntuples are basically simple tables
= Only basic types
= No data structures
= No cross reference between Ntuples
= Successful because simple and efficient
Dead-end
= No way to grow to more complex data structures
= Difficult to extend
= EXxpensive to maintain

= Too many languages: Forfran, KUIR, 3IGMA

i Main Goals for New System

Being able to support full data analysis chain
= Raw data, DSTs, mini-DSTs, micro-DSTs
= Being able to handle complex structures
= Complete objects
= Object hierarchies
= Support at least the PAW data analysis functionality
= Histogramming
= Fitting
= Visualization
= Only one language
s C++
= Better maintainable
= Use OOP
= Make the system extensible
= Use OO framework technology

ROOQOT Tutorials - Session 3

!'_ Object Oriented Frameworks

ROOT Tutorials - Session 3

&%

i Frameworks A

= A framework is a collection of cooperating classes that make up a reusable
design solution for a given problem domain.

= There are three main differences between frameworks and class libraries:

Behavior versus protocol. Class libraries are essentially collections of
behaviors that you can call when you want those individual behaviors in your
program. A framework, on the other hand, provides not only behavior but also
the protocol or set of rules that govern the ways in which behaviors can be
combined.

Don't call us, we'll call you. With a class library, the code the programmer
writes instantiates objects and calls their member functions. With a framework a
programmer writes code that overrides and is called by the framework. The
framework manages the flow of control among its objects. This relationship is
expressed by the principle: " Don't call us, we'll call you'".

Implementation versus design. With class libraries programmers reuse only
implementations, whereas with frameworks they reuse design. A framework
embodies the way a family of related classes work together.

ROOQOT Tutorials - Session 3 6

|y

[

i Calling API vs Sub-classing API £

Class I Program using
calling API
Class A calls R Class Y
method B | virtual method Z
Class Ainherits l

Class I Ll
Class :

h ‘ Class newY
ramewor virtual method Z

Program using
: sub-classing API

ROOT Tutorials - Session 3 7

i Advantages of Frameworks £

= | he benefits of frameworks can be summarized as
follows:

= Less code to write. Much of the program's design and
structure, as well as its code, already exist in the framework

= More reliable and robust code. Code inherited from a
framework has already been tested and integrated with the rest
of the framework

= More consistent and modular code. Code reuse provides
consistency and common capabilities between programs, no
matter who writes them. Frameworks also make it easier to
break programs into smaller pieces

= More focus on areas of expertise. Users can concentrate on
their particular problem domain. They don't have to be experts
at writing user interfaces, graphics, or networking to use the
frameworks that provide those services

ROOQOT Tutorials - Session 3 8

!'_ ROOT Overview

ROOT Tutorials - Session 3

|
|

gy

- I '

L Im
¥y

-ﬁ:

ROOT Tutorials - Session 3

neEeL e

10

Project History ra

)

:

Jan 95: Thinking/writing/rewriting/???

November 95: Public seminar, show Root 0.5

Spring 96: decision to use CINT

Jan 97: Root version 1.0 9 years
Jan 98: Root version 2.0

Mar 99: Root version 2.21/08 (1st Root workshop FNAL)

Feb 00: Root version 2.23/12 (2nd Root workshop CERN)

Mar 01: Root version 3.00/06

Jun 01: Root version 3.01/05 (3rd Root workshop FNAL)
Jan 02: Root version 3.02/07 (LCG project starts: RTAGS)
Oct 02: Root version 3.03/09 (4th Root workshop CERN)
May 03: Root version 3.05/05

