113   const std::vector<double> & 
minpar = 
fFitter->Result().Parameters();
 
  117   for (
int i =0; i < 
npar; ++i) {
 
  122   if (
diff > s * 1.E-12 ) 
Warning(
"Chisquare",
"given parameter values are not at minimum - chi2 at minimum is returned");
 
  123   return fFitter->Result().Chi2();
 
 
  138   std::cout<<
"Execute command= "<<
command<<std::endl;
 
  150         Error(
"ExecuteCommand",
"FCN must set before executing this command");
 
  156      return  (
ret) ? 0 : -1;
 
  164         Error(
"ExecuteCommand",
"FCN must set before executing this command");
 
  168      return  (
ret) ? 0 : -1;
 
  174         Error(
"ExecuteCommand",
"FCN must set before executing this command");
 
  180      return  (
ret) ? 0 : -1;
 
  186         Error(
"ExecuteCommand",
"FCN must set before executing this command");
 
  192      return  (
ret) ? 0 : -1;
 
  195   else if (
scommand.Contains(
"MINO"))   {
 
  197      if (
fFitter->Config().MinosErrors() ) 
return 0;
 
  200         Error(
"ExecuteCommand",
"FCN must set before executing this command");
 
  204      fFitter->Config().SetMinosErrors(
true);
 
  209      return  (
ret) ? 0 : -1;
 
  213   else if (
scommand.Contains(
"HES"))   {
 
  215      if (
fFitter->Config().ParabErrors() ) 
return 0;
 
  218         Error(
"ExecuteCommand",
"FCN must set before executing this command");
 
  223      fFitter->Config().SetParabErrors(
true);
 
  226      return  (
ret) ? 0 : -1;
 
  230   else if (
scommand.Contains(
"FIX"))   {
 
  231      for(
int i = 0; i < 
nargs; i++) {
 
  237   else if (
scommand.Contains(
"SET LIM"))   {
 
  239         Error(
"ExecuteCommand",
"Invalid parameters given in SET LIMIT");
 
  242      int ipar = 
int(args[0]);
 
  244      double low = args[1];
 
  246      fFitter->Config().ParSettings(ipar).SetLimits(low,
up);
 
  250   else if (
scommand.Contains(
"SET PRIN"))   {
 
  251      if (
nargs < 1) 
return -1;
 
  252      fFitter->Config().MinimizerOptions().SetPrintLevel(
int(args[0]) );
 
  256   else if (
scommand.Contains(
"SET ERR"))   {
 
  257      if (
nargs < 1) 
return -1;
 
  258      fFitter->Config().MinimizerOptions().SetPrintLevel(
int( args[0]) );
 
  262   else if (
scommand.Contains(
"SET STR"))   {
 
  263      if (
nargs < 1) 
return -1;
 
  264      fFitter->Config().MinimizerOptions().SetStrategy(
int(args[0]) );
 
  268   else if (
scommand.Contains(
"SET GRA"))   {
 
  274   else if (
scommand.Contains(
"SET NOW"))   {
 
  280   else if (
scommand.Contains(
"CALL FCN"))   {
 
  283      if (
nargs < 1 || 
fFCN == 
nullptr ) 
return -1;
 
  286      std::vector<double> params(
npar);
 
  287      for (
int i = 0; i < 
npar; ++i)
 
  291      (*fFCN)(
npar, 
nullptr, 
fval, ¶ms[0],
int(args[0]) ) ;
 
  296      Error(
"ExecuteCommand",
"Invalid or not supported command given %s",
command);
 
 
  305   int nps  = 
fFitter->Config().ParamsSettings().size();
 
  308      Error(
"ValidParameterIndex",
"%s",
msg.c_str());
 
 
  319      fFitter->Config().ParSettings(ipar).Fix();
 
 
  335   if (!
fFitter->Result().IsValid()) {
 
  336      Error(
"GetConfidenceIntervals",
"Cannot compute confidence intervals with an invalide fit result");
 
  340   fFitter->Result().GetConfidenceIntervals(
n,ndim,1,
x,
ci,cl,
false);
 
