23#ifndef ROOT_TMVA_OptimizeConfigParameters 
   24#define ROOT_TMVA_OptimizeConfigParameters 
   43class TestOptimizeConfigParameters;
 
   61      std::map<TString,Double_t> 
optimize();
 
   64      std::vector< int > 
GetScanIndices( 
int val, std::vector<int> base);
 
 
#define ClassDef(name, id)
 
1-D histogram with a double per channel (see TH1 documentation)
 
Interface for a fitter 'target'.
 
Virtual base Class for all MVA method.
 
ostringstream derivative to redirect and format output
 
std::vector< int > GetScanIndices(int val, std::vector< int > base)
helper function to scan through the all the combinations in the parameter space
 
MsgLogger * fLogger
! message logger
 
Double_t GetBkgRejAtSigEff(Double_t sigEff=0.5)
calculate the background rejection for a given signal efficiency
 
std::map< TString, Double_t > fTunedParameters
parameters included in the tuning
 
virtual ~OptimizeConfigParameters()
the destructor (delete the OptimizeConfigParameters, store the graph and .. delete it)
 
Double_t GetBkgEffAtSigEff(Double_t sigEff=0.5)
calculate the background efficiency for a given signal efficiency
 
void optimizeScan()
do the actual optimization using a simple scan method, i.e.
 
OptimizeConfigParameters(MethodBase *const method, std::map< TString, TMVA::Interval * > tuneParameters, TString fomType="Separation", TString optimizationType="GA")
Constructor which sets either "Classification or Regression".
 
std::map< TString, TMVA::Interval * > fTuneParameters
parameters included in the tuning
 
MethodBase *const fMethod
The MVA method to be evaluated.
 
Bool_t fNotDoneYet
flat to indicate of Method Transformations have been obtained yet or not (normally done in MethodBase...
 
TString fOptimizationFitType
which type of optimisation procedure to be used
 
std::map< TString, Double_t > optimize()
 
Double_t GetSeparation()
return the separation between the signal and background MVA ouput distribution
 
TH1D * fMvaSig
MVA distribution for signal events, used for spline fit.
 
TString fFOMType
the FOM type (Separation, ROC integra.. whatever you implemented..
 
Double_t GetFOM()
Return the Figure of Merit (FOM) used in the parameter optimization process.
 
Double_t GetSigEffAtBkgEff(Double_t bkgEff=0.1)
calculate the signal efficiency for a given background efficiency
 
Double_t GetROCIntegral()
calculate the area (integral) under the ROC curve as a overall quality measure of the classification
 
TH1D * fMvaBkg
MVA distribution for bakgr. events, used for spline fit.
 
TH1D * fMvaBkgFineBin
MVA distribution for bakgr. events.
 
friend TestOptimizeConfigParameters
 
void GetMVADists()
fill the private histograms with the mva distributions for sig/bkg
 
Double_t EstimatorFunction(std::vector< Double_t > &)
return the estimator (from current FOM) for the fitting interface
 
std::vector< Float_t > fFOMvsIter
graph showing the development of the Figure Of Merit values during the fit
 
std::map< std::vector< Double_t >, Double_t > fAlreadyTrainedParCombination
save parameters for which the FOM is already known (GA seems to evaluate the same parameters several ...
 
TH1D * fMvaSigFineBin
MVA distribution for signal events.
 
create variable transformations