Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
CvSplit.cxx
Go to the documentation of this file.
1// @(#)root/tmva $Id$
2// Author: Kim Albertsson
3
4/*************************************************************************
5 * Copyright (C) 2018, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12#include "TMVA/CvSplit.h"
13
14#include "TMVA/DataSet.h"
15#include "TMVA/DataSetFactory.h"
16#include "TMVA/DataSetInfo.h"
17#include "TMVA/Event.h"
18#include "TMVA/MsgLogger.h"
19#include "TMVA/Tools.h"
20
21#include <TString.h>
22#include <TFormula.h>
23
24#include <algorithm>
25#include <numeric>
26#include <stdexcept>
27
30
31/* =============================================================================
32 TMVA::CvSplit
33============================================================================= */
34
35////////////////////////////////////////////////////////////////////////////////
36///
37
38TMVA::CvSplit::CvSplit(UInt_t numFolds) : fNumFolds(numFolds), fMakeFoldDataSet(kFALSE) {}
39
40////////////////////////////////////////////////////////////////////////////////
41/// \brief Set training and test set vectors of dataset described by `dsi`.
42/// \param[in] dsi DataSetInfo for data set to be split
43/// \param[in] foldNumber Ordinal of fold to prepare
44/// \param[in] tt The set used to prepare fold. If equal to `Types::kTraining`
45/// splitting will be based off the original train set. If instead
46/// equal to `Types::kTesting` the test set will be used.
47/// The original training/test set is the set as defined by
48/// `DataLoader::PrepareTrainingAndTestSet`.
49///
50/// Sets the training and test set vectors of the DataSet described by `dsi` as
51/// defined by the split. If `tt` is eqal to `Types::kTraining` the split will
52/// be based off of the original training set.
53///
54/// Note: Requires `MakeKFoldDataSet` to have been called first.
55///
56
58{
59 if (foldNumber >= fNumFolds) {
60 Log() << kFATAL << "DataSet prepared for \"" << fNumFolds << "\" folds, requested fold \"" << foldNumber
61 << "\" is outside of range." << Endl;
62 return;
63 }
64
65 auto prepareDataSetInternal = [this, &dsi, foldNumber](std::vector<std::vector<Event *>> vec) {
66 UInt_t numFolds = fTrainEvents.size();
67
68 // Events in training set (excludes current fold)
69 UInt_t nTotal = std::accumulate(vec.begin(), vec.end(), 0,
70 [&](UInt_t sum, std::vector<TMVA::Event *> v) { return sum + v.size(); });
71
72 UInt_t nTrain = nTotal - vec.at(foldNumber).size();
73 UInt_t nTest = vec.at(foldNumber).size();
74
75 std::vector<Event *> tempTrain;
76 std::vector<Event *> tempTest;
77
78 tempTrain.reserve(nTrain);
79 tempTest.reserve(nTest);
80
81 // Insert data into training set
82 for (UInt_t i = 0; i < numFolds; ++i) {
83 if (i == foldNumber) {
84 continue;
85 }
86
87 tempTrain.insert(tempTrain.end(), vec.at(i).begin(), vec.at(i).end());
88 }
89
90 // Insert data into test set
91 tempTest.insert(tempTest.end(), vec.at(foldNumber).begin(), vec.at(foldNumber).end());
92
93 Log() << kDEBUG << "Fold prepared, num events in training set: " << tempTrain.size() << Endl;
94 Log() << kDEBUG << "Fold prepared, num events in test set: " << tempTest.size() << Endl;
95
96 // Assign the vectors of the events to rebuild the dataset
97 dsi.GetDataSet()->SetEventCollection(&tempTrain, Types::kTraining, false);
98 dsi.GetDataSet()->SetEventCollection(&tempTest, Types::kTesting, false);
99 };
100
101 if (tt == Types::kTraining) {
102 prepareDataSetInternal(fTrainEvents);
103 } else if (tt == Types::kTesting) {
104 prepareDataSetInternal(fTestEvents);
105 } else {
106 Log() << kFATAL << "PrepareFoldDataSet can only work with training and testing data sets." << std::endl;
107 return;
108 }
109}
110
111////////////////////////////////////////////////////////////////////////////////
112///
113
115{
116 if (tt != Types::kTraining) {
117 Log() << kFATAL << "Only kTraining is supported for CvSplit::RecombineKFoldDataSet currently." << std::endl;
118 }
119
120 std::vector<Event *> *tempVec = new std::vector<Event *>;
121
122 for (UInt_t i = 0; i < fNumFolds; ++i) {
123 tempVec->insert(tempVec->end(), fTrainEvents.at(i).begin(), fTrainEvents.at(i).end());
124 }
125
126 dsi.GetDataSet()->SetEventCollection(tempVec, Types::kTraining, false);
127 dsi.GetDataSet()->SetEventCollection(tempVec, Types::kTesting, false);
128
129 delete tempVec;
130}
131
132/* =============================================================================
133 TMVA::CvSplitKFoldsExpr
134============================================================================= */
135
136////////////////////////////////////////////////////////////////////////////////
137///
138
140 : fDsi(dsi), fIdxFormulaParNumFolds(std::numeric_limits<Int_t>::max()), fSplitFormula("", expr),
141 fParValues(fSplitFormula.GetNpar())
142{
143 if (!fSplitFormula.IsValid()) {
144 throw std::runtime_error("Split expression \"" + std::string(fSplitExpr.Data()) + "\" is not a valid TFormula.");
145 }
146
149
150 // std::cout << "Found variable with name \"" << name << "\"." << std::endl;
151
152 if (name == "NumFolds" || name == "numFolds") {
153 // std::cout << "NumFolds|numFolds is a reserved variable! Adding to context." << std::endl;
155 } else {
157 }
158 }
159}
160
161////////////////////////////////////////////////////////////////////////////////
162///
163
165{
166 for (auto &p : fFormulaParIdxToDsiSpecIdx) {
167 auto iFormulaPar = p.first;
168 auto iSpectator = p.second;
169
170 fParValues.at(iFormulaPar) = ev->GetSpectator(iSpectator);
171 }
172
173 if (fIdxFormulaParNumFolds < fSplitFormula.GetNpar()) {
174 fParValues[fIdxFormulaParNumFolds] = numFolds;
175 }
176
177 // NOTE: We are using a double to represent an integer here. This _will_
178 // lead to problems if the norm of the double grows too large. A quick test
179 // with python suggests that problems arise at a magnitude of ~1e16.
