32#ifndef ROOT_TMVA_MethodBoost
33#define ROOT_TMVA_MethodBoost
55 namespace Experimental {
#define ClassDef(name, id)
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
TH1 is the base class of all histogram classes in ROOT.
Class to perform two class classification.
Class that contains all the data information.
Class that contains all the data information.
This is the main MVA steering class.
Virtual base Class for all MVA method.
Class for boosting a TMVA method.
void MonitorBoost(Types::EBoostStage stage, UInt_t methodIdx=0)
fill various monitoring histograms from information of the individual classifiers that have been boos...
void ResetBoostWeights()
resetting back the boosted weights of the events to 1
MethodBase * CurrentMethod()
Double_t fAdaBoostBeta
ADA boost parameter, default is 1.
TString fBoostedMethodOptions
options
Double_t fBaggedSampleFraction
rel.Size of bagged sample
Double_t fBoostWeight
the weight used to boost the next classifier
std::vector< TH1 * > fTestSigMVAHist
void SingleTrain()
initialization
UInt_t fBoostNum
Number of times the classifier is boosted.
void SetBoostedMethodName(TString methodName)
Bool_t fDetailedMonitoring
produce detailed monitoring histograms (boost-wise)
UInt_t fRandomSeed
seed for random number generator used for bagging
void PrintResults(const TString &, std::vector< Double_t > &, const Double_t) const
DataSetManager * fDataSetManager
DSMTEST.
virtual void WriteEvaluationHistosToFile(Types::ETreeType treetype)
writes all MVA evaluation histograms to file
std::vector< TH1 * > fTestBgdMVAHist
void CreateMVAHistorgrams()
Bool_t fHistoricBoolOption
historic variable, only needed for "CompatibilityOptions"
TTree * fMonitorTree
tree to monitor values during the boosting
void WriteMonitoringHistosToFile(void) const
write special monitoring histograms to file dummy implementation here --------------—
Double_t AdaBoost(MethodBase *method, Bool_t useYesNoLeaf)
the standard (discrete or real) AdaBoost algorithm
TString fBoostedMethodTitle
title
Bool_t BookMethod(Types::EMVA theMethod, TString methodTitle, TString theOption)
just registering the string from which the boosted classifier will be created
UInt_t CurrentMethodIdx()
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
return boosted MVA response
std::vector< TH1 * > fTrainSigMVAHist
TString fHistoricOption
historic variable, only needed for "CompatibilityOptions"
void CheckSetup()
check may be overridden by derived class (sometimes, eg, fitters are used which can only be implement...
virtual void TestClassification()
initialization
void InitHistos()
initialisation routine
void ProcessOptions()
process user options
TString fBoostType
string specifying the boost type
Double_t GetBoostROCIntegral(Bool_t, Types::ETreeType, Bool_t CalcOverlapIntergral=kFALSE)
Calculate the ROC integral of a single classifier or even the whole boosted classifier.
Double_t fROC_training
roc integral of last trained method (on training sample)
TString fBoostedMethodName
details of the boosted classifier
std::vector< TH1 * > fBTrainBgdMVAHist
std::vector< TH1 * > fTrainBgdMVAHist
Double_t SingleBoost(MethodBase *method)
Double_t CalcMethodWeight()
std::vector< TH1 * > fBTrainSigMVAHist
Double_t Bagging()
Bagging or Bootstrap boosting, gives new random poisson weight for every event.
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
Boost can handle classification with 2 classes and regression with one regression-target.
const Ranking * CreateRanking()
Double_t fMethodError
estimation of the level error of the classifier
TString fTransformString
min and max values for the classifier response
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
std::vector< Float_t > * fMVAvalues
mva values for the last trained method
Bool_t fMonitorBoostedMethod
monitor the MVA response of every classifier
virtual ~MethodBoost(void)
destructor
void FindMVACut(MethodBase *method)
find the CUT on the individual MVA that defines an event as correct or misclassified (to be used in t...
Double_t fOverlap_integral
void GetHelpMessage() const
Get help message text.
Virtual base class for combining several TMVA method.
MethodBase * fCurrentMethod
Ranking for variables in method (implementation)
The Reader class serves to use the MVAs in a specific analysis context.
A TTree represents a columnar dataset.
create variable transformations