40using std::vector, std::cout, std::endl;
 
   49   std::string 
factoryOptions( 
"!V:!Silent:Transformations=I;D;P;G,D:AnalysisType=Classification" );
 
   50   TString fname = 
"./tmva_example_multiple_background.root";
 
   55      std::cout << 
"ERROR: could not open data file" << std::endl;
 
   81   dataloader->AddVariable( 
"var1", 
"Variable 1", 
"", 
'F' );
 
   82   dataloader->AddVariable( 
"var2", 
"Variable 2", 
"", 
'F' );
 
   83   dataloader->AddVariable( 
"var3", 
"Variable 3", 
"units", 
'F' );
 
   84   dataloader->AddVariable( 
"var4", 
"Variable 4", 
"units", 
'F' );
 
   95                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
 
   99         "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedBoost:BaggedSampleFraction=0.6:SeparationType=GiniIndex:nCuts=20:MaxDepth=2" );
 
  119   dataloader->AddVariable( 
"var1", 
"Variable 1", 
"", 
'F' );
 
  120   dataloader->AddVariable( 
"var2", 
"Variable 2", 
"", 
'F' );
 
  121   dataloader->AddVariable( 
"var3", 
"Variable 3", 
"units", 
'F' );
 
  122   dataloader->AddVariable( 
"var4", 
"Variable 4", 
"units", 
'F' );
 
  131                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
 
  135         "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedBoost:BaggedSampleFraction=0.6:SeparationType=GiniIndex:nCuts=20:MaxDepth=2" );
 
  155   dataloader->AddVariable( 
"var1", 
"Variable 1", 
"", 
'F' );
 
  156   dataloader->AddVariable( 
"var2", 
"Variable 2", 
"", 
'F' );
 
  157   dataloader->AddVariable( 
"var3", 
"Variable 3", 
"units", 
'F' );
 
  158   dataloader->AddVariable( 
"var4", 
"Variable 4", 
"units", 
'F' );
 
  167                                        "nTrain_Signal=0:nTrain_Background=0:SplitMode=Random:NormMode=NumEvents:!V" );
 
  171         "!H:!V:NTrees=1000:BoostType=Grad:Shrinkage=0.30:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20:MaxDepth=2" );
 
  211   outputTree->Branch(
"weight", &weight, 
"weight/F");
 
  239   reader0->BookMVA( 
"BDT method", 
"datasetBkg0/weights/TMVAMultiBkg0_BDTG.weights.xml" );
 
  240   reader1->BookMVA( 
"BDT method", 
"datasetBkg1/weights/TMVAMultiBkg1_BDTG.weights.xml" );
 
  241   reader2->BookMVA( 
"BDT method", 
"datasetBkg2/weights/TMVAMultiBkg2_BDTG.weights.xml" );
 
  245   TString fname = 
"./tmva_example_multiple_background.root";
 
  254    std::cout << 
"--- Select signal sample" << std::endl;
 
  260    std::cout << 
"--- Select background 0 sample" << std::endl;
 
  266    std::cout << 
"--- Select background 1 sample" << std::endl;
 
  272    std::cout << 
"--- Select background 2 sample" << std::endl;
 
  285      std::cout << 
"--- Processing: " << 
theTree->GetEntries() << 
" events" << std::endl;
 
  293       std::cout << 
"--- ... Processing event: " << 
ievt << std::endl;
 
  309      std::cout << 
"--- End of event loop: "; 
sw.Print();
 
  321   std::cout << 
"--- Created root file: \"" << 
outfileName.Data() << 
"\" containing the MVA output histograms" << std::endl;
 
  327   std::cout << 
"==> Application of readers is done! combined tree created" << std::endl << std::endl;
 
  345      hFP = 
new TH1F(
"hfp",
"hfp",100,-1,1);
 
  346      hTP = 
new TH1F(
"htp",
"htp",100,-1,1);
 
  355   Double_t EstimatorFunction( std::vector<Double_t> & factors ){
 
  388      std::cout << std::endl;
 
  389      std::cout << 
"======================" << std::endl
 
  391      << 
"Purity     : " << 
purity << std::endl << std::endl
 
  430        ranges.push_back( 
new Interval(-1,1) ); 
 
  431        ranges.push_back( 
new Interval(-1,1) );
 
  432        ranges.push_back( 
new Interval(-1,1) );
 
  434   std::cout << 
"Classifier ranges (defined by the user)" << std::endl;
 
  435        for( std::vector<Interval*>::iterator it = ranges.
begin(); it != ranges.
end(); it++ ){
 
  436           std::cout << 
" range: " << (*it)->GetMin() << 
"   " << (*it)->GetMax() << std::endl;
 
  440   chain->Add(
"tmva_example_multiple_backgrounds__applied.root");
 
  456        std::vector<Double_t> 
result;
 
  460   std::cout << std::endl;
 
  463   for( std::vector<Double_t>::iterator it = 
result.begin(); it<
result.end(); it++ ){
 
  464      std::cout << 
"  cutValue[" << 
n << 
"] = " << (*it) << 
";"<< std::endl;
 
  479   cout << 
"Start Test TMVAGAexample" << endl
 
  480        << 
"========================" << endl
 
  485   gROOT->ProcessLine(
"create_MultipleBackground(200)");
 
  489   cout << 
"========================" << endl;
 
  490   cout << 
"--- Training" << endl;
 
  494   cout << 
"========================" << endl;
 
  495   cout << 
"--- Application & create combined tree" << endl;
 
  499   cout << 
"========================" << endl;
 
  500   cout << 
"--- maximize significance" << endl;
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
void Print(Option_t *option="") const override
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
const_iterator begin() const
 
const_iterator end() const
 
A chain is a collection of files containing TTree objects.
 
A specialized string object used for TTree selections.
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
1-D histogram with a float per channel (see TH1 documentation)
 
This is the main MVA steering class.
 
void TrainAllMethods()
Iterates through all booked methods and calls training.
 
MethodBase * BookMethod(DataLoader *loader, TString theMethodName, TString methodTitle, TString theOption="")
Book a classifier or regression method.
 
void TestAllMethods()
Evaluates all booked methods on the testing data and adds the output to the Results in the corresponi...
 
void EvaluateAllMethods(void)
Iterates over all MVAs that have been booked, and calls their evaluation methods.
 
Fitter using a Genetic Algorithm.
 
Interface for a fitter 'target'.
 
The TMVA::Interval Class.
 
The Reader class serves to use the MVAs in a specific analysis context.
 
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
 
A TTree represents a columnar dataset.
 
double efficiency(double effFuncVal, int catIndex, int sigCatIndex)
 
create variable transformations