1#ifndef TMVA_SOFIE_ROPERATOR_TOPK 
    2#define TMVA_SOFIE_ROPERATOR_TOPK 
   11namespace Experimental {
 
   51      if (
input.size() != 2) {
 
   52         throw std::runtime_error(
"TMVA SOFIE TopK Op Shape Inference needs exactly 2 input tensors");
 
   55      auto shape = 
input[0]; 
 
   59      return {shape, shape};
 
 
   66         throw std::runtime_error(
"TMVA SOFIE TopK Op Input Tensor is not found in model");
 
   70         throw std::runtime_error(
"TMVA SOFIE TopK Op Input Tensor i.e. K is not found in model");
 
   81            std::runtime_error(
"TMVA::SOFIE ONNX TopK op axis = "+ std::to_string(
fAttrAxis) +
" value exeeds size of tensor " +
fNX+
" of size "+
fShapeX.size()+
" .");
 
 
  115         throw std::runtime_error(
"TMVA SOFIE Operator TopK called to Generate without being initialized first");
 
  117      std::stringstream out;
 
  120      out << 
"\n" << 
SP << 
"//------ TopK\n";
 
  132      out << 
SP << 
"std::vector<std::pair<float,int64_t>> elements(" << 
n_elements << 
");\n";
 
  135         out << 
SP << 
"for (size_t i = 0; i < " << 
n_before << 
"; i++) {\n";
 
  136         out << 
SP << 
SP << 
"size_t xoffset = i*" << 
strideX[axis-1] << 
";\n";
 
  137         out << 
SP << 
SP << 
"size_t yoffset = i*" << 
strideY[axis-1] << 
";\n";
 
  140         out << 
SP << 
"size_t xoffset = 0;\n";
 
  141         out << 
SP << 
"size_t yoffset = 0;\n";
 
  144         out << 
SP << 
"for (size_t j = 0; j < " << 
n_after << 
"; j++) {\n";
 
  146         out << 
SP << 
"const size_t j = 0;\n";
 
  149      out << 
SP << 
SP << 
"for (size_t l = 0; l < " << 
n_elements << 
"; l++) {\n";
 
  150      out << 
SP << 
SP << 
SP << 
"elements[l] = std::make_pair(tensor_" << 
fNX << 
"[xoffset + " << 
strideX[axis] << 
"*l + j], l);\n";
 
  151      out << 
SP << 
SP << 
"}\n";
 
  155            out<<
SP<<
SP << 
"std::partial_sort(elements.begin(),elements.begin()+" << 
fK << 
",elements.end()," <<
 
  156               "[](std::pair<float,int64_t>a,std::pair<float,int64_t>b){return (a.first!=b.first) ? (a.first>b.first) : a.second < b.second;});\n";
 
  159            out<<
SP<<
SP << 
"std::partial_sort(elements.begin(),elements.begin()+" << 
fK << 
",elements.end()," <<
 
  160            "[](std::pair<float,int64_t>a,std::pair<float,int64_t>b){return (a.first!=b.first) ? (a.first<b.first) : a.second < b.second;});\n";
 
  163         out<<
SP<<
SP << 
"std::partial_sort(elements.begin(),elements.begin()+" << 
fK << 
",elements.end());\n";
 
  166      out << 
SP << 
SP << 
"for (size_t l = 0; l < " << 
fK << 
"; l++) {\n";
 
  167      out << 
SP << 
SP << 
SP << 
"tensor_" << 
fNVal   << 
"[yoffset + " << 
strideY[axis] << 
"*l + j] = elements[l].first;\n";
 
  168      out << 
SP << 
SP << 
SP << 
"tensor_" << 
fNInd << 
"[yoffset + " << 
strideY[axis] << 
"*l + j] = elements[l].second;\n";
 
  169      out << 
SP << 
SP << 
"}\n";
 
 
 
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h length
 
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
 
bool CheckIfTensorAlreadyExist(std::string tensor_name)
 
const ETensorType & GetTensorType(std::string name) const
 
const std::vector< size_t > & GetTensorShape(std::string name) const
 
std::shared_ptr< void > GetInitializedTensorData(std::string tensor_name)
 
void SetNotWritableInitializedTensor(const std::string &tensor_name)
 
std::string Generate(std::string OpName) override
 
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
 
std::vector< size_t > fShapeX
 
std::vector< size_t > fShapeY
 
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
 
ROperator_TopK(int attr_axis, int attr_largest, int attr_sorted, std::string nameK, std::string nameX, std::string nameVal, std::string nameInd)
 
void Initialize(RModel &model) override
 
std::vector< std::string_view > fInputTensorNames
 
const std::string SP
space used to correctly indent the generated C++ code
 
std::vector< std::string_view > fOutputTensorNames
 
std::vector< size_t > ComputeStrideFromShape(const std::vector< size_t > &shape)
compute stride of a tensor given its shape (assume layout is row-major)
 
std::string ConvertTypeToString(ETensorType type)
 
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
 
create variable transformations