Winter 03: Root version 3.10/02

Spring 04: Root version 4
ROQOT Tutorials - Session 3 11

ROOT Statistics —
Supported Platforms

= 3 major type of OS’es
=« Unix, Windows, Mac OS X

= 10 different CPU’s

PA-RISC, PowerPC, MIPS,

ARM, Opteron, ...
= 11 different compile

'S

= Gcc, kee, ecg, icc, CC, cc,

VC++, ...
= 41 Makefiles
= ./configure; make

(pcrdm) [1381 15 Makefile.x

Makefile.aix Makefile.hpukacc
Makefile.aixs Makefile.hpukeges
Makefile.aixegcs Makefile.hpuxiaGdacc
Makefile.alphacxxE Makefile.hurddeb
Makefile.alphaegcs Makefile.in
Makefile.alphakce Makefile.linux
Makefile.config Makefile.linuxalphaeges
Makefile.Freebsd Makefile.linuxarn
Makefile.freebsdd Makefile.linuxdeb

ROOT Tutorials - Session 3

Makefile.
Makefile.
Hakefile.
Makefile.
Hakefile.
Makefile.
Makefile.
Makefile.
Hakefile.

linuxdeb2
linuxdeb2ppe
linuxiaBdece
linuxiaB4gcc
linuxiaB4sgi
Tinugice
Tinugkee
linugpgce
linuxppcegecs

Makefile.
Makefile.
Makefile.
Makefile.
Makefile.
Makefile.
Makefile.
Makefile.
Makefile.

Tinuxrh4d2
1inugrhsi
linuxsusel
Tyn:os
MACOSH
mklinux
sgice
sgieges
sgikece

Makefile.

Makefile.s

Makefile.
Makefile.
Makefile.
Makefile.
Makefile.

sgin3zeqcs
olaris
solarisCCh
solarisgce
solariskco
uin32
winazgdk

12

ROOT Statistics —
Available Binaries

Intel x&86 Linux for Redhat9.0.93{Sevem) and gce 3.2, version 4.00/01 (14.3 MB).

This version should be compatible with Redhat10. Hew

Intel x56 Linux for Redhat 9.0 and goe 3.2.2, version 4.00/01 (157 MB). HeW

Intel x86 Linux for Redhat 7.3 and goc 3.2, version 4.00/01 (159 MB). new

Intel x86 Linux for Redhat 7.3 and goc 2.96, version 4.00/01 (18.1 MB). nHew

Intel x86 Linux for Redhat 7.3 and goc 2.95.2, version 4.00/01 (17.1 MB). Hew

Intel x86 Linux for Redhat 7.2 and Intel's icc 7.1, version 3.10/01 (245 MB). new

Intel x86 Linux for Redhat 6.1 (glibc 2.1) and goc2.95.2, version 3.10/02 {156 MB). Hew
AMD x86 64 (Opteron) Linux (UnitedLinux) and gee 3.2.2, version 3.05/05 (11.7 MB). new
Intel Itanium Linux for Redhat 7.2 and goc 2.96, version 3.05/05 (155 MB). HeW

Intel tanium Linux for Redhat 7.2 and Intel's ecc 7, version 3.05/05 (316 MB). Hew

HPF PA-RISC HP-UX 10.20 with aCC (v1.18), version 4.00/01 (21.3 MB). new

HF ltanium HP-UX 1120 with aCC, version 3.03/07 (22.1 MB).

Compaq Alpha OSF1 with cxx 6.2, version 4.00/01 (18.3 MB). Hew

Compag Alpha OS5F1 with cxx 6.2, version 4.00/01 (186 MB). new

Compaq Alpha O5F1 with eges 1.1.2, version 4.00/01 (215 MB). Hew

Compaq Alpha Linux with egcs 1.1.2, version 2.02/06 (11.0 MB).

Compaq IPAQ PocketPC Linux with goc 2.95, version 3.05/03 (11.0 MB). Hew

For monre on Linux on iPAC see www.handhelds.org.

IBM AlX 4.5 with xIC version 5, version 4.00/01 (175 MB, works only on AIX 45). Hew
Sun SPARC Solaris 5.7 with CC5.2, version 4.00/01 (202 MB). new

It cannot be used with Solaris 5.6 or 5.8 even using the same compiler version. You must recompile from the source on these two
systems.

Sun SPARC Solaris 5.8 with CC5.2, version 4.00/01 (195 MB). rew

It cannot be used with Solaris 5.6 or 5.7 even using the same compiler version. You must recompile from the source on these two
systems.

