24#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
25#include <numpy/arrayobject.h>
29namespace Experimental{
173 rmodel.AddNeededStdLib(
"cmath");
211 throw std::runtime_error(
"TMVA::SOFIE - Parsing Keras Activation layer " +
fLayerActivation +
" is not yet supported");
223 throw std::runtime_error(
"TMVA::SOFIE - Parsing Keras layer " +
fLayerType +
" is not yet supported");
252 std::unique_ptr<ROperator>
op;
265 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Gemm does not yet support input type " +
fLayerDType);
305 std::vector<size_t> fAttrDilations = GetDataFromTuple(
fDilations);
309 std::vector<size_t> fAttrKernelShape = GetDataFromTuple(
fKernelShape);
310 std::vector<size_t> fAttrStrides = GetDataFromTuple(fStrides);
311 std::string fAttrAutopad;
312 std::vector<size_t>fAttrPads;
317 fAttrAutopad =
"VALID";
320 fAttrAutopad=
"NOTSET";
325 long outputHeight = std::ceil(
float(inputHeight) /
float(fAttrStrides[0]));
326 long outputWidth = std::ceil(
float(inputWidth) /
float(fAttrStrides[1]));
338 throw std::runtime_error(
"TMVA::SOFIE - RModel Keras Parser doesn't yet supports Convolution layer with padding " +
fKerasPadding);
341 std::unique_ptr<ROperator>
op;
349 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Conv does not yet support input type " +
fLayerDType);
370 throw std::runtime_error(
"TMVA::SOFIE - Parsing Keras Activation layer " +
fLayerActivation +
" is not yet supported");
393 std::unique_ptr<ROperator>
op;
399 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Relu does not yet support input type " +
fLayerDType);
421 std::unique_ptr<ROperator>
op;
427 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Selu does not yet support input type " +
fLayerDType);
449 std::unique_ptr<ROperator>
op;
455 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Sigmoid does not yet support input type " +
fLayerDType);
476 std::unique_ptr<ROperator>
op;
482 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Sigmoid does not yet support input type " +
fLayerDType);
505 std::unique_ptr<ROperator>
op;
511 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Sigmoid does not yet support input type " +
fLayerDType);
532 std::unique_ptr<ROperator>
op;
538 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Tanh does not yet support input type " +
fLayerDType);
559 std::unique_ptr<ROperator>
op;
565 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Swish does not yet support input type " +
fLayerDType);
599 std::unique_ptr<ROperator>
op;
613 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Transpose does not yet support input type " +
fLayerDType);
644 std::unique_ptr<ROperator>
op;
668 std::unique_ptr<ROperator>
op;
684 std::vector<std::string>
inputs;
691 std::unique_ptr<ROperator>
op;
716 std::unique_ptr<ROperator>
op;
728 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Sigmoid does not yet support input type " +
fLayerDType);
750 std::unique_ptr<ROperator>
op;
756 throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Identity does not yet support input type " +
fLayerDType);
812 if (
isep != std::string::npos){
817 if(!std::ifstream(
filename).good()){
818 throw std::runtime_error(
"Model file "+
filename_nodir+
" not found!");
822 std::time_t
ttime = std::time(0);
834 throw std::runtime_error(
"Can't init global namespace for Python");
837 throw std::runtime_error(
"Can't init local namespace for Python");
844 PyRunString(
"import tensorflow",fGlobalNS,fLocalNS);
845 PyRunString(
"import tensorflow.keras as keras",fGlobalNS,fLocalNS);
846 PyRunString(
"import tensorflow\n", fGlobalNS, fLocalNS);
847 PyRunString(
"if int(keras.__version__.split('.')[0]) >= 3:\n"
848 " raise RuntimeError(\n"
849 " 'TMVA SOFIE Keras parser supports Keras 2 only.\\n'\n"
850 " 'Keras 3 detected. Please export the model to ONNX.\\n'\n"
852 fGlobalNS, fLocalNS);
853 PyRunString(
"from tensorflow.keras.models import load_model",fGlobalNS,fLocalNS);
854 PyRunString(
"print('TF/Keras Version: '+ tensorflow.__version__)",fGlobalNS,fLocalNS);
857 PyRunString(
"globals().update(locals())",fGlobalNS,fLocalNS);
859 PyRunString(
"for idx in range(len(model.layers)):\n"
860 " layer=model.get_layer(index=idx)\n"
862 " layerData['layerType']=layer.__class__.__name__\n"
863 " layerData['layerAttributes']=layer.__dict__\n"
864 " layerData['layerInput']=[x.name for x in layer.input] if isinstance(layer.input,list) else [layer.input.name]\n"
865 " layerData['layerOutput']=[x.name for x in layer.output] if isinstance(layer.output,list) else [layer.output.name]\n"
866 " layerData['layerDType']=layer.dtype\n"
867 " layerData['layerWeight']=[x.name for x in layer.weights]\n"
868 " modelData.append(layerData)",fGlobalNS,fLocalNS);
889 rmodel.AddBlasRoutines({
"Gemm",
"Gemv"});
891 rmodel.AddBlasRoutines({
"Copy",
"Axpy"});
893 rmodel.AddBlasRoutines({
"Gemm",
"Axpy"});
903 PyRunString(
"for idx in range(len(model.get_weights())):\n"
905 " weightProp['name']=model.weights[idx].name\n"
