ROOT
v6-34
Reference Guide
Loading...
Searching...
No Matches
df012_DefinesAndFiltersAsStrings.C
Go to the documentation of this file.
1
/// \file
2
/// \ingroup tutorial_dataframe
3
/// \notebook -nodraw
4
/// Use just-in-time-compiled Filters and Defines for quick prototyping.
5
///
6
/// This tutorial illustrates how to save some typing when using RDataFrame
7
/// by invoking functions that perform jit-compiling at runtime.
8
///
9
/// \macro_code
10
/// \macro_output
11
///
12
/// \date October 2017
13
/// \author Guilherme Amadio (CERN)
14
15
void
df012_DefinesAndFiltersAsStrings
()
16
{
17
// We will inefficiently calculate an approximation of pi by generating
18
// some data, and doing very simple filtering and analysis on it.
19
20
// We start by creating an empty dataframe where we will insert 10 million
21
// random points in a square of side 2.0 (that is, with an inscribed circle
22
// of radius 1.0).
23
24
size_t
npoints
= 10000000;
25
ROOT::RDataFrame
df(
npoints
);
26
27
// Define what we want inside the dataframe. We do not need to define p as an array,
28
// but we do it here to demonstrate how to use jitting with RDataFrame.
29
30
// NOTE: Although it's possible to use "for (auto&& x : p)" below, it will
31
// shadow the name of the data column "x", and may cause compilation failures
32
// if the local variable and the data column are of different types, or the
33
// local x variable is declared in the global scope of the lambda function.
34
35
auto
pidf
= df.Define(
"x"
,
"gRandom->Uniform(-1.0, 1.0)"
)
36
.Define(
"y"
,
"gRandom->Uniform(-1.0, 1.0)"
)
37
.Define(
"p"
,
"std::array<double, 2> v{x, y}; return v;"
)
38
.Define(
"r"
,
"double r2 = 0.0; for (auto&& x : p) r2 += x*x; return sqrt(r2);"
);
39
40
// Now we have a dataframe with columns x, y, p (which is a point based on x
41
// and y), and the radius r = sqrt(x*x + y*y). In order to approximate pi, we
42
// need to know how many of our data points fall inside the unit circle compared
43
// with the total number of points. The ratio of the areas is
44
//
45
// A_circle / A_square = pi r*r / l * l, where r = 1.0, and l = 2.0
46
//
47
// Therefore, we can approximate pi with four times the number of points inside the
48
// unit circle over the total number of points in our dataframe:
49
50
auto
incircle
= *(
pidf
.Filter(
"r <= 1.0"
).Count());
51
52
double
pi_approx
= 4.0 *
incircle
/
npoints
;
53
54
std::cout <<
"pi is approximately equal to "
<<
pi_approx
<< std::endl;
55
}
TRangeDynCast
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Definition
TCollection.h:358
ROOT::Detail::TRangeCast
Definition
TCollection.h:311
ROOT::RDataFrame
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
Definition
RDataFrame.hxx:41
df012_DefinesAndFiltersAsStrings
Definition
df012_DefinesAndFiltersAsStrings.py:1
tutorials
dataframe
df012_DefinesAndFiltersAsStrings.C
ROOT v6-34 - Reference Guide Generated on Fri Jan 24 2025 14:44:17 (GVA Time) using Doxygen 1.10.0