45      print.
Warn(
"No variable parameters are defined! - Return current function value ");
 
   51   print.
Debug(
"initial edm is ", edm);
 
   57      print.
Error(
"Initial matrix not positive defined, edm = ",edm,
"\nExit minimization ");
 
   61   std::vector<MinimumState> 
result;
 
   88            print.
Warn(
"FunctionMinimum is invalid");
 
   97      print.
Debug(
"Approximate Edm", edm, 
"npass", 
ipass);
 
  102      print.
Debug(
"FumiliBuilder will verify convergence and Error matrix; " 
  104                  min.Error().Dcovar());
 
  115      print.
Info(
"After Hessian");
 
  122      print.
Debug(
"Edm", edm, 
"State", 
st);
 
  127         print.
Warn(
"Stop iterations, no improvements after Hesse; current Edm", edm, 
"previous value", 
edmprev);
 
  131         print.
Debug(
"Tolerance not sufficient, continue minimization; Edm", edm, 
"Requested", 
edmval);
 
  135         if (min.IsAboveMaxEdm()) {
 
 
  200   MnPrint print(
"FumiliBuilder");
 
  222   double delta = 0.3 * std::max(1.0 , 
normX0);
 
  223   const double eta = 0.1;
 
  230      print.
Info(
"Using Fumili with a line search algorithm");
 
  246      step = -1. * 
s0.Error().InvHessian() * 
s0.Gradient().Vec();
 
  248      print.
Debug(
"Iteration -", 
result.size(), 
"\n  Fval", 
s0.Fval(), 
"numOfCall", 
fcn.NumOfCalls(),
 
  249                  "\n  Internal Parameter values", 
s0.Vec(), 
"\n  Newton step", step);
 
  254         print.
Warn(
"Matrix not pos.def, gdel =", 
gdel, 
" > 0");
 
  258         step = -1. * 
s0.Error().InvHessian() * 
s0.Gradient().Vec();
 
  261         print.
Warn(
"After correction, gdel =", 
gdel);
 
  279         print.
Debug(
"Do a line search", 
fcn.NumOfCalls());
 
  283         if (std::fabs(pp.
Y() - 
s0.Fval()) < 
prec.Eps()) {
 
  288         print.
Debug(
"New point after Line Search :", 
"\n  FVAL     ", 
p.Fval(), 
"\n  Parameter", 
p.Vec());
 
  291      auto & 
H = 
s0.Error().Hessian();
 
  292      unsigned int n = (
scaleTR) ?   
H.Nrow() : 0;
 
  299      for (
unsigned int i = 0; i < 
n; i++){
 
  300         double d  = std::sqrt(
H(i,i));
 
  311            print.
Debug(
"scaling Trust region with diagonal matrix D ",D);
 
  329            print.
Debug(
"Accept full Newton step - it is inside TR ",delta);
 
  337               auto gScaled = Dinv * 
s0.Gradient().Grad();
 
  341               for (
unsigned int i = 0; i < 
n; i++) {
 
  342                  for (
unsigned int j = 0; 
j <=i; 
j++) {
 
  358               step = - (delta/ 
normGrad) * 
s0.Gradient().Grad();
 
  360               print.
Debug(
"Use as new point the Cauchy  point - along gradient with norm=delta ", delta);
 
  370               print.
Debug(
"Use as new point the Cauchy  point - along gradient with tau ", tau, 
"delta = ", delta);
 
  382               print.
Debug(
" dogleg equation", 
a, 
b, 
c);
 
  388                  print.
Warn(
"a is equal to zero!  a = ", 
a);
 
  389                  print.
Info(
" delta ", delta, 
" tau ", tau, 
" gHg ", 
gHg, 
" normgrad2 ", 
normGrad2);
 
  392                  double t1 = (-
b + sqrt(
b * 
b - 4. * 
a * 
c)) / (2.0 * 
a);
 
  393                  double t2 = (-
b - sqrt(
b * 
b - 4. * 
a * 
c)) / (2.0 * 
a);
 
  395                  print.
Debug(
" solution dogleg equation", 
t1, 
t2);
 
  396                  if (
t1 >= 0 && 
t1 <= 1.)
 
