31    print(
"Running in serial mode since ROOT does not support MT")
 
   54    fname = 
"time_data_t" + str(ntime) + 
"_d" + str(ndim) + 
".root" 
   58    for i 
in range(ntime):
 
   67    f = 
TFile(fname, 
"RECREATE")
 
   72    for i 
in range(ntime):
 
   76    for i 
in range(ntime):
 
   77        bkg.Branch(
"vars_time" + str(i), 
"std::vector<float>", x1[i])
 
   78        sgn.Branch(
"vars_time" + str(i), 
"std::vector<float>", x2[i])
 
   89    for j 
in range(ntime):
 
   97            print(
"Generating  event ... %d", i)
 
   99        for j 
in range(ntime):
 
  111            for k 
in range(ntime):
 
  122            for j 
in range(ntime):
 
  125            for j 
in range(ntime):
 
  168      ROOT.Warning(
"TMVA_RNN_Classification", 
"Skip using Keras since tensorflow cannot be imported")
 
  172rnn_types = [
"RNN", 
"LSTM", 
"GRU"]
 
  173use_rnn_type = [1, 1, 1]
 
  176    use_rnn_type = [0, 0, 0]
 
  177    use_rnn_type[use_type] = 1
 
  186        "TMVA_RNN_Classification",
 
  187        "TMVA is not build with GPU or CPU multi-thread support. Cannot use TMVA Deep Learning for RNN",
 
  190archString = 
"GPU" if useGPU 
else "CPU" 
  192writeOutputFile = 
True 
  203inputFileName = 
"time_data_t10_d30.root" 
  220outfileName = 
"data_RNN_" + archString + 
".root" 
  225    outputFile = 
TFile.Open(outfileName, 
"RECREATE")
 
  249    "TMVAClassification",
 
  254    DrawProgressBar=
True,
 
  255    Transformations=
None,
 
  257    AnalysisType=
"Classification",
 
  258    ModelPersistence=
True,
 
  268for i 
in range(ntime):
 
  284nTrainSig = 0.8 * nTotEvts
 
  285nTrainBkg = 0.8 * nTotEvts
 
  295    nTrain_Signal=nTrainSig,
 
  296    nTrain_Background=nTrainBkg,
 
  299    NormMode=
"NumEvents",
 
  301    CalcCorrelations=
False,
 
  304print(
"prepared DATA LOADER ")
 
  314        if not use_rnn_type[i]:
 
  317        rnn_type = rnn_types[i]
 
  321        rnnLayout = str(rnn_type) + 
"|10|" + str(ninput) + 
"|" + str(ntime) + 
"|0|1,RESHAPE|FLAT,DENSE|64|TANH,LINEAR" 
  324        trainingString1 = 
"LearningRate=1e-3,Momentum=0.0,Repetitions=1,ConvergenceSteps=5,BatchSize=" + str(batchSize)
 
  325        trainingString1 += 
",TestRepetitions=1,WeightDecay=1e-2,Regularization=None,MaxEpochs=" + str(maxepochs)
 
  326        trainingString1 += 
"Optimizer=ADAM,DropConfig=0.0+0.+0.+0." 
  334        rnnName = 
"TMVA_" + str(rnn_type)
 
  341            ErrorStrategy=
"CROSSENTROPY",
 
  343            WeightInitialization=
"XAVIERUNIFORM",
 
  346            InputLayout=str(ntime) + 
"|" + str(ninput),
 
  348            TrainingStrategy=trainingString1,
 
  349            Architecture=archString
 
  358        "LearningRate=1e-3,Momentum=0.0,Repetitions=1," 
  359        "ConvergenceSteps=10,BatchSize=256,TestRepetitions=1," 
  360        "WeightDecay=1e-4,Regularization=None,MaxEpochs=20" 
  361        "DropConfig=0.0+0.+0.+0.,Optimizer=ADAM:" 
  372        ErrorStrategy=
"CROSSENTROPY",
 
  374        WeightInitialization=
"XAVIER",
 
  376        InputLayout=
"1|1|" + str(ntime * ninput),
 
  377        Layout=
"DENSE|64|TANH,DENSE|TANH|64,DENSE|TANH|64,LINEAR",
 
  378        TrainingStrategy=trainingString1
 
  390            modelName = 
"model_" + rnn_types[i] + 
".h5" 
  391            trainedModelName = 
"trained_" + modelName
 
  392            print(
"Building recurrent keras model using a", rnn_types[i], 
"layer")
 
  400            from tensorflow.keras.layers import Input, Dense, Dropout, Flatten, SimpleRNN, GRU, LSTM, Reshape, BatchNormalization
 
  403            model.add(Reshape((10, 30), input_shape=(10 * 30,)))
 
  405            if rnn_types[i] == 
"LSTM":
 
  407            elif rnn_types[i] == 
"GRU":
 
  415            model.compile(loss=
"binary_crossentropy", optimizer=
Adam(learning_rate=0.001), weighted_metrics=[
"accuracy"])
 
  418            print(
"saved recurrent model", modelName)
 
  422                print(
"Error creating Keras recurrent model file - Skip using Keras")
 
  425                print(
"Booking Keras  model ", rnn_types[i])
 
  429                    "PyKeras_" + rnn_types[i],
 
  433                    FilenameModel=modelName,
 
  434                    FilenameTrainedModel=
"trained_" + modelName,
 
  437                    GpuOptions=
"allow_growth=True",
 
  442if not useKeras 
or not useTMVA_BDT:
 
  461        BaggedSampleFraction=0.5,
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t format
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
This is the main MVA steering class.