SGIIRIX 6.5 with CC, version 4.00/01 (compiled with -n32) (18.8 MB). Hew

SGI IRIX 6.5 with g++ 2.95.2, version 4.00/01 (252 MB). Hew

SGI IRIX 6.5 with KCC, version 4.00/01 {(18.1 MB). new

LinuxPPC({5use?.3) goc 2.95.3, version 3.03/07 (105 MB).

Thanks to Damir Buskulic (buskulic@lapp.in2p3 fr) for building this version.

MacO35 X 102, 10.3 and gcc 3, version 2.10/01 (25.9 MB) new

A variety of versions is kindly maintained by Remi Monmsen at the sourceforge site. For more details, see Remi's list. For more
info, you can contactRemi Mommsen.

WindowsXP/NT/w2000 with CYGWIN and gocd.2 version 4.00/01 (184 MB).
For more information see Axel Naumann's web site.

M et niabar in o dissetnns with @ naen santainina hilank ahametare o

ROQOT Tutorials - Session 3 13

ROOT Statistics —
Distributions and Number of Users fﬁ

245,000 binaries |

ROOT distribution statistics

downloaded

>1,000,000 clicks
per month

>100,000 docs
in 3 years

3200 reqistered

Toe Feb 3 06:01:13 2004

]

'“‘q‘“ﬁ" “;E ;

80000

60000

FTP distributions per 08
[ko
=] =]
= =
(= (=
= =

40000

20000

week numbear

ROOQOT Tutorials - Session 3

14

i ROOT Development Process £

= We follow an Open Source development model

= Release early, release often”
= Major releases 3-4 times per year
= Minor releases every 2-3 weeks
= Daily/nightly builds + regression testing + benchmarking
(rootmarks)
= Let user feedback drive the development”
= Bug reporting system
Roottalk mailing list and web forum
Annual workshop
Open cvs repository
Let users become developers

ROOQOT Tutorials - Session 3 15

i ROOT: Framework and Library £.

= User classes

This is the normal

= User can define new classes interactively operation mode

= Either using calling API or sub-classing API

= These classes can inherit from ROOT clay’ &5

Interesting feature
for GUIs &
event displays

= Dynamic linking

= Interpreted code can call compiled code

= Compiled code can call interpreted code Script Compiler
root > .x file.C++
= Macros can be dynamically compil linked

ROOT Tutorials - Session 3 16

= A Shared Library can be linked dynamically ™
to a running executable module N\
- either via explicit loading, B

- or automatically via plug-in manager

Experiment .
A Shared Library facilitates the development libraries U
and maintenance phases : se_r
libraries
| Dynamic linking from Shared libraries |
~

The "standard” ROOT executable module can dynamically
load user's specific code from shared libraries.

Root > gSystem->Load("libNA49") G e n e ra I

Root > gSystem->Load("libUser")

Root > T4sEvent event libraries

/‘ ROOT Shared libraries I
o107 NA49 Shared libraries I
executable \

User Shared libraries I

ROOT Tutorials - Session 3 17

i ROOT Library Structure A

ROOT libraries are a layered structure

= The CORE classes are always required (support for
RTTI, basic I/O and interpreter)

= The optional libraries (you load only what you use),
separation between data objects and the high level
classes acting on these objects. Example, a batch job
uses only the histogram library, no need to link
histogram painter library.

