28#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION 
   29#include <numpy/arrayobject.h> 
   32namespace Experimental{
 
   97            throw std::runtime_error(
"TMVA::SOFIE - Parsing PyTorch node " +fNodeType+
" is not yet supported ");
 
 
  132            fAttrTransA = !fAttrTransB;
 
  136            fAttrTransB = !fAttrTransA;
 
  139        std::unique_ptr<ROperator> 
op;
 
  146                    throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Gemm does not yet support input type " + 
fNodeDType);
 
 
  166        std::unique_ptr<ROperator> 
op;
 
  173                throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Relu does not yet support input type " + 
fNodeDType);
 
 
  192        std::unique_ptr<ROperator> 
op;
 
  199                throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Selu does not yet support input type " + 
fNodeDType);
 
 
  218        std::unique_ptr<ROperator> 
op;
 
  225                throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Sigmoid does not yet support input type " + 
fNodeDType);
 
 
  254        std::unique_ptr<ROperator> 
op;
 
  261            throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Transpose does not yet support input type " + 
fNodeDType);
 
 
  289        std::string fAttrAutopad = 
"NOTSET";
 
  290        std::vector<size_t> fAttrDilations = GetDataFromList(
fDilations);
 
  292        std::vector<size_t> fAttrKernelShape = GetDataFromList(
fKernelShape);
 
  293        std::vector<size_t> fAttrPads        = GetDataFromList(fPads);
 
  294        std::vector<size_t> fAttrStrides     = GetDataFromList(fStrides);
 
  300        std::unique_ptr<ROperator> 
op;
 
  307            throw std::runtime_error(
"TMVA::SOFIE - Unsupported - Operator Conv does not yet support input type " + 
fNodeDType);
 
 
 
  366    if (
isep != std::string::npos){
 
  371    if(!std::ifstream(
filename).good()){
 
  372        throw std::runtime_error(
"Model file "+
filename_nodir+
" not found!");
 
  376    std::time_t 
ttime = std::time(0);
 
  388       throw std::runtime_error(
"Can't init global namespace for Python");
 
  391       throw std::runtime_error(
"Can't init local namespace for Python");
 
  399    PyRunString(
"print('Torch Version: '+torch.__version__)",fGlobalNS,fLocalNS);
 
  400    PyRunString(
"from torch.onnx.utils import _model_to_graph",fGlobalNS,fLocalNS);
 
  403    PyRunString(
"globals().update(locals())",fGlobalNS,fLocalNS);
 
  409    for(
long unsigned int it=0;it<
inputShapes.size();++it){
 
  414        PyRunString(
"dummyInputs.append(torch.rand(*inputShape))",fGlobalNS,fLocalNS);
 
  420    PyRunString(
"graph=_model_to_graph(model,dummyInputs)",fGlobalNS,fLocalNS);
 
  428                "    sel = node.kindOf(key)\n" 
  429                "    return getattr(node, sel)(key)\n",
 
  430                fGlobalNS, fLocalNS);
 
  432                "    globals().update(locals())\n" 
  434                "    nodeData['nodeType']=i.kind()\n" 
  435                "    nodeAttributeNames=[x for x in i.attributeNames()]\n" 
  436                "    nodeAttributes={j: _node_get(i, j) for j in nodeAttributeNames}\n" 
  437                "    nodeData['nodeAttributes']=nodeAttributes\n" 
  438                "    nodeInputs=[x for x in i.inputs()]\n" 
  439                "    nodeInputNames=[x.debugName() for x in nodeInputs]\n" 
  440                "    nodeData['nodeInputs']=nodeInputNames\n" 
  441                "    nodeOutputs=[x for x in i.outputs()]\n" 
  442                "    nodeOutputNames=[x.debugName() for x in nodeOutputs]\n" 
  443                "    nodeData['nodeOutputs']=nodeOutputNames\n" 
  444                "    nodeDType=[x.type().scalarType() for x in nodeOutputs]\n" 
  445                "    nodeData['nodeDType']=nodeDType\n" 
  446                "    modelData.append(nodeData)",
 
