29      cout << 
"ERROR: cannot open file: " << 
fname << endl;
 
   72   frameS->SetMarkerSize( 0.1 );
 
   73   frameS->SetMarkerColor( 4 );
 
   75   frameB->SetMarkerSize( 0.1 );
 
   76   frameB->SetMarkerColor( 2 );
 
   79   frameS->SetTitle( 
var1+
" versus "+
var0+
" for signal and background" );
 
   83   frameS->SetLabelSize( 0.04, 
"X" );
 
   84   frameS->SetLabelSize( 0.04, 
"Y" );
 
   85   frameS->SetTitleSize( 0.05, 
"X" );
 
   86   frameS->SetTitleSize( 0.05, 
"Y" );
 
   94                                  1 - 
c->GetRightMargin(), 1 - 
c->GetTopMargin() );
 
  135   if (
size != 
v.GetSize())
 
  136      cout << 
"<getGaussRnd> too short input vector: " << 
size << 
" " << 
v.GetSize() << endl;
 
  159   const Int_t nvar  = 4;
 
  170     cout << 
"Creating branch var" << 
ivar+1 << 
" in signal tree" << endl;
 
  183   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
  184   Float_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
  185   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
  210   cout << 
"signal covariance matrix: " << endl;
 
  212   cout << 
"background covariance matrix: " << endl;
 
  225      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
  230      for (
Int_t i=0; i<
N; i++) {
 
  232         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  255   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  299   for (
Int_t i=0; i<
N; i++) {
 
  301      if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  314   cout << 
"created tree: " << tree->GetName() << endl;
 
  341   for (
Int_t i=0; i<
N; i++) {
 
  375   cout << 
"created tree: " << tree->GetName() << endl;
 
  390   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
  391   Float_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
  392   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
  405   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  414   const Int_t nvar = 4;
 
  429   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
  430   Float_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
  431   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
  455   cout << 
"signal covariance matrix: " << endl;
 
  457   cout << 
"background covariance matrix: " << endl;
 
  470      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
  474      for (
Int_t i=0; i<
N; i++) {
 
  476         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  493   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  500   const Int_t nvar = 4;
 
  516   treeS->Branch( 
"eta", &eta, 
"eta/F" );
 
  517   treeB->Branch( 
"eta", &eta, 
"eta/F" );
 
  520   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
  521   Float_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
  522   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
  554   cout << 
"signal covariance matrix: " << endl;
 
  556   cout << 
"background covariance matrix: " << endl;
 
  569      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
  573      for (
Int_t i=0; i<
N; i++) {
 
  575         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  578         eta = 2.5*2*(
R.Rndm() - 0.5);
 
  596   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  603   const Int_t nvar = 4;
 
  608   cout << endl << endl << endl;
 
  609   cout << 
"please use .L createData.C++ if you want to run this MC generation" <<endl;
 
  610   cout << 
"otherwise you will wait for ages!!! " << endl;
 
  611   cout << endl << endl << endl;
 
  617   else                         fileName = 
Form(
"linCorGauss%d_weighted.root",seed);
 
  632   Float_t xS[nvar] = {  0.2,  0.3,  0.4,  0.8 };
 
  633   Float_t xB[nvar] = { -0.2, -0.3, -0.4, -0.5 };
 
  634   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
  658   cout << 
"signal covariance matrix: " << endl;
 
  660   cout << 
"background covariance matrix: " << endl;
 
  673      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
  686         weight = 0.8 / (
TMath::Gaus( ((*
v)[nvar-1]), 0, 1.09) );
 
  701               if (i%10 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  715         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  738   for (
Int_t  i=0;i<4;i++){
 
  741      h[i]= 
new TH1F(buffer,
"",100,-5,5);
 
  743      hw[i] = 
new TH1F(buffer,
"",100,-5,5);
 
  744      hw[i]->SetLineColor(3);
 
  749      for (
Int_t  i=0;i<4;i++){
 
  751         hw[i]->Fill(
xvar[i],weight);
 
  758   for (
Int_t  i=0;i<4;i++){
 
  766   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  774   const Int_t nvar = 4;
 
  775   std::vector<float>* 
xvar[nvar];
 
  784      xvar[
ivar] = 
new std::vector<float>();
 
  790   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
  791   Float_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
  792   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
  816   cout << 
"signal covariance matrix: " << endl;
 
  818   cout << 
"background covariance matrix: " << endl;
 
  831      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
  835      for (
Int_t i=0; i<
N; i++) {
 
  837         if (i%100 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  862   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  873   const Int_t nvar = 4;
 
  897   Double_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
  922   cout << 
"signal covariance matrix: " << endl;
 
  924   cout << 
"background covariance matrix: " << endl;
 
  937      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
  941      for (
Int_t i=0; i<
N; i++) {
 
  943         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
  964   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
  973   const Int_t nvar = 4;
 
 1005   for (
int i=0; i<20; i++) rho[i] = 0;
 
 1021   cout << 
"signal covariance matrix: " << endl;
 
 1023   cout << 
"background covariance matrix: " << endl;
 
 1036      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
 1040      for (
Int_t i=0; i<
N; i++) {
 
 1042         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
 1062   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1071   const Int_t nvar = 20;
 
 1124      for (
Int_t i=0; i<
N; i++) {
 
 1126         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
 1145   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1152   const Int_t nvar = 20;
 
 1167   Float_t xS[nvar] = {  0.5,  0.5,  0.0,  0.0,  0.0,  0.0 };
 
 1168   Float_t xB[nvar] = { -0.5, -0.5, -0.0, -0.0, -0.0, -0.0 };
 
 1169   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0, 1.0, 1.0 };
 
 1172   for (
Int_t i=0; i<50; i++) rho[i] = 0;
 