= Shared libraries reduce the application link time
= Shared libraries reduce the application size

= ROOT shared libraries can be used with other class
libraries

ROOQOT Tutorials - Session 3 18

i The Libraries L

= Over 800 classes

Root CORE Classes | ‘

Base Cont|Meta| ZIP ‘Unix”\winNTHNet

= 1,200,000 lines of

Cint
Physics ‘ Geom | ‘ Matrix Hist ‘ Tree code
: : = CORE (13 Mbytes)
E‘G‘tl ‘ Graf |H‘ HistPainter | = CINT (3 Mbytes)
[Ecpythia | I = Green libraries
GeomPainter {Graf3d @ Ilnked on demand
VirtualMC_| _New] via plug-in manager
. piug g
=D

5 me |Gt me | |_GPad TecPlayer] T (only a subset
~proar | [Table shown)

- TreeViewer MysQL
Guj [TeeeViewer |

PgsQL

All libs need Core ‘ GWin32 | ‘ GX11 | ’—IGX11TTF

Arrows show lib dependencies
CINT can be used independently

- a - R' t
Green libs loaded by PluginManager ROOT lerarles DependenCIes n

Aslmage

Rl

ROOQOT Tutorials - Session 3 19

i ROOT Abstract Interfaces L

s The abstract interfaces have two main
functions:

= Define a standard protocol

=« Enhance modularity by minimizing
dependencies between classes and shared
libraries

= On last count ROOT has 22 abstract interfaces

ROOQOT Tutorials - Session 3 20

o

i Example of Abstract Interfaces £.

TVirtuaX |

TGW|n32

ROOQOT Tutorials - Session 3 21

!'_ CINT Interpreter

ROOT Tutorials - Session 3

€7

22

i CINT ra

CINT is a C and C++ interpreter

= Written by Masaharu Goto and available under an Open
Source license

= It implements about 95% of ANSI C and 90% of ANSI
C++

= Itis robust and complete enough to interpret itself
(90000 lines of C, 5000 lines of C++)

= Has good debugging facilities
= Has a byte code compiler
= In many cases it is faster than tcl, perl and python

ROOQOT Tutorials - Session 3 23

i CINT in ROOT ra

= CINT is used in ROOT:
= As command line interpreter
= As script interpreter
= 10 generate class dictionaries
= 10 generate function/method calling stubs

= The command line, script and programming
anguage become the same

= Large scripts can be compiled for optimal
performance

ROOQOT Tutorials - Session 3 24

i CINT as Interpreter

= CINT is used as command line interpreter:

root[0] for (int i = 0; i < 10; i++) printf (“Hello\n”)
root[l] TFl *f = new TF1l(“f”, “sin(x)/x”, 0, 10)
root[2] £->Draw()

= And as script interpreter:

bash$ vi script.C

{
for (int i = 0; i < 10; i++) printf (“Hello\n”);
TFl *f = new TF1l(“f”, “sin(x)/x”, 0, 10);
f->Draw() ;

}
root[0] .x script.C

ROOQOT Tutorials - Session 3

i The Command Line L

= The CINT/ROOT command line support emacs style
editing
« ctrl-a, ctrl-e, ctrl-d, left/right arrow keys, etc.

= Important feature: <TAB> expansion to expand class
names, method names, file names, etc.

= Command history is retained between sessions in the file
~/.root_hist

= Navigation: ctrl-p, ctrl-n, up/down arrow keys
= Everything you type at the prompt is C++
= Except for interpreter escape commands, like

= X, L, .q, .7, etc.

= Do .? to see all interpreter commands

ROOQOT Tutorials - Session 3 26

i CINT Debugger

= CINT supports script debugging and tracing:
= It uses a gdb like command set:
= .b, .p, .S, .C, .t, etc
= 10 trace a script use the .T command
= The byte code compiler can be turned on/off:
= Off: .00
= On: .01 to .04

= Again, check available commands with .?

ROOQOT Tutorials - Session 3

-
(>
J')ﬁ_-"

27

', - - IF.

!'_ ROOT Infrastructure & Basic Services

ROOT Tutorials - Session 3

28

i The TObject Base Class A

= The TODbject class provides default behavior and
protocol for almost all objects in the ROOT
system

= It provides protocol for:
= Persistency (object I/0)
= Error handling
= Inspection
= Drawing, printing
= Sorting, hashing

ROOQOT Tutorials - Session 3 29

i The TROOT Class L

= The TROOT object is the main entry point to the system
= Itis created as soon as the Core library is being loaded
= It initializes the ROOT system
= It is a singleton, accessible via the global pointer grOOT

= Via gROOT you can find basically every object created by
the system

= Provides many global services

TH1F *hpx = (TH1F*) gROOT->FindObject (“hpx”)

ROOQOT Tutorials - Session 3 30

i ROOT Run Configuration File £.