 
  370   if (!
fFitter->Result().IsValid() ) {
 
  371      Error(
"GetConfidenceIntervals",
"Cannot compute confidence intervals with an invalide fit result");
 
  379      Error(
"GetConfidenceIntervals",
"Cannot compute confidence intervals without a fitting object");
 
  392         Error(
"GetConfidenceIntervals", 
"Invalid object passed for storing confidence level data, must be a TGraphErrors or a TH1");
 
  398         Error(
"GetConfidenceIntervals", 
"Invalid object passed for storing confidence level data, must be a TGraph2DErrors or a TH2");
 
  404         Error(
"GetConfidenceIntervals", 
"Invalid object passed for storing confidence level data, must be a TH3");
 
  411   data.Opt().fUseEmpty = 
true; 
 
  423   unsigned int n = 
data.Size();
 
  425   std::vector<double> 
ci( 
n );
 
  427   fFitter->Result().GetConfidenceIntervals(
data,&
ci[0],cl,
false);
 
  433   for (
unsigned int i = 0; i < 
n; ++i) {
 
  434      const double * 
x = 
data.Coords(i);
 
  435      double y = (*func)( 
x ); 
 
  450         TH1 * 
h1 = 
dynamic_cast<TH1 *
> (obj);
 
 
  474   if (!
fFitter->Result().IsValid() ) {
 
  475      Warning(
"GetCovarianceMatrix",
"Invalid fit result");
 
  480   for (
unsigned int i = 0; i < 
ntotpar; ++i) {
 
  481      if (
fFitter->Config().ParSettings(i).IsFixed() ) 
continue;
 
  484         if (
fFitter->Config().ParSettings(
j).IsFixed() ) 
continue;
 
 
  503      if (
c == 
nullptr) 
return 0;
 
 
  516      Warning(
"GetErrors",
"Invalid fit result");
 
  521   eplus = 
result.UpperError(ipar);
 
 
  531   return fFitter->Result().NTotalParameters();
 
 
  535   return fFitter->Result().NFreeParameters();
 
 
  542   if (
fFitter->Result().IsEmpty() ) {
 
  546   return fFitter->Result().Error(ipar);
 
 
  553   if (
fFitter->Result().IsEmpty() ) {
 
  557   return fFitter->Result().Value(ipar);
 
 
  567   const std::string & 
pname = 
fFitter->Config().ParSettings(ipar).Name();
 
  568   const char * 
c = 
pname.c_str();
 
  571   if (
fFitter->Result().IsEmpty() ) {
 
  573      verr  = 
fFitter->Config().ParSettings(ipar).Value();  
 
  574      vlow  = 
fFitter->Config().ParSettings(ipar).LowerLimit();  
 
  575      vhigh   = 
fFitter->Config().ParSettings(ipar).UpperLimit();  
 
 
  594   return fFitter->Config().ParSettings(ipar).Name().c_str();
 
 
  614   Warning(
"GetSumLog",
"Dummy  method - returned 0");
 
 
  625   return fFitter->Config().ParSettings(ipar).IsFixed();
 
 
  633   if (
fFitter->GetMinimizer() && 
fFitter->Config().MinimizerType() == 
"Minuit")
 
  634      fFitter->GetMinimizer()->PrintResults();
 
  636      if (level > 0) 
fFitter->Result().Print(std::cout);
 
  637      if (level > 1)  
fFitter->Result().PrintCovMatrix(std::cout);
 
 
  647      fFitter->Config().ParSettings(ipar).Release();
 
 
  655   Info(
"SetFitMethod",
"non supported method");
 
 
  664   std::vector<ROOT::Fit::ParameterSettings> & 
parlist = 
fFitter->Config().ParamsSettings();
 
 
  692   if (
fFitter->Result().FittedFunction() != 
nullptr) {
 
  716      Error(
"SetMinimizerFunction",
"cannot create minimizer %s",
fFitter->Config().MinimizerType().c_str() );
 
  720         Error(
"SetMinimizerFunction",
"Object Function pointer is NULL");
 
 
  758   int ndim = 
fFitter->Config().ParamsSettings().size();
 
  759   if (ndim != 0) 
fobj->SetDimension(ndim);
 
 
  781   return fFitter->GetMinimizer();
 
 
  788   if (!
fFitter.get() ) 
return nullptr;
 
 
  800   if (!
gr) 
return false;
 
  803      Error(
"Scan",
"Minimizer is not available - cannot scan before fitting");
 
 
  853   if (!
gr) 
return false;
 
  856      Error(
"Scan",
"Minimizer is not available - cannot scan before fitting");
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
 
Class describing the binned data sets : vectors of x coordinates, y values and optionally error on y ...
 