180 Double_t iFold_d = fSplitFormula.EvalPar(nullptr, &fParValues[0]);
181
182 if (iFold_d < 0) {
183 throw std::runtime_error("Output of splitExpr must be non-negative.");
184 }
185
186 UInt_t iFold = std::lround(iFold_d);
187 if (iFold >= numFolds) {
188 throw std::runtime_error("Output of splitExpr should be a non-negative"
189 "integer between 0 and numFolds-1 inclusive.");
190 }
191
192 return iFold;
193}
194
195////////////////////////////////////////////////////////////////////////////////
196///
197
202
203////////////////////////////////////////////////////////////////////////////////
204///
205
207{
208 std::vector<VariableInfo> spectatorInfos = dsi.GetSpectatorInfos();
209
210 for (UInt_t iSpectator = 0; iSpectator < spectatorInfos.size(); ++iSpectator) {
212 if (vi.GetName() == name) {
213 return iSpectator;
214 } else if (vi.GetLabel() == name) {
215 return iSpectator;
216 } else if (vi.GetExpression() == name) {
217 return iSpectator;
218 }
219 }
220
221 throw std::runtime_error("Spectator \"" + std::string(name.Data()) + "\" not found.");
222}
223
224/* =============================================================================
225 TMVA::CvSplitKFolds
226============================================================================= */
227
228////////////////////////////////////////////////////////////////////////////////
229/// \brief Splits a dataset into k folds, ready for use in cross validation.
230/// \param[in] numFolds Number of folds to split data into
231/// \param[in] stratified If true, use stratified splitting, balancing the
232/// number of events across classes and folds. If false,
233/// no such balancing is done. For
234/// \param[in] splitExpr Expression used to split data into folds. If `""` a
235/// random assignment will be done. Otherwise the
236/// expression is fed into a TFormula and evaluated per
237/// event. The resulting value is the fold assignment.
238/// \param[in] seed Used only when using random splitting (i.e. when
239/// `splitExpr` is `""`). Seed is used to initialise the random
240/// number generator when assigning events to folds.
241///
242
244 : CvSplit(numFolds), fSeed(seed), fSplitExprString(splitExpr), fStratified(stratified)
245{
247 Log() << kFATAL << "Split expression \"" << fSplitExprString << "\" is not a valid TFormula." << Endl;
248 }
249
250}
251
252////////////////////////////////////////////////////////////////////////////////
253/// \brief Prepares a DataSet for cross validation
254
256{
257 // Validate spectator
258 // fSpectatorIdx = GetSpectatorIndexForName(dsi, fSpectatorName);
259
260 if (fSplitExprString != TString("")) {
261 fSplitExpr = std::unique_ptr<CvSplitKFoldsExpr>(new CvSplitKFoldsExpr(dsi, fSplitExprString));
262 }
263
264 // No need to do it again if the sets have already been split.
265 if (fMakeFoldDataSet) {
266 Log() << kINFO << "Splitting in k-folds has been already done" << Endl;
267 return;
268 }
269
270 fMakeFoldDataSet = kTRUE;
271
272 UInt_t numClasses = dsi.GetNClasses();
273
274 // Get the original event vectors for testing and training from the dataset.
275 std::vector<Event *> trainData = dsi.GetDataSet()->GetEventCollection(Types::kTraining);
276 std::vector<Event *> testData = dsi.GetDataSet()->GetEventCollection(Types::kTesting);
277
278 // Split the sets into the number of folds.
279 fTrainEvents = SplitSets(trainData, fNumFolds, numClasses);
280 fTestEvents = SplitSets(testData, fNumFolds, numClasses);
281}
282
283////////////////////////////////////////////////////////////////////////////////
284/// \brief Generates a vector of fold assignments
285/// \param[in] nEntries Number of events in range
286/// \param[in] numFolds Number of folds to split data into
287/// \param[in] seed Random seed
288///
289/// Randomly assigns events to `numFolds` folds