34#ifndef TMVA_DNN_ARCHITECTURES_REFERENCE_TENSORDATALOADER 
   35#define TMVA_DNN_ARCHITECTURES_REFERENCE_TENSORDATALOADER 
   43template <
typename AReal>
 
   46template <
typename AData, 
typename AReal>
 
   96   template<
typename RNG>
 
 
  108template <
typename AData, 
typename AReal>
 
  128template <
typename AData, 
typename AReal>
 
  129template <
typename RNG>
 
  132   std::shuffle(fSampleIndices.begin(), fSampleIndices.end(), 
rng);
 
 
  135template <
typename AData, 
typename AReal>
 
  138   fBatchIndex %= (fNSamples / fInputShape[0]); 
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
const_iterator begin() const
 
The reference architecture class.
 
TTensorDataLoader & operator=(const TTensorDataLoader &)=default
 
TMatrixT< AReal > weightMatrix
The matrix used to keep the batch weights.
 
TTensorDataLoader(TTensorDataLoader &&)=default
 
size_t fBatchHeight
The number od rows in each matrix.
 
const AData & fData
The data that should be loaded in the batches.
 
std::vector< TMatrixT< AReal > > inputTensor
The 3D tensor used to keep the input data.
 
size_t fNSamples
The total number of samples in the dataset.
 
std::vector< size_t > fInputShape
Defines the batch depth, no. of channels and spatial dimensions of an input tensor.
 
void CopyTensorInput(std::vector< TMatrixT< AReal > > &tensor, IndexIterator_t sampleIterator)
Copy input tensor into the given host buffer.
 
std::vector< size_t > fSampleIndices
Ordering of the samples in the epoch.
 
size_t fBatchIndex
The index of the batch when there are multiple batches in parallel.
 
TMatrixT< AReal > outputMatrix
The matrix used to keep the output.
 
TTensorDataLoader(const TTensorDataLoader &)=default
 
size_t fBatchDepth
The number of matrices in the tensor.
 
size_t fBatchWidth
The number of columns in each matrix.
 
void CopyTensorWeights(TMatrixT< AReal > &matrix, IndexIterator_t sampleIterator)
Copy weight matrix into the given host buffer.
 
TTensorDataLoader & operator=(TTensorDataLoader &&)=default
 
size_t fNOutputFeatures
The number of outputs from the classifier/regressor.
 
void CopyTensorOutput(TMatrixT< AReal > &matrix, IndexIterator_t sampleIterator)
Copy output matrix into the given host buffer.
 
TTensorBatchIterator< Data_t, Architecture_t > BatchIterator_t
 
void Shuffle(RNG &rng)
Shuffle the order of the samples in the batch.
 
std::vector< size_t > fSampleIndices
Ordering of the samples in the epoch.
 
TTensorBatch< Architecture_t > GetTensorBatch()
Return the next batch from the training set.
 
TTensorDataLoader(const Data_t &data, size_t nSamples, size_t batchSize, const Shape_t &inputLayout, const Shape_t &batchLayout, size_t nOutputFeatures, size_t nStreams=1)
Constructor.
 
size_t fBatchDepth
The number of matrices in the tensor.
 
size_t fNSamples
The total number of samples in the dataset.
 
create variable transformations