906 " weightProp['dtype']=(model.get_weights())[idx].dtype.name\n"
907 " weightProp['value']=(model.get_weights())[idx].transpose((3,2,0,1)).copy() if ('conv' in model.weights[idx].name and model.weights[idx].shape.ndims == 4) else (model.get_weights())[idx]\n"
908 " weight.append(weightProp)",fGlobalNS,fLocalNS);
952 PyRunString(
"inputNames=model.input_names",fGlobalNS,fLocalNS);
953 PyRunString(
"inputShapes=model.input_shape if type(model.input_shape)==list else [model.input_shape]",fGlobalNS,fLocalNS);
955 PyRunString(
"for idx in range(len(model.inputs)):\n"
956 " inputTypes.append(model.inputs[idx].dtype.__str__()[9:-2])",fGlobalNS,fLocalNS);
978 std::vector<size_t>fInputShape = GetDataFromTuple(
fPInputShapes);
979 if (
static_cast<int>(fInputShape[0]) <= 0){
981 std::cout <<
"Model has not a defined batch size ";
982 if (
batch_size <=0) std::cout <<
" assume is 1 ";
983 else std::cout <<
" use given value of " <<
batch_size;
984 std::cout <<
" - input shape for tensor " <<
fInputName <<
" : "
1011 if (
static_cast<int>(fInputShape[0]) <= 0){
1013 std::cout <<
"Model has not a defined batch size ";
1014 if (
batch_size <=0) std::cout <<
" assume is 1 ";
1015 else std::cout <<
" use given value of " <<
batch_size;
1016 std::cout <<
" - input shape for tensor "
1035 PyRunString(
"for layerName in model.output_names:\n"
1036 " outputNames.append(model.get_layer(layerName).output.name)",fGlobalNS,fLocalNS);
1038 std::vector<std::string> fOutputNames;
1042 rmodel.AddOutputTensorNameList(fOutputNames);
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
const_iterator begin() const
const_iterator end() const
static std::vector< size_t > GetDataFromTuple(PyObject *tupleObject)
Utility function which retrieves and returns the values of the Tuple object as a vector of size_t.
static const char * PyStringAsString(PyObject *string)
Returns const char* from Python string in PyObject.
static PyObject * GetValueFromDict(PyObject *dict, const char *key)
Utility function which checks if a given key is present in a Python dictionary object and returns the...
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
std::unique_ptr< ROperator > MakeKerasConv(PyObject *fLayer)
Prepares a ROperator object for Keras Conv Layer.
std::unordered_map< std::string, std::unique_ptr< ROperator >(*)(PyObject *fLayer)> KerasMethodMap
std::unique_ptr< ROperator > MakeKerasPermute(PyObject *fLayer)
Prepares a ROperator object for Keras Permute layer.
std::unique_ptr< ROperator > MakeKerasBatchNorm(PyObject *fLayer)
Prepares a ROperator object for Keras BatchNorm layer.
std::unique_ptr< ROperator > MakeKerasSwish(PyObject *fLayer)
Prepares a ROperator object for Keras Swish activation.
void AddKerasLayer(RModel &rmodel, PyObject *fLayer)
Adds equivalent ROperator with respect to Keras model layer into the referenced RModel object.
std::unique_ptr< ROperator > MakeKerasConcat(PyObject *fLayer)
Prepares a ROperator object for Keras Concat layer.
std::unique_ptr< ROperator > MakeKerasLeakyRelu(PyObject *fLayer)
Prepares a ROperator object for Keras Leaky Relu activation.
std::unique_ptr< ROperator > MakeKerasDense(PyObject *fLayer)
Prepares a ROperator object for Keras Dense Layer.
std::unique_ptr< ROperator > MakeKerasBinary(PyObject *fLayer)
Prepares a ROperator object for Keras binary operations like Add, subtract, and multiply.
std::unique_ptr< ROperator > MakeKerasTanh(PyObject *fLayer)
Prepares a ROperator object for Keras Tanh activation.
std::unique_ptr< ROperator > MakeKerasSoftmax(PyObject *fLayer)
Prepares a ROperator object for Keras Softmax activation.
std::unique_ptr< ROperator > MakeKerasReshape(PyObject *fLayer)
Prepares a ROperator object for Keras Reshape layer.
std::unique_ptr< ROperator > MakeKerasReLU(PyObject *fLayer)
Prepares a ROperator object for Keras ReLU activation.
const KerasMethodMapWithActivation mapKerasLayerWithActivation
std::unique_ptr< ROperator > MakeKerasIdentity(PyObject *fLayer)
Prepares a ROperator object for Keras Identity and Dropout Layer.
std::unique_ptr< ROperator > MakeKerasSigmoid(PyObject *fLayer)
Prepares a ROperator object for Keras Sigmoid activation.
std::unique_ptr< ROperator > MakeKerasSelu(PyObject *fLayer)
Prepares a ROperator object for Keras Selu activation.
std::unordered_map< std::string, std::unique_ptr< ROperator >(*)(PyObject *fLayer)> KerasMethodMapWithActivation
const KerasMethodMap mapKerasLayer
std::unique_ptr< ROperator > MakeKerasActivation(PyObject *fLayer)
Prepares a ROperator object for Keras activation layer.
static void(& PyRunString)(TString, PyObject *, PyObject *)
RModel Parse(std::string filename, int batch_size=-1)
Parser function for translatng Keras .h5 model into a RModel object.
static const char *(& PyStringAsString)(PyObject *)
static PyObject *(& GetValueFromDict)(PyObject *, const char *)
std::string ConvertTypeToString(ETensorType type)
ETensorType ConvertStringToType(std::string type)
std::string ConvertShapeToString(const std::vector< size_t > &shape)
create variable transformations