  447                fGlobalNS, fLocalNS);
 
  452    std::string fNodeType;
 
  460        if(fNodeType == 
"onnx::Gemm"){
 
  461            rmodel.AddBlasRoutines({
"Gemm", 
"Gemv"});
 
  463        else if(fNodeType == 
"onnx::Selu" || fNodeType == 
"onnx::Sigmoid"){
 
  464            rmodel.AddNeededStdLib(
"cmath");
 
  466        else if (fNodeType == 
"onnx::Conv") {
 
  467         rmodel.AddBlasRoutines({
"Gemm", 
"Axpy"});
 
  474    PyRunString(
"weightNames=[k for k in graph[1].keys()]",fGlobalNS,fLocalNS);
 
  475    PyRunString(
"weights=[v.numpy() for v in graph[1].values()]",fGlobalNS,fLocalNS);
 
  476    PyRunString(
"weightDTypes=[v.type()[6:-6] for v in graph[1].values()]",fGlobalNS,fLocalNS);
 
  484    std::size_t fWeightSize;
 
  499                std::shared_ptr<void> fData(
malloc(fWeightSize * 
sizeof(
float)), free);
 
  500                std::memcpy(fData.get(),
fWeightValue,fWeightSize * 
sizeof(
float));
 
  511    PyRunString(
"inputs=[x for x in model.graph.inputs()]",fGlobalNS,fLocalNS);
 
  512    PyRunString(
"inputs=inputs[1:]",fGlobalNS,fLocalNS);
 
  513    PyRunString(
"inputNames=[x.debugName() for x in inputs]",fGlobalNS,fLocalNS);
 
  516    std::vector<size_t>fInputShape;
 
  535    PyRunString(
"outputs=[x for x in graph[0].outputs()]",fGlobalNS,fLocalNS);
 
  536    PyRunString(
"outputNames=[x.debugName() for x in outputs]",fGlobalNS,fLocalNS);
 
  538    std::vector<std::string> fOutputNames;
 
  542    rmodel.AddOutputTensorNameList(fOutputNames);
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
 
const_iterator end() const
 
static std::vector< size_t > GetDataFromList(PyObject *listObject)
Utility function which retrieves and returns the values of the List object as a vector of size_t.
 
static const char * PyStringAsString(PyObject *string)
Returns const char* from Python string in PyObject.
 
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
 
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
 
std::unique_ptr< ROperator > MakePyTorchGemm(PyObject *fNode)
Prepares a ROperator_Gemm object.
 
std::unique_ptr< ROperator > MakePyTorchNode(PyObject *fNode)
Prepares equivalent ROperator with respect to PyTorch ONNX node.
 
std::unique_ptr< ROperator > MakePyTorchConv(PyObject *fNode)
Prepares a ROperator_Conv object.
 
std::unique_ptr< ROperator > MakePyTorchSigmoid(PyObject *fNode)
Prepares a ROperator_Sigmoid object.
 
std::unique_ptr< ROperator > MakePyTorchSelu(PyObject *fNode)
Prepares a ROperator_Selu object.
 
std::unique_ptr< ROperator > MakePyTorchRelu(PyObject *fNode)
Prepares a ROperator_Relu object.
 
const PyTorchMethodMap mapPyTorchNode
 
std::unordered_map< std::string, std::unique_ptr< ROperator >(*)(PyObject *fNode)> PyTorchMethodMap
 
std::unique_ptr< ROperator > MakePyTorchTranspose(PyObject *fNode)
Prepares a ROperator_Transpose object.
 
static void(& PyRunString)(TString, PyObject *, PyObject *)
 
static const char *(& PyStringAsString)(PyObject *)
 
RModel Parse(std::string filepath, std::vector< std::vector< size_t > > inputShapes, std::vector< ETensorType > dtype)
Parser function for translating PyTorch .pt model into a RModel object.
 
std::string ConvertTypeToString(ETensorType type)
 
ETensorType ConvertStringToType(std::string type)
 
create variable transformations