Chi2FCN class for binned fits using the least square methods.
 
class containing the result of the fit and all the related information (fitted parameter values,...
 
LogLikelihoodFCN class for likelihood fits.
 
Class, describing value, limits and step size of the parameters Provides functionality also to set/re...
 
void SetLimits(double low, double up)
set a double side limit, if low == up the parameter is fixed if low > up the limits are removed The c...
 
void Fix()
fix the parameter
 
class evaluating the log likelihood for binned Poisson likelihood fits it is template to distinguish ...
 
Class describing the un-binned data sets (just x coordinates values) of any dimensions.
 
Documentation for the abstract class IBaseFunctionMultiDim.
 
virtual unsigned int NDim() const =0
Retrieve the dimension of the function.
 
Abstract Minimizer class, defining the interface for the various minimizer (like Minuit2,...
 
void SetErrorDef(double up)
Set scale for calculating the errors.
 
virtual void SetFunction(const ROOT::Math::IMultiGenFunction &func)=0
Set the function to minimize.
 
virtual bool Scan(unsigned int ivar, unsigned int &nstep, double *x, double *y, double xmin=0, double xmax=0)
Scan function minimum for variable i.
 
virtual bool Contour(unsigned int ivar, unsigned int jvar, unsigned int &npoints, double *xi, double *xj)
Find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum.
 
Backward compatible implementation of TVirtualFitter.
 
const char * GetParName(Int_t ipar) const override
Return name of parameter ipar.
 
void GetConfidenceIntervals(Int_t n, Int_t ndim, const Double_t *x, Double_t *ci, Double_t cl=0.95) override
Computes point-by-point confidence intervals for the fitted function.
 
void ReleaseParameter(Int_t ipar) override
Release a fit parameter.
 
Double_t GetParError(Int_t ipar) const override
Parameter error.
 
ROOT::Math::Minimizer * fMinimizer
 
void DoSetDimension()
Private method to set dimension in objective function.
 
void SetFCN(void(*fcn)(Int_t &, Double_t *, Double_t &f, Double_t *, Int_t)) override
Override setFCN to use the Adapter to Minuit2 FCN interface To set the address of the minimization fu...
 
ROOT::Math::Minimizer * GetMinimizer() const
Return a pointer to the minimizer.
 
void Clear(Option_t *option="") override
Clear resources for consecutive fits.
 
void PrintResults(Int_t level, Double_t amin) const override
Print the fit result.
 
Int_t GetStats(Double_t &amin, Double_t &edm, Double_t &errdef, Int_t &nvpar, Int_t &nparx) const override
Get fit statistical information.
 
Int_t GetNumberFreeParameters() const override
 
TBackCompFitter()
Constructor needed by TVirtualFitter interface.
 
void FixParameter(Int_t ipar) override
Fix the parameter.
 
void SetFitMethod(const char *name) override
Set fit method (chi2 or likelihood).
 
Double_t GetCovarianceMatrixElement(Int_t i, Int_t j) const override
Get error matrix element (return all zero if matrix is not available)
 
Bool_t IsFixed(Int_t ipar) const override
Query if parameter ipar is fixed.
 
std::shared_ptr< ROOT::Fit::FitData > fFitData
! Data of the fit
 
ROOT::Math::IParamMultiFunction * fModelFunc
 
Int_t GetNumberTotalParameters() const override
Number of total parameters.
 
