24   while ((key = (
TKey*)next())) {
 
   42      while ((key = (
TKey*)next())) {
 
   69   cout << 
"--- Launch TMVA GUI to view input file: " << fName << endl;
 
   77      cout << 
"==> Abort TMVAGui, please verify filename" << endl;
 
   83         cout << 
"==> Abort TMVAGui, please verify if dataset exist" << endl;
 
   86   if( (dataset==
""||GetEntries()==1))
 
   90      }
else if((dataset==
""||GetEntries()>=1))
 
  101               bar->dataset.Data());
 
  105         bar->
AddButton( 
"Quit",   
".q", 
"Quit", 
"button");
 
  110         gROOT->SaveContext();
 
  115   GetListOfKeys()->Clone();
 
  139      tmp   = str->GetString();
 
  141                            tmp.ReplaceAll(
"InputVariables_",
"").Data() );
 
  142      if (tmp.Contains( 
"Id" )) title = 
"Input variables (training sample)";
 
  146                    TString::Format( 
"Plots all '%s'-transformed input variables (macro variables(...))", str->GetString().Data() ),
 
  152   it.Reset(); ch = 
'a';
 
  154      tmp   = str->GetString();
 
  156                            tmp.ReplaceAll(
"InputVariables_",
"").Data() );
 
  157      if (tmp.Contains( 
"Id" )) title = 
"Input variable correlations (scatter profiles)";
 
  161                    TString::Format( 
"Plots all correlation profiles between '%s'-transformed input variables (macro CorrGui(...))",
 
  162                          str->GetString().Data() ),
 
  168   title = 
TString::Format( 
"(%i) Input Variable Linear Correlation Coefficients", ++
ic );
 
  171                 dataset.Data(), fName ),
 
  172                 "Plots signal and background correlation summaries for all input variables (macro correlations.C)",
 
  175   title =
TString::Format( 
"(%ia) Classifier Output Distributions (test sample)", ++
ic );
 
  178                 dataset.Data(), fName ),
 
  179                 "Plots the output of each classifier for the test data (macro mvas(...,0))",
 
  182   title =
TString::Format( 
"(%ib) Classifier Output Distributions (test and training samples superimposed)", 
ic );
 
  185                 dataset.Data(), fName),
 
  186                 "Plots the output of each classifier for the test (histograms) and training (dots) data (macro mvas(...,3))",
 
  189   title = 
TString::Format( 
"(%ic) Classifier Probability Distributions (test sample)", 
ic );
 
  192                 dataset.Data(), fName ),
 
  193                 "Plots the probability of each classifier for the test data (macro mvas(...,1))",
 
  196   title =
TString::Format( 
"(%id) Classifier Rarity Distributions (test sample)", 
ic );
 
  199                 dataset.Data(), fName ),
 
  200                 "Plots the Rarity of each classifier for the test data (macro mvas(...,2)) - background distribution should be uniform",
 
  206                 dataset.Data(), fName ),
 
  207                 "Plots signal and background efficiencies versus cut on classifier output (macro mvaeffs.cxx)",
 
  210   title = 
TString::Format( 
"(%ib) Classifier Background Rejection vs Signal Efficiency (ROC curve)", 
ic );
 
  213                 dataset.Data(), fName ),
 
  214                 "Plots background rejection vs signal efficiencies (macro efficiencies.cxx) [\"ROC\" stands for \"Receiver Operation Characteristics\"]",
 
  217   title = 
TString::Format( 
"(%ib) Classifier 1/(Backgr. Efficiency) vs Signal Efficiency (ROC curve)", 
ic );
 
  220                 dataset.Data(), fName, 3 ),
 
  221                 "Plots 1/(background eff.)  vs signal efficiencies (macro efficiencies.cxx) [\"ROC\" stands for \"Receiver Operation Characteristics\"]",
 
  224   title = 
TString::Format( 
"(%i) Parallel Coordinates (requires ROOT-version >= 5.17)", ++
ic );
 
  227                 dataset.Data(), fName ),
 
  228                 "Plots parallel coordinates for classifiers and input variables (macro paracoor.cxx, requires ROOT >= 5.17)",
 
  231   title =
TString::Format( 
"(%i) PDFs of Classifiers (requires \"CreateMVAPdfs\" option set)", ++
ic );
 
  234                 dataset.Data(), fName ),
 
  235                 "Plots the PDFs of the classifier output distributions for signal and background - if requested (macro probas.cxx)",
 
  241                 dataset.Data(), fName ),
 
  242                 "Plot training history of classifiers with multiple passed (eg Neural Networks) ",
 
  248                 dataset.Data(), fName ),
 
  249                 "Plots to verify the likelihood reference distributions (macro likelihoodrefs.cxx)",
 
  253   dataset.Data(),fName );
 
  257                 "Plots the MLP weights (macro network.cxx)",
 
  263                 dataset.Data(), fName ),
 
  264                 "Plots error estimator versus training epoch for training and test samples (macro annconvergencetest.C)",
 
  270                 dataset.Data() , fName ),
 
  271                 "Plots the Decision Trees trained by BDT algorithms (macro BDT(itree,...))",
 
  277                 dataset.Data() , fName ),
 
  278                 "Plots to monitor boosting and pruning of decision trees (macro BDTControlPlots.cxx)",
 
  290                 "Plot Foams (macro PlotFoams.cxx)",
 
  296                 dataset.Data() , fName ),
 
  297                 "Plots to monitor boosting of general classifiers (macro BoostControlPlots)",
 
  300   cbar->AddSeparator();
 
  305   cbar->SetTextColor(
"black");
 
  316      cout << 
"=== Note: inactive buttons indicate classifiers that were not trained, ===" << endl;
 
  317      cout << 
"===       or functionalities that were not invoked during the training ===" << endl;
 
  320   gROOT->SaveContext();
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
static TList * TMVAGui_keyContent
 
static std::vector< TString > TMVAGui_inactiveButtons
 
R__EXTERN TStyle * gStyle
 
R__EXTERN TSystem * gSystem
 
virtual Int_t GetEntries() const
 
A Control Bar is a fully user configurable tool which provides fast access to frequently used operati...
 
void Show()
Show control bar.
 
void AddSeparator()
Add separator.
 
void SetButtonWidth(UInt_t width)
Sets the width in pixels for control bar button.
 
void AddButton(TControlBarButton *button)
Add button.
 
void SetTextColor(const char *colorName)
Sets text color for control bar buttons, e.g.:
 
TList * GetListOfKeys() const override
 
TDirectory * GetDirectory(const char *apath, Bool_t printError=false, const char *funcname="GetDirectory") override
Find a directory named "apath".
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
void Close(Option_t *option="") override
Close a file.
 
Book space in a file, create I/O buffers, to fill them, (un)compress them.
 
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
 
const char * GetName() const override
Returns name of object.
 
Collectable string class.
 
const char * Data() const
 
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
 
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
 
void SetScreenFactor(Float_t factor=1)
 
virtual const char * GetIncludePath()
Get the list of include path.
 
virtual void SetIncludePath(const char *includePath)
IncludePath should contain the list of compiler flags to indicate where to find user defined header f...
 
UInt_t GetListOfKeys(TList &keys, TString inherits, TDirectory *dir=nullptr)
 
void ActionButton(TControlBar *cbar, const TString &title, const TString ¯o, const TString &comment, const TString &buttonType, TString requiredKey="")
 
TList * GetKeyList(const TString &pattern)
 
void TMVAGui(const char *fName="TMVA.root", TString dataset="")