35#ifndef ROOT_TMVA_MethodCFMlpANN_Utils 
   36#define ROOT_TMVA_MethodCFMlpANN_Utils 
  104         return wNN [(
a_3*max_nNodes_ + 
a_2)*max_nLayers_ + 
a_1 - 187];
 
 
  107         return wNN [((
a_3)*max_nNodes_ + (
a_2))*max_nLayers_ + 
a_1 - 187];
 
 
  148               printf( 
"*** ERROR in varn3_(): fxx is zero pointer ==> abort ***\n") ;
 
 
 
 
#define ClassDef(name, id)
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Double_t operator=(Double_t val)
 
void Create(Int_t nevt, Int_t nvar)
 
Double_t & operator()(Int_t ievt, Int_t ivar) const
 
Implementation of Clermond-Ferrand artificial neural network.
 
Double_t delta[max_nLayers_ *max_nNodes_ *max_nNodes_]
 
void Foncf(Int_t *i__, Double_t *u, Double_t *f)
 
void Out(Int_t *iii, Int_t *maxcycle)
 
MethodCFMlpANN_Utils()
default constructor
 
void Innit(char *det, Double_t *tout2, Double_t *tin2, Int_t)
 
void Entree_new(Int_t *, char *, Int_t *ntrain, Int_t *ntest, Int_t *numlayer, Int_t *nodes, Int_t *numcycle, Int_t)
 
Double_t temp[max_nLayers_]
 
void CollectVar(Int_t *nvar, Int_t *class__, Double_t *xpg)
[smart comments to be added]
 
struct TMVA::MethodCFMlpANN_Utils::@162 fCost_1
 
struct TMVA::MethodCFMlpANN_Utils::@159 fVarn_1
 
void Leclearn(Int_t *ktest, Double_t *tout2, Double_t *tin2)
[smart comments to be added]
 
virtual Int_t DataInterface(Double_t *, Double_t *, Int_t *, Int_t *, Int_t *, Int_t *, Double_t *, Int_t *, Int_t *)=0
 
Double_t & Ww_ref(Double_t wwNN[], Int_t a_1, Int_t a_2)
 
void GraphNN(Int_t *ilearn, Double_t *, Double_t *, char *, Int_t)
[smart comments to be added]
 
Double_t cut[max_nNodes_]
 
class TMVA::MethodCFMlpANN_Utils::VARn2 fVarn3_1
 
struct TMVA::MethodCFMlpANN_Utils::@161 fDel_1
 
Double_t w[max_nLayers_ *max_nNodes_ *max_nNodes_]
 
static const Int_t fg_max_nVar_
 
struct TMVA::MethodCFMlpANN_Utils::@160 fNeur_1
 
class TMVA::MethodCFMlpANN_Utils::VARn2 fVarn2_1
 
Double_t del[max_nLayers_ *max_nNodes_]
 
struct TMVA::MethodCFMlpANN_Utils::@158 fParam_1
 
void En_avant2(Int_t *ievent)
[smart comments to be added]
 
Double_t Ww_ref(const Double_t wwNN[], Int_t a_1, Int_t a_2) const
 
Double_t Fdecroi(Int_t *i__)
[smart comments to be added]
 
void En_arriere(Int_t *ievent)
[smart comments to be added]
 
Double_t & W_ref(Double_t wNN[], Int_t a_1, Int_t a_2, Int_t a_3)
 
Int_t neuron[max_nLayers_]
 
void Cout(Int_t *, Double_t *xxx)
[smart comments to be added]
 
Double_t y[max_nLayers_ *max_nNodes_]
 
Int_t mclass[max_Events_]
 
Double_t delw[max_nLayers_ *max_nNodes_ *max_nNodes_]
 
static const Int_t fg_max_nNodes_
 
Double_t W_ref(const Double_t wNN[], Int_t a_1, Int_t a_2, Int_t a_3) const
 
Double_t Sen3a(void)
[smart comments to be added]
 
Double_t deltaww[max_nLayers_ *max_nNodes_]
 
void Train_nn(Double_t *tin2, Double_t *tout2, Int_t *ntrain, Int_t *ntest, Int_t *nvar2, Int_t *nlayer, Int_t *nodes, Int_t *ncycle)
 
Double_t x[max_nLayers_ *max_nNodes_]
 
void SetLogger(MsgLogger *l)
 
void Wini()
[smart comments to be added]
 
Double_t coef[max_nNodes_]
 
Double_t ww[max_nLayers_ *max_nNodes_]
 
void En_avant(Int_t *ievent)
[smart comments to be added]
 
void Cout2(Int_t *, Double_t *yyy)
[smart comments to be added]
 
void TestNN()
[smart comments to be added]
 
Double_t delww[max_nLayers_ *max_nNodes_]
 
void Lecev2(Int_t *ktest, Double_t *tout2, Double_t *tin2)
[smart comments to be added]
 
virtual ~MethodCFMlpANN_Utils()
Destructor.
 
void Arret(const char *mot)
 
Int_t nclass[max_Events_]
 
static const char *const fg_MethodName
 
void Inl()
[smart comments to be added]
 
ostringstream derivative to redirect and format output
 
create variable transformations