Int_t ExecuteCommand(const char *command, Double_t *args, Int_t nargs) override
Execute the command (Fortran Minuit compatible interface)
 
TFitResult * GetTFitResult() const
Get a copy of the Fit result returning directly a new TFitResult.
 
void ReCreateMinimizer()
Recreate a minimizer instance using the function and data set objective function in minimizers functi...
 
std::shared_ptr< ROOT::Fit::Fitter > fFitter
! Pointer to fitter object
 
Int_t GetErrors(Int_t ipar, Double_t &eplus, Double_t &eminus, Double_t &eparab, Double_t &globcc) const override
Get fit errors.
 
std::vector< double > fCovar
Cached covariance matrix (NxN)
 
bool ValidParameterIndex(int ipar) const
Check if ipar is a valid parameter index.
 
bool Contour(unsigned int ipar, unsigned int jpar, TGraph *gr, double confLevel=0.683)
Create a 2D contour around the minimum for the parameter ipar and jpar if a minimum does not exist or...
 
Double_t GetSumLog(Int_t i) override
Sum of log (un-needed)
 
~TBackCompFitter() override
Destructor - delete the managed objects.
 
Double_t Chisquare(Int_t npar, Double_t *params) const override
Do chisquare calculations in case of likelihood fits Do evaluation a the minimum only.
 
ROOT::Math::IMultiGenFunction * GetObjFunction() const
Return a pointer to the objective function (FCN) If fitting directly using TBackCompFitter the pointe...
 
virtual void SetObjFunction(ROOT::Math::IMultiGenFunction *f)
Set the objective function for fitting Needed if fitting directly using TBackCompFitter class The cla...
 
bool Scan(unsigned int ipar, TGraph *gr, double xmin=0, double xmax=0)
Scan parameter ipar between value of xmin and xmax A graph must be given which will be on return fill...
 
ROOT::Math::IMultiGenFunction * fObjFunc
 
Double_t GetParameter(Int_t ipar) const override
Parameter value.
 
Int_t SetParameter(Int_t ipar, const char *parname, Double_t value, Double_t verr, Double_t vlow, Double_t vhigh) override
Set (add) a new fit parameter passing initial value, step size (verr) and parameter limits if vlow > ...
 
Double_t * GetCovarianceMatrix() const override
Get the error matrix in a pointer to a NxN array.
 
Extends the ROOT::Fit::Result class with a TNamed inheritance providing easy possibility for I/O.
 
Graph 2D class with errors.
 
Graphics object made of three arrays X, Y and Z with the same number of points each.
 
A TGraphErrors is a TGraph with error bars.
 
virtual void SetPointError(Double_t ex, Double_t ey)
Set ex and ey values for point pointed by the mouse.
 
A TGraph is an object made of two arrays X and Y with npoints each.
 
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
 
virtual void Set(Int_t n)
Set number of points in the graph Existing coordinates are preserved New coordinates above fNpoints a...
 
TH1 is the base class of all histogram classes in ROOT.
 
virtual Int_t GetDimension() const
 
virtual void SetBinError(Int_t bin, Double_t error)
Set the bin Error Note that this resets the bin eror option to be of Normal Type and for the non-empt...
 
virtual void SetBinContent(Int_t bin, Double_t content)
Set bin content see convention for numbering bins in TH1::GetBin In case the bin number is greater th...
 
virtual Int_t FindBin(Double_t x, Double_t y=0, Double_t z=0)
Return Global bin number corresponding to x,y,z.
 
TObject * Clone(const char *newname="") const override
Make a clone of an object using the Streamer facility.
 
virtual void SetName(const char *name)
Set the name of the TNamed.
 
Mother of all ROOT objects.
 
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
 
virtual Bool_t InheritsFrom(const char *classname) const
Returns kTRUE if object inherits from class "classname".
 
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
 
virtual TObject * GetObjectFit() const
 
virtual Foption_t GetFitOption() const
 
static const char * GetDefaultFitter()
static: return the name of the default fitter
 
void(* fFCN)(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag)
 
void FillData(BinData &dv, const TH1 *hist, TF1 *func=nullptr)
fill the data vector from a TH1.
 
std::string ToString(const T &val)
Utility function for conversion to strings.
 
Double_t ChisquareQuantile(Double_t p, Double_t ndf)
Evaluate the quantiles of the chi-squared probability distribution function.