= When TROOT is created it also reads the rootrc files:
= SROOTSYS/etc/system.rootrc
s ~/.rootrc

= ./.rootrc
= The local one overrides the less local one

= It has the format of a typical “resource” file with a
simple syntax

= Have a look at $SROOTSYS/etc/system.rootrc to
see what resources are supported

ROOQOT Tutorials - Session 3 31

i Operating System Interface A.

= The underlying OS is abstracted via the TSystem
abstract base class

= Accessible via the gSystem singleton

= [t allows all ROOT and user code
to be OS independent

TSystem

TUnixSystem TWinNTSystem TVMSSystem

ROOT Tutorials - Session 3 32

i TSystem Services

= [System provides:

=« System event handling
= event processing and dispatching
= signal handling (TSignalHandler)
= file and socket handling (TFileHandler)
= timer handling (sync, async) (TTimer)

= Process control
« fork, exec, wait, ...

= File system access
= file creation and manipulation
= directory creation, reading, manipulation

ROOQOT Tutorials - Session 3

33

i More TSystem Services

= Environment variable manipulation
« getenv, putenv, unsetenv

= System logging
= Syslog interface

=« Dynamic loading
=« load, unload, find symbol, ...

= RPC primivitves
= open, close, option setting, read, write, ...

= Please check TSystem carefully for the right
methods. Keep your code portable.

ROOQOT Tutorials - Session 3

34

i ROOT Collections Classes L

= The ROOT collections are so called polymorphic
collections

= The collections can contain different types of
elements (polymorphism):

= Elements must be instances of classes

= Elements must be instances of classes
deriving from TObject

= Collections themselves derive from TObject. So
you can have collections of collections and
collections can be made persistent

ROOQOT Tutorials - Session 3 35

Abstract Base Class
Defines methods like:
AddFirst(), AddLast(),

AddBefore(), AddAfter(),

RemovekFirst(), etc.

\ﬁ

n Classes

TCollection

Abstract Base Class
Defines methods like:
Add(), Remove(), Clear(),
Delete(), FindObject(),
Makelterator()

T |
\ \
TSeqCollection THashTable TMap
[[\
\ \ \
TList TOrdCollection TObjArray TBtree
[i \
\ \
TSortedList THashList TClonesArray

ROOT Tutorials -

Session 3

Ordered Collections

36

i [terators L

= An iterator is used to traverse (walk through) a
collection

= Having the iterator separate from the collection allows
you to have several iterators on a single collection at the

same time

= Each collection has its own associated iterator class:
= [List TListIter
= TMap TMaplter

= In general you will use the generic TIter wrapper class

ROOQOT Tutorials - Session 3 37

i TIter: The Generic Iterator L

= A TIter object can be used to iterate over any
collection

TIter it (GetListOfTracks())
while (Track *tr = (Track*) it.Next())
tr->Fit () ;

TIter next (GetListOfTracks())
while (Track *tr = (Track*) next())
tr->Fit () ;

The magic is in: TIter: :operator ()

GetListOfTracks () ->ForEach (Track,Fit) () ;

ROOQOT Tutorials - Session 3 38

i TObject Protocol for Collections £

= [Object defines basic protocol for collection elements:

N ISEC| ual() used by FindObject(), by default compares addresses
» IsSortable() used for sorting, by default false

= Compare() used for sorting, by default not usable

O Hash() used for hashing, by default address of object

= The collections will call these TObject methods to find,
sort and hash elements

= By overriding these methods a class can customize its
behavior in a collection

ROOQOT Tutorials - Session 3 39

i Object Ownership A

= The collection classes always store pointers to
objects, never copies of objects

