50data_dict = 
df.AsNumpy(columns=[
"m4l", 
"sample_category", 
"weight"])
 
   54    name: data_dict[
"weight"][data_dict[
"sample_category"] == [name]].
sum() 
for name 
in (
"data", 
"zz", 
"other", 
"higgs")
 
   58for sample_category 
in [
"data", 
"higgs", 
"zz", 
"other"]:
 
   60    weight_sum = weights_dict[sample_category]
 
   62    mask = data_dict[
"sample_category"] == sample_category
 
   64    weights = data_dict[
"weight"][mask]
 
   66    weight_modified = weights / weight_sum
 
   71    results[sample_category] = {
 
   72        "weight_sum": weight_sum,
 
   73        "weight_modified": weight_modified,
 
   80higgs_data = data_dict[
"m4l"][data_dict[
"sample_category"] == [
"higgs"]]
 
   81zz_data = data_dict[
"m4l"][data_dict[
"sample_category"] == [
"zz"]]
 
   85sample_weight_higgs = 
np.array([results[
"higgs"][
"weight_modified"]]).
flatten()
 
   86sample_weight_zz = 
np.array([results[
"zz"][
"weight_modified"]]).
flatten()
 
   89sample_weight = 
np.concatenate([sample_weight_higgs, sample_weight_zz])
 
   92sample_weight[sample_weight < 0] = 1e-6
 
   99model_xgb = 
xgb.XGBClassifier(n_estimators=1000, max_depth=5, eta=0.2, min_child_weight=1e-6, nthread=1)
 
  110    return (1 - prob) / prob
 
  116n_signal = results[
"higgs"][
"weight"].
sum()
 
  117n_back = results[
"zz"][
"weight"].
sum()
 
  122    return n_back / (n_back + mu * n_signal)
 
  143            p[j, i] = 1.0 / p[i, j]
 
  151pdf_learned = 
ROOT.RooWrapperPdf(
"learned_pdf", 
"learned_pdf", nll_ratio, selfNormalized=
True)
 
  154frame1 = 
m4l.frame(Title=
"Likelihood ratio r(m_{4l}|#mu=1);m_{4l};p(#mu=1)/p(#mu=0)", Range=(80, 170))
 
  159pdf_learned_extended = 
ROOT.RooExtendPdf(
"final_pdf", 
"final_pdf", pdf_learned, n_pred)
 
  166frame2 = 
mu_var.frame(Title=
"NLL sum;#mu (signal strength);#Delta NLL", Range=(0.5, 4))
 
  167nll.plotOn(frame2, ShiftToZero=
True, LineColor=
"kP6Blue")
 
  172c = 
ROOT.TCanvas(
"", 
"", 1200 
if single_canvas 
else 600, 600)
 
  204del pdf_learned_extended
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t UChar_t len
 
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
 
static uint64_t sum(uint64_t i)