 1194   cout << 
"signal covariance matrix: " << endl;
 
 1196   cout << 
"background covariance matrix: " << endl;
 
 1209      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
 1213      for (
Int_t i=0; i<
N; i++) {
 
 1215         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
 1232   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1240   const Int_t nvar = 2;
 
 1254   treeS->Branch( 
"weight", &weight, 
"weight/F" );
 
 1255   treeB->Branch( 
"weight", &weight, 
"weight/F" );
 
 1279   cout << 
"signal covariance matrix: " << endl;
 
 1281   cout << 
"background covariance matrix: " << endl;
 
 1294      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
 1298      for (
Int_t i=0; i<
N; i++) {
 
 1300         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
 1305         if (
itype == 0) weight = 1.0; 
 
 1320   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1341   treeS->Branch(
"weight", &weight, 
"weight/F");
 
 1342   treeB->Branch(
"weight", &weight, 
"weight/F");
 
 1348      if (
nsig<10) cout << 
"xout = " << 
xout<<endl;
 
 1370   const Int_t nvar = 2;
 
 1406      for (
Int_t i=0; i<
N; i++) {
 
 1441   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1449   const Int_t nvar = 2;
 
 1472   while (
iev < nEvents){
 
 1500   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1508   const Int_t nvar = 5;
 
 1531   while (
iev < nEvents){
 
 1543                     for (
Int_t i=0;i<nvar;i++){
 
 1570   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1579   const Int_t nvar = 4;
 
 1602   while (
iev < nEvents){
 
 1612                  for (
Int_t i=0;i<nvar;i++){
 
 1637   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1646   const Int_t nvar = 3;
 
 1669   while (
iev < nEvents){
 
 1677               for (
Int_t i=0;i<nvar;i++){
 
 1700   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1709   const Int_t nvar = 2;
 
 1732   while (
iev < nEvents){
 
 1738            for (
Int_t i=0;i<nvar;i++){
 
 1759   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1773   const Int_t nvar = 2;
 
 1793   Double_t Centers[nvar][6] = {{-1,0,0,0,1,1},{0,0,0,0,0,0}}; 
 
 1796   while (
iev < nEvents){
 
 1797      for (
int idx=0; idx<6; idx++){
 
 1798         if (idx==1 || idx==2 || idx==3) 
type = 0;
 
 1817   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 1841      if (
nsig<100) cout << 
"xout = " << 
xout<<endl;
 
 1868      { 0.   ,  0.3,  0.5, 0.9 },
 
 1869      { -0.2 , -0.3,  0.5, 0.4 },
 
 1870      { 0.2  ,  0.1, -0.1, 0.7 }} ;
 
 1883   treeR->Branch(
"weight", &weight, 
"weight/F");
 
 1895      if (
ndat<30) cout << 
"cls=" << 
cls <<
" xvar = " << 
xvar[0]<<
" " <<
xvar[1]<<
" " << 
xvar[2]<<
" " <<
xvar[3]<<endl;
 
 1914   const Int_t nvar = 4;
 
 1925   treeS->Branch( 
"arr", 
xvar, 
"arr[arrSize]/F" );
 
 1927   treeB->Branch( 
"arr", 
xvar, 
"arr[arrSize]/F" );
 
 1930   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
 1931   Float_t xB[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
 1932   Float_t dx[nvar] = {  1.0,  1.0, 1.0, 1.0 };
 
 1956   cout << 
"signal covariance matrix: " << endl;
 
 1958   cout << 
"background covariance matrix: " << endl;
 
 1971      else            { 
x = 
xB; 
m = 
sqrtMatB; cout << 
"- produce background" << endl; }
 
 1975      for (
Int_t i=0; i<
N; i++) {
 
 1977         if (i%1000 == 0) cout << 
"... event: " << i << 
" (" << 
N << 
")" << endl;
 
 1997   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
 2011   Float_t xS[nvar] = {  0.2,  0.3,  0.5,  0.9 };
 
 2012   Float_t xB0[nvar] = { -0.2, -0.3, -0.5, -0.6 };
 
 2013   Float_t xB1[nvar] = { -0.2, 0.3, 0.5, -0.6 };
 
 2015   Float_t dx1[nvar] = {  -1.0,  -1.0, -1.0, -1.0 };
 
 2034   cout << 
"created data file: " << 
dataFile->GetName() << endl;
 
#define R(a, b, c, d, e, f, g, h, i)
 
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h offset
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
TMatrixT< Double_t > TMatrixD
 
R__EXTERN TRandom * gRandom
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
Array of doubles (64 bits per element).
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
1-D histogram with a float per channel (see TH1 documentation)
 
2-D histogram with a float per channel (see TH1 documentation)
 
This class displays a legend box (TPaveText) containing several legend entries.
 
This is the base class for the ROOT Random number generators.
 
Double_t Rndm() override
Machine independent random number generator.
 
const char * Data() const
 
TStyle objects may be created to define special styles.
 
A TTree represents a columnar dataset.
 
RVec< PromoteType< T > > acos(const RVec< T > &v)
 
Double_t Gaus(Double_t x, Double_t mean=0, Double_t sigma=1, Bool_t norm=kFALSE)
Calculates a gaussian function with mean and sigma.
 
Int_t Nint(T x)
Round to nearest integer. Rounds half integers to the nearest even integer.
 
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
 
Double_t Log(Double_t x)
Returns the natural logarithm of x.
 
constexpr Double_t DegToRad()
Conversion from degree to radian: .
 
Double_t Sqrt(Double_t x)
Returns the square root of x.
 
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
 
Double_t Sin(Double_t)
Returns the sine of an angle of x radians.
 
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.
 
static uint64_t sum(uint64_t i)