= It is the user’s responsibility to keep track of

Ownership class Event : public TObject {
TList *fTracks; // list of all tracks

TList *fVertexl; // subset of tracks
TList *fVertex2; // subset of tracks

}s;
Event: :Event ()

{
fTracks = new TList;
fTracks->SetOwner () ;
fVertexl = new TList;
fVertex2 new TList;

40

TClonesArray —
Array of Identical Objects A

A collection specially designed for repetitive data analysis tasks, where
normally in a loop many times the same objects are created and deleted

class TClonesArray : public TObjArray {

private:
TObjArray *fKeep;
TClass *fClass: fCont
} Y
. : | < D B
space for identical
objects of type | <+]
fClass | -~ Delete() calls dtor of
| <— <—— | fClass and clears links
| -« from fCont to fKeep's
| -« fCont

The memory for the objects stored in the array is allocated only once
in the lifetime of the clones array

ROOT Tutorials - Session 3 41

i TClonesArray Theory A

Considering that a new/delete costs about 70us, saving O(109)
new/deletes will save about 19 hours

TClonesArray a(“Track”, 10000) ;

while (Event *ev = (Event *) next()) { // 0(100000)
for (int i = 0; i < ev->Ntracks(); i++) { // 0(10000)
new(a[i]) Track(x,y,z,. . .);
}
;.5eiete();

ROOT Tutorials - Session 3 42

i Templated Containers and STL 4.

= Templated containers and STL provide type
safety at compile time, but

= They do not solve the problem when the
container has to hold a heterogeneous set of

objects
= However, ROOT and CINT have no problem with
STL containers in user’s code

= In ROOT version 4 they are fully supported as
first class citizens

ROOQOT Tutorials - Session 3 43

i ROOT Reflection Classes p. &

= Using the following meta or reflection classes
you can find out everything about an object at

L}

run-time:

u .

TDictionary
0..n
TClass < TBaseClass TFunction TGlobal TDataType
1
0..n
— < TDataMember
TMethodCall
0..n 0..n
< TMethod < TMethodArg

ROOQOT Tutorials - Session 3 44

i Using Reflection Classes

root
root
root
root
root
root
root

root

TLine 1

TClass *c =

TList *ml =

1.IsA()
c->GetListOfMethods ()

TIter next(ml)

TMethod *m

while (m =

ml

(TMethod*)next()) printf (“%s\n”

c->GetListOfDataMembers ()

ROOT Tutorials - Session 3

, m—->GetName ())

45

ROOT Beans £

TClass *cl = gROOT->GetClass ("TLine") ;
void *line = cl->New()
TMethod *m;
m = (TMethod*) cl->GetListOfMethods ()->FindObject("SetX2") ;
if (m) {
// use m->GetListOfMethodArgs () to check argument types
TMethodCall mc(cl, "SetX2", "10.0");
mc .Execute (1line) ;

}
m = (TMethod*)cl->GetListOfMethods ()->FindObject ("Set¥2") ;

if (m) {
TMethodCall mc(cl, "Set¥2", "20.0");
mc .Execute (line) ;

}
TMethodCall mc(cl, "Draw", "");

mc .Execute (line) ;

ROOT Tutorials - Session 3 46

i ComponentWare A

= Using the reflection classes and dynamic library
loading it is very simple to build the equivalent
of “Java Bean” components

= Total decoupling, extreme modularity
=« Embedding
= Flexible I/O

= Only need to agree on a set of strings that
components must understand

ROOQOT Tutorials - Session 3 47

i Class and Object Tables A

= At run time one can see all classes for which
RTTI is available:

gClassTable->Print() ;

= In addition one can see all TObject derived
objects that have been created:

gObjectTable->Print() ;

= This last feature requires the rootrc option:
= Root.ObjectStat: 1

ROOQOT Tutorials - Session 3 48

i Plug-in Manager A

= Where are plug-ins used?

