26#ifndef ROOT_TMVA_MethodPyKeras 
   27#define ROOT_TMVA_MethodPyKeras 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
Class that contains all the data information.
 
void GetHelpMessage() const
 
void Init()
Initialization function called from MethodBase::SetupMethod() Note that option string are not yet fil...
 
std::vector< float > fOutput
 
virtual void AddWeightsXMLTo(void *) const
 
ClassDef(MethodPyKeras, 0)
 
virtual void TestClassification()
initialization
 
void ProcessOptions()
Function processing the options This is called only when creating the method before training not when...
 
Bool_t UseTFKeras() const
 
Int_t fTriesEarlyStopping
 
virtual void ReadWeightsFromStream(std::istream &)
 
virtual void ReadWeightsFromXML(void *)
 
EBackendType
enumeration defining the used Keras backend
 
void SetupKerasModel(Bool_t loadTrainedModel)
 
std::vector< Float_t > & GetMulticlassValues()
 
UInt_t GetNumValidationSamples()
Validation of the ValidationSize option.
 
Double_t GetMvaValue(Double_t *errLower, Double_t *errUpper)
 
void SetupKerasModelForEval()
Setting up model for evaluation Add here some needed optimizations like disabling eager execution.
 
std::vector< Float_t > & GetRegressionValues()
 
const Ranking * CreateRanking()
 
bool fModelIsSetupForEval
 
TString fNumValidationString
 
std::vector< float > fVals
 
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
 
TString GetKerasBackendName()
 
MethodPyKeras(const TString &jobName, const TString &methodTitle, DataSetInfo &dsi, const TString &theOption="")
 
TString fLearningRateSchedule
 
EBackendType GetKerasBackend()
Get the Keras backend (can be: TensorFlow, Theano or CNTK)
 
TString fFilenameTrainedModel
 
std::vector< Double_t > GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress)
get all the MVA values for the events of the current Data type
 
virtual void ReadWeightsFromStream(TFile &)
 
Virtual base class for all TMVA method based on Python.
 
Ranking for variables in method (implementation)
 
create variable transformations