30    Generate binned Asimov dataset for a continuous pdf. 
   31    One should in principle be able to use 
   32    pdf.generateBinned(x, n_events, RooFit::ExpectedData()). 
   33    Unfortunately it has a problem: it also has the bin bias that this tutorial 
   34    demonstrates, to if we would use it, the biases would cancel out. 
   51    Force numeric integration and do this numeric integration with the 
   52    RooBinIntegrator, which sums the function values at the bin centers. 
   63    Reset the integrator config to disable the RooBinIntegrator. 
   93fit1 = 
expo.fitTo(expo_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
 
  104fit2 = 
expo.fitTo(expo_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
 
  117fit3 = 
powerlaw.fitTo(powerlaw_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
 
  128fit4 = 
powerlaw.fitTo(powerlaw_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
 
  138fit5 = 
powerlaw.fitTo(powerlaw_data, IntegrateBins=1e-3, Save=
True, PrintLevel=-1, SumW2Error=
False)
 
  170model = 
ROOT.RooAddPdf(
"model", 
"model", [gauss, expo], [nsig, nbkg])
 
  179fit6 = 
model.fitTo(model_data, Save=
True, PrintLevel=-1, SumW2Error=
False)
 
  194fit7 = 
model.fitTo(model_data, Offset=
"bin", Save=
True, PrintLevel=-1, SumW2Error=
False)
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.