70   : fdoRegression(
doreg),
 
 
  122   if (fKMatrix   != 0) {
delete fKMatrix; fKMatrix = 0;}
 
 
  136      std::vector<TMVA::SVEvent*>::iterator 
idIter;
 
  140         if((*idIter)->GetAlpha()>0)
 
  160   if((
jevt->GetIdx()>=0) && (fB_low - 
fErrorC_J > 2*fTolerance)) {
 
  165   if((
jevt->GetIdx()<=0) && (
fErrorC_J - fB_up > 2*fTolerance)) {
 
  172   if(
jevt->GetIdx()==0){
 
  174      else                                       ievt = fTEventUp;
 
 
  187   std::vector<TMVA::SVEvent*>::iterator 
idIter;
 
  250         if ( gamma >= (
c_i - 
c_j) )
 
  257         if ( (
c_i - 
c_j) >= gamma)
 
  311      if((*idIter)->GetIdx()==0){
 
  312         Float_t ii = fKMatrix->GetElement(
ievt->GetNs(), (*idIter)->GetNs());
 
  313         Float_t jj = fKMatrix->GetElement(
jevt->GetNs(), (*idIter)->GetNs());
 
  334      if((*idIter)->GetIdx()==0){
 
  335         if((*idIter)->GetErrorCache()> fB_low){
 
  336            fB_low = (*idIter)->GetErrorCache();
 
  337            fTEventLow = (*idIter);
 
  339         if( (*idIter)->GetErrorCache()< fB_up){
 
  340            fB_up =(*idIter)->GetErrorCache();
 
  341            fTEventUp = (*idIter);
 
  348      if (
ievt->GetErrorCache() > fB_low) {
 
  349         fB_low = 
ievt->GetErrorCache();
 
  353         fB_low = 
jevt->GetErrorCache();
 
  359      if (
ievt->GetErrorCache()< fB_low) {
 
  360         fB_up =
ievt->GetErrorCache();
 
  364         fB_up =
jevt->GetErrorCache() ;
 
 
  375   if((fB_up > fB_low - 2*fTolerance)) 
return kTRUE;
 
 
  392   std::vector<TMVA::SVEvent*>::iterator 
idIter;
 
  395     if (fIPyCurrentIter) *fIPyCurrentIter = 
numit;
 
  396     if (fExitFromTraining && *fExitFromTraining) 
break;
 
  406            if ((*idIter)->IsInI0()) {
 
  427                  << 
"Max number of iterations exceeded. " 
  428                  << 
"Training may not be completed. Try use less Cost parameter" << 
Endl;
 
 
  459   std::vector<TMVA::SVEvent*>::iterator 
idIter;
 
  460   if( fSupVec != 0) {
delete fSupVec; fSupVec = 0; }
 
  461   fSupVec = 
new std::vector<TMVA::SVEvent*>(0);
 
  464      if((*idIter)->GetDeltaAlpha() !=0){
 
  465         fSupVec->push_back((*
idIter));
 
 
  476   std::vector<TMVA::SVEvent*>::iterator 
idIter;
 
  477   const Float_t epsilon = 0.001*fTolerance;
 
  613   if( IsDiffSignificant(
b_alpha_i, 
ievt->GetAlpha(), epsilon) ||
 
  626         if((*idIter)->GetIdx()==0){
 
  627            Float_t k_ii = fKMatrix->GetElement(
ievt->GetNs(), (*idIter)->GetNs());
 
  628            Float_t k_jj = fKMatrix->GetElement(
jevt->GetNs(), (*idIter)->GetNs());
 
  648         if((!(*idIter)->IsInI3()) && ((*idIter)->GetErrorCache()> fB_low)){
 
  649            fB_low = (*idIter)->GetErrorCache();
 
  650            fTEventLow = (*idIter);
 
  653         if((!(*idIter)->IsInI2()) && ((*idIter)->GetErrorCache()< fB_up)){
 
  654            fB_up =(*idIter)->GetErrorCache();
 
  655            fTEventUp = (*idIter);
 
 
  670   if( 
jevt->IsInI0()) {
 
  676      std::vector<TMVA::SVEvent*>::iterator 
idIter;
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
ostringstream derivative to redirect and format output
 
Event class for Support Vector Machine.
 
Float_t GetTarget() const
 
Float_t GetCweight() const
 
Int_t GetTypeFlag() const
 
void SetErrorCache(Float_t err_cache)
 
Kernel for Support Vector Machine.
 
Kernel matrix for Support Vector Machine.
 
Float_t * GetLine(UInt_t)
returns a row of the kernel matrix
 
SVEvent * fTEventUp
last optimized event
 
Bool_t TakeStep(SVEvent *, SVEvent *)
 
void Train(UInt_t nIter=1000)
train the SVM
 
Bool_t IsDiffSignificant(Float_t, Float_t, Float_t)
 
Float_t fTolerance
documentation
 
Bool_t ExamineExample(SVEvent *)
 
Bool_t ExamineExampleReg(SVEvent *)
 
Bool_t fdoRegression
TODO temporary, find nicer solution.
 
Bool_t TakeStepReg(SVEvent *, SVEvent *)
 
Float_t fB_low
documentation
 
Float_t fB_up
documentation
 
SVEvent * fTEventLow
last optimized event
 
void SetIndex(TMVA::SVEvent *)
 
~SVWorkingSet()
destructor
 
SVWorkingSet()
constructor
 
std::vector< TMVA::SVEvent * > * fInputData
input events
 
SVKernelMatrix * fKMatrix
kernel matrix
 
std::vector< TMVA::SVEvent * > * GetSupportVectors()
 
Random number generator class based on M.
 
MsgLogger & Endl(MsgLogger &ml)
 
Short_t Max(Short_t a, Short_t b)
Returns the largest of a and b.
 
Short_t Min(Short_t a, Short_t b)
Returns the smallest of a and b.
 
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.