1#ifndef TMVA_SOFIE_ROPERATOR_Softmax 
    2#define TMVA_SOFIE_ROPERATOR_Softmax 
   11namespace Experimental {
 
   45         throw std::runtime_error(
"TMVA SOFIE Softmax Op Input Tensor is not found in model");
 
 
   58         throw std::runtime_error(
"TMVA SOFIE Operator Softmax called to Generate without being initialized first");
 
   60      std::stringstream out;
 
   64      out << 
"\n" << 
SP << 
"//------ SOFTMAX - " << 
size << 
"  " << 
length << 
"  " << axis << 
"\n";
 
   67         out << 
SP << 
fType << 
" vmax = tensor_" << 
fNX << 
"[0];\n";
 
   68         out << 
SP << 
"for (size_t i = 1; i < " << 
length << 
" ; i++){\n";
 
   69         out << 
SP << 
SP << 
"if (tensor_" << 
fNX << 
"[i] > vmax) vmax = tensor_" << 
fNX << 
"[i];\n";
 
   71         out << 
SP << 
fType << 
" sum = 0.0;\n";
 
   72         out << 
SP << 
"for (size_t i = 0; i < " << 
length << 
" ; i++){\n";
 
   73         out << 
SP << 
SP << 
"tensor_" << 
fNY << 
"[i] = std::exp(tensor_" << 
fNX << 
"[i] - vmax);\n";
 
   74         out << 
SP << 
SP << 
"sum += tensor_" << 
fNY << 
"[i];\n";
 
   76         out << 
SP << 
"for (size_t i = 0; i < " << 
length << 
" ; i++){\n";
 
   77         out << 
SP << 
SP << 
"tensor_" << 
fNY << 
"[i] /= sum;\n";
 
   81         size_t channel = 
fShape[1];
 
   95         } 
else if (axis == 1) {
 
   98         } 
else if (axis == 
size - 1) {
 
  101         } 
else if (
size > 3 && axis == 
size - 2) {
 
  104         } 
else if (
size == 5 && axis == 
size - 3) {
 
  109               std::runtime_error(
"TMVA::SOFIE - Softmax operator along the axis " 
  110                  + std::to_string(
fAttrAxis) + 
" with " + std::to_string(
size)
 
  111                  + 
"d input tensor not supported.");
 
  118         bool notWidth = (
size == 5 && axis != 4) || (
size == 4 && axis != 3) || (
size == 3 && axis != 2);
 
  121            out << 
SP << 
"for (size_t n = 0; n < " << 
batch << 
" ; n++){\n";
 
  124            out << 
SP << 
SP << 
"for (size_t c = 0; c < " << channel << 
" ; c++){\n";
 
  127            out << 
SP << 
SP << 
"for (size_t d = 0; d < " << 
depth << 
" ; d++){\n";
 
  130            out << 
SP << 
SP << 
"for (size_t h = 0; h < " << 
height << 
" ; h++){\n";
 
  133            out << 
SP << 
SP << 
"for (size_t w = 0; w < " << 
width << 
" ; w++){\n";
 
  136         out << 
SP << 
SP << 
SP << 
"size_t index = 0";
 
  155            throw std::runtime_error(
"TMVA::SOFIE - Softmax operator is along axis with zero elements");
 
  156         out << 
SP << 
SP << 
SP << 
fType << 
" vmax = tensor_" << 
fNX << 
"[index];\n";
 
  157         out << 
SP << 
SP << 
SP << 
"for (size_t i = 1; i < " << 
N << 
"; i++) {\n";
 
  158         out << 
SP << 
SP << 
SP << 
SP << 
"if (tensor_" << 
fNX << 
"[index + i*" << 
iStride << 
"] > vmax)\n";
 
  159         out << 
SP << 
SP << 
SP << 
SP << 
SP << 
"vmax = tensor_" << 
fNX << 
"[index + i*" << 
iStride << 
"];\n";
 
  160         out << 
SP << 
SP << 
SP << 
"}\n";
 
  161         out << 
SP << 
SP << 
SP << 
"for (size_t i = 0; i < " << 
N << 
"; i++) {\n";
 
  162         out << 
SP << 
SP << 
SP << 
SP << 
"tensor_" << 
fNY << 
"[index + i*" << 
iStride << 
"] = std::exp(tensor_" << 
fNX 
  163             << 
"[index + i*" << 
iStride << 
"] - vmax);\n";
 
  164         out << 
SP << 
SP << 
SP << 
SP << 
"sum += tensor_" << 
fNY << 
"[index + i*" << 
iStride << 
"];\n";
 
  165         out << 
SP << 
SP << 
SP << 
"}\n";
 
  166         out << 
SP << 
SP << 
SP << 
"for (size_t i = 0; i < " << 
N << 
"; i++) {\n";
 
  167         out << 
SP << 
SP << 
SP << 
SP << 
"tensor_" << 
fNY << 
"[index + i*" << 
iStride << 
"] /= sum;\n";
 
  168         out << 
SP << 
SP << 
SP << 
"}\n";
 
  170            out << 
SP << 
SP << 
"}\n"; 
 
  173            out << 
SP << 
SP << 
"}\n"; 
 
  176            out << 
SP << 
SP << 
"}\n"; 
 
  179            out << 
SP << 
SP << 
"}\n"; 
 
 
 
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h length
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t height
 
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
 
bool CheckIfTensorAlreadyExist(std::string tensor_name)
 
const ETensorType & GetTensorType(std::string name) const
 
const std::vector< size_t > & GetTensorShape(std::string name) const
 
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input) override
 
void Initialize(RModel &model) override
 
std::vector< size_t > fShape
 
std::string Generate(std::string OpName) override
 
ROperator_Softmax(int64_t attr_axis, std::string nameX, std::string nameY)
 
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input) override
 
std::vector< std::string_view > fInputTensorNames
 
const std::string SP
space used to correctly indent the generated C++ code
 
std::vector< std::string_view > fOutputTensorNames
 
std::string ConvertShapeToString(std::vector< size_t > shape)
 
std::string ConvertTypeToString(ETensorType type)
 
std::size_t ConvertShapeToLength(std::vector< size_t > shape)
 
create variable transformations