| AddLayer(size_t width, EActivationFunction f, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | AddLayer(SharedLayer &layer) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | AddLayer(SharedLayer_t &layer) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Backward(const Matrix_t &X, const Matrix_t &Y, const Matrix_t &weights) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Clear() | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | CreateClone(size_t batchSize) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | fBatchSize | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | fDummy | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | fInputWidth | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | fJ | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | fLayers | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | Forward(Matrix_t &X, bool applyDropout=false) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | fR | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | fWeightDecay | TMVA::DNN::TNet< Architecture_t, Layer_t > | private | 
  | GetBatchSize() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetDepth() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetInputWidth() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetLayer(size_t i) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetLayer(size_t i) const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetLossFunction() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetNFlops() | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | GetOutput() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetOutputWidth() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetRegularization() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | GetWeightDecay() const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Initialize(EInitialization m) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | InitializeGradients() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | LayerIterator_t typedef | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | LayersBegin() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | LayersEnd() | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Loss(const Matrix_t &Y, const Matrix_t &weights, bool includeRegularization=true) const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Loss(Matrix_t &X, const Matrix_t &Y, const Matrix_t &weights, bool applyDropout=false, bool includeRegularization=true) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Matrix_t typedef | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | Prediction(Matrix_t &Y_hat, Matrix_t &X, EOutputFunction f) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Prediction(Matrix_t &Y_hat, EOutputFunction f) const | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | Print() | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | Scalar_t typedef | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | SetBatchSize(size_t batchSize) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | SetDropoutProbabilities(const std::vector< Double_t > &probabilities) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | SetInputWidth(size_t inputWidth) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | SetLossFunction(ELossFunction J) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | SetRegularization(ERegularization R) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | SetWeightDecay(Scalar_t weightDecay) | TMVA::DNN::TNet< Architecture_t, Layer_t > | inline | 
  | TNet() | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | TNet(const TNet &other) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | TNet(size_t batchSize, const TNet< OtherArchitecture_t > &) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  | 
  | TNet(size_t batchSize, size_t inputWidth, ELossFunction fJ, ERegularization fR=ERegularization::kNone, Scalar_t fWeightDecay=0.0) | TMVA::DNN::TNet< Architecture_t, Layer_t > |  |