  403               print.
Debug(
"New dogleg point is t = ", t);
 
  405            print.
Debug(
"New accepted step is ",step);
 
  422            if (rho > 0.75 && 
norm == delta) {
 
  426         print.
Debug(
"New point after Trust region :", 
"norm tr ",
norm,
" rho ", rho,
" delta ", delta,
 
  427           "  FVAL    ", 
p.Fval(), 
"\n  Parameter", 
p.Vec());
 
  434               print.
Debug(
"Trust region: accept new point p = x + step since rho is larger than eta");
 
  438             print.
Debug(
"Trust region reject new point and repeat since rho is smaller than eta");
 
  448      print.
Debug(
"Before Gradient - NCalls = ", 
fcn.NumOfCalls());
 
  452      print.
Debug(
"After Gradient - NCalls = ", 
fcn.NumOfCalls());
 
  463      print.
Debug(
"Updated new point:", 
"\n  FVAL     ", 
p.Fval(), 
"\n  Parameter", 
p.Vec(), 
"\n  Gradient", 
g.Vec(),
 
  464                  "\n  InvHessian", 
e.InvHessian(), 
"\n  Hessian", 
e.Hessian(), 
"\n  Edm", edm);
 
  467         print.
Warn(
"Matrix not pos.def., Edm < 0");
 
  482         if (
p.Fval() < 
s0.Fval())
 
  493      print.
Debug(
"finish iteration -", 
result.size(), 
"lambda =", lambda, 
"f1 =", 
p.Fval(), 
"f0 =", 
s0.Fval(),
 
  494                  "num of calls =", 
fcn.NumOfCalls(), 
"edm =", edm);
 
  502      edm *= (1. + 3. * 
e.Dcovar());
 
  516      if (edm < std::fabs(
prec.Eps2() * 
result.back().Fval())) {
 
  517         print.
Warn(
"Machine accuracy limits further improvement");
 
  520      } 
else if (edm < 10 * 
edmval) {
 
  524         print.
Warn(
"No convergence; Edm", edm, 
"is above tolerance", 10 * 
edmval);
 
  530   print.
Debug(
"Exiting successfully", 
"Ncalls", 
fcn.NumOfCalls(), 
"FCN", 
result.back().Fval(), 
"Edm", edm, 
"Requested",
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void gc
 
FunctionMinimum Minimum(const MnFcn &fMnFcn, const GradientCalculator &fGradienCalculator, const MinimumSeed &fMinimumSeed, const MnStrategy &fMnStrategy, unsigned int maxfcn, double edmval) const override
Class the member function calculating the Minimum and verifies the result depending on the strategy.
 
FumiliMethodType fMethodType
 
const FumiliErrorUpdator & ErrorUpdator() const
Accessor to the Error updator of the builder.
 
const VariableMetricEDMEstimator & Estimator() const
Accessor to the EDM (expected vertical distance to the Minimum) estimator.
 
class holding the full result of the minimization; both internal and external (MnUserParameterState) ...
 
interface class for gradient calculators
 
Class describing a symmetric matrix of size n.
 
unsigned int size() const
 
void TraceIteration(int iter, const MinimumState &state) const
 
MinimumError keeps the inv.
 
const FunctionGradient & Gradient() const
 
const MinimumError & Error() const
 
const MinimumParameters & Parameters() const
 
const MnMachinePrecision & Precision() const
 
const MinimumState & State() const
 
MinimumState keeps the information (position, Gradient, 2nd deriv, etc) after one minimization step (...
 
Wrapper class to FCNBase interface used internally by Minuit.
 
API class for calculating the numerical covariance matrix (== 2x Inverse Hessian == 2x Inverse 2nd de...
 
Implements a 1-dimensional minimization along a given direction (i.e.
 
Sets the relative floating point (double) arithmetic precision.
 
double Y() const
Accessor to the y (second) coordinate.
 
double X() const
Accessor to the x (first) coordinate.
 
Force the covariance matrix to be positive defined by adding extra terms in the diagonal.
 
void Debug(const Ts &... args)
 
void Error(const Ts &... args)
 
void Info(const Ts &... args)
 
void Warn(const Ts &... args)
 
API class for defining four levels of strategies: low (0), medium (1), high (2), very high (>=3); act...
 
double similarity(const LAVector &, const LASymMatrix &)
 
double inner_product(const LAVector &, const LAVector &)
 
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...