TFile *rf = TFile::Open(“rfio://castor.cern.ch/alice/aap.root”)

TFile *df = TFile: :Open(“dcache://main.desy.de/hl/run2001.root”)

= For example, to extend the base class TFile to be able to
read RFIO files one needs to load the plug-in library
libRFIO.so which defines the TRFIOFile class

= Protocol part of the file name URI triggers loading of
plug-in. In these cases TRFIOFile and TDCacheFile
objects are used, which both derive from TFile

ROOQOT Tutorials - Session 3 49

i Plug-in Manager A

= Previously dependent on “magic strings” in
source, e.g. in TFile.cxx:

if (!strncmp(name, "rfio:", 5)) {
if (gROOT->LoadClass ("TRFIOFile", "RFIO")) return O;
f = (TFile*) gROOT->ProcessLine (Form("new
TRFIOFile (\"%s\",\"%s\",\"%s\",%d)",
name, option, ftitle, compress))

} else if (!strncmp(name, "dcache:", 6)) {

= Adding case or changing strings requires code
change and recompilation

= Not user customizable

ROOQOT Tutorials - Session 3

50

i Plug-in Manager (cont.) A

= Plug-in manager solves these problems:

TPluginHandler *h;

if ((h = gROOT->GetPluginManager () ->FindHandler ("TFile", name))) ({
if (h->LoadPlugin() == -1) return O;

f = (TFile*) h->ExecPlugin (4, name, option,
}

= Single if-statement to handle all cases
= NO magic strings in code anymore

ftitle, compress);

ROOQOT Tutorials - Session 3 51

i Plug-in Manager (cont.) L&

= Magic strings moved to system. rootrc file

base class regexp plugin class plugin lib ctor or factory

Plugin.TFile: “rfio: TRFIOFile RFIO "TRFIOFile (const
char* ,Option t*,const char*,Int t)"

+Plugin.TFile: “dcache: TDCacheFile DCache "TDCacheFile (const

char* ,Option_t*,const char*,Int t)"

= Adding plug-ins or changing strings does not require
code change and recompilation

= Can be customized by user in private . rootrec file

ROOQOT Tutorials - Session 3 52

Plug-in Manager (cont.) A

= Currently 34 plug-ins are defined for 21 different
(abstract) base classes

= Plug-in handlers can also be registered at run

time, e.qg.:
gROOT->GetPluginManager () ->AddHandler ("TSQLServer",
"“sapdb:","TSapDBServer", "SapDB",

"TSapDBServer (const char*)") ;

= A list of currently defined handlers can be
printed using:

gROOT->GetPluginManager () ->Print () ;

ROOQOT Tutorials - Session 3 53

	ROOT Tutorials – Session 3
	What is ROOT?
	Prehistory
	Main Goals for New System
	Object Oriented Frameworks
	Frameworks
	Calling API vs Sub-classing API
	Advantages of Frameworks
	ROOT Overview
	The Core ROOT Team
	Project History
	ROOT Statistics –Supported Platforms
	ROOT Statistics –Available Binaries
	ROOT Statistics –Distributions and Number of Users
	ROOT Development Process
	ROOT: Framework and Library
	Dynamic Linking
	ROOT Library Structure
	The Libraries
	ROOT Abstract Interfaces
	CINT Interpreter
	CINT
	CINT in ROOT
	CINT as Interpreter
	The Command Line
	CINT Debugger
	ROOT Infrastructure & Basic Services
	The TObject Base Class
	The TROOT Class
	ROOT Run Configuration File
	Operating System Interface
	TSystem Services
	More TSystem Services
	ROOT Collections Classes
	Collection Classes Hierarchy
	Iterators
	TIter: The Generic Iterator
	TObject Protocol for Collections
	Object Ownership
	TClonesArray –Array of Identical Objects
	TClonesArray Theory
	Templated Containers and STL
	ROOT Reflection Classes
	Using Reflection Classes
	ROOT Beans
	ComponentWare
	Class and Object Tables
	Plug-in Manager
	Plug-in Manager
	Plug-in Manager (cont.)
	Plug-in Manager (cont.)
	Plug-in Manager (cont.)

