| AddWeightsXMLTo(void *parent) | TMVA::DNN::TBatchNormLayer< Architecture_t > | virtual | 
  | Backward(Tensor_t &gradients_backward, const Tensor_t &activations_backward) | TMVA::DNN::TBatchNormLayer< Architecture_t > | virtual | 
  | BNormDescriptors_t typedef | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | CalculateNormDim(int axis, size_t c, size_t h, size_t w) | TMVA::DNN::TBatchNormLayer< Architecture_t > | inlineprotectedstatic | 
  | CopyBiases(const std::vector< Matrix_t > &otherBiases) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | CopyParameters(const VGeneralLayer< Arch > &layer) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | CopyWeights(const std::vector< Matrix_t > &otherWeights) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | fActivationGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fBatchSize | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fBiases | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fBiasGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fDepth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fDerivatives | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fDescriptors | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fEpsilon | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fHeight | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInit | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInputDepth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInputHeight | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fInputWidth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fIsTraining | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fIVar | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fMomentum | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fMu | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fMu_Training | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fNormAxis | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | Forward(Tensor_t &input, bool inTraining=true) | TMVA::DNN::TBatchNormLayer< Architecture_t > | virtual | 
  | fOutput | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fReshapedData | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fTrainedBatches | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fVar | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fVar_Training | TMVA::DNN::TBatchNormLayer< Architecture_t > | private | 
  | fWeightGradients | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fWeights | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | fWidth | TMVA::DNN::VGeneralLayer< Architecture_t > | protected | 
  | GetActivationGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetActivationGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetActivationGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetActivationGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBatchMean() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetBatchMean() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetBatchSize() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiases() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiases() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasesAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasesAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetBiasGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetDepth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetEpsilon() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetExtraLayerParameters() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inlinevirtual | 
  | GetHeight() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInitialization() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInputDepth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInputHeight() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetInputWidth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetIVariance() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetIVariance() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetMomentum() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetMuVector() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetMuVector() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetNormAxis() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetNTrainedBatches() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetNTrainedBatches() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetOutput() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutput() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutputAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetOutputAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetReshapedData() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetReshapedData() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetVariance() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetVariance() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetVarVector() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetVarVector() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inline | 
  | GetWeightGradients() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradients() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradientsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightGradientsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeights() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeights() | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightsAt(size_t i) const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWeightsAt(size_t i) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | GetWidth() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | HelperDescriptor_t typedef | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | Initialize() | TMVA::DNN::TBatchNormLayer< Architecture_t > | virtual | 
  | IsTraining() const | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | Matrix_t typedef | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | Print() const | TMVA::DNN::TBatchNormLayer< Architecture_t > | virtual | 
  | ReadMatrixXML(void *node, const char *name, Matrix_t &matrix) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | ReadWeightsFromXML(void *parent) | TMVA::DNN::TBatchNormLayer< Architecture_t > | virtual | 
  | ResetTraining() | TMVA::DNN::TBatchNormLayer< Architecture_t > | inlinevirtual | 
  | Scalar_t typedef | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | SetBatchSize(size_t batchSize) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetDepth(size_t depth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetDropoutProbability(Scalar_t) | TMVA::DNN::VGeneralLayer< Architecture_t > | inlinevirtual | 
  | SetExtraLayerParameters(const std::vector< Matrix_t > ¶ms) | TMVA::DNN::TBatchNormLayer< Architecture_t > | inlinevirtual | 
  | SetHeight(size_t height) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetInputDepth(size_t inputDepth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetInputHeight(size_t inputHeight) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetInputWidth(size_t inputWidth) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetIsTraining(bool isTraining) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | SetWidth(size_t width) | TMVA::DNN::VGeneralLayer< Architecture_t > | inline | 
  | TBatchNormLayer(size_t batchSize, size_t inputDepth, size_t inputHeight, size_t inputWidth, const std::vector< size_t > &shape, int axis=-1, Scalar_t momentum=-1., Scalar_t epsilon=0.0001) | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | TBatchNormLayer(TBatchNormLayer< Architecture_t > *layer) | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | TBatchNormLayer(const TBatchNormLayer &) | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | Tensor_t typedef | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | Update(const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateBiases(const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateBiasGradients(const std::vector< Matrix_t > &biasGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateWeightGradients(const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | UpdateWeights(const std::vector< Matrix_t > &weightGradients, const Scalar_t learningRate) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, size_t WeightsNRows, size_t WeightsNCols, size_t BiasesNSlices, size_t BiasesNRows, size_t BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t Depth, size_t Height, size_t Width, size_t WeightsNSlices, std::vector< size_t > WeightsNRows, std::vector< size_t > WeightsNCols, size_t BiasesNSlices, std::vector< size_t > BiasesNRows, std::vector< size_t > BiasesNCols, size_t OutputNSlices, size_t OutputNRows, size_t OutputNCols, EInitialization Init) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(VGeneralLayer< Architecture_t > *layer) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | VGeneralLayer(const VGeneralLayer &) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | WriteMatrixToXML(void *node, const char *name, const Matrix_t &matrix) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | WriteTensorToXML(void *node, const char *name, const std::vector< Matrix_t > &tensor) | TMVA::DNN::VGeneralLayer< Architecture_t > |  | 
  | ~TBatchNormLayer() | TMVA::DNN::TBatchNormLayer< Architecture_t > |  | 
  | ~VGeneralLayer() | TMVA::DNN::VGeneralLayer< Architecture_t > | virtual |