18from xgboost 
import XGBClassifier
 
   23from tmva100_DataPreparation 
import variables
 
   26def load_data(signal_filename, background_filename):
 
   32    x_sig = 
np.vstack([data_sig[var] 
for var 
in variables]).T
 
   33    x_bkg = 
np.vstack([data_bkg[var] 
for var 
in variables]).T
 
   42    num_all = num_sig + num_bkg
 
   47if __name__ == 
"__main__":
 
   49    x, y, w = 
load_data(
"train_signal.root", 
"train_background.root")
 
   56    print(
"Training done on ",
x.shape[0],
"events. Saving model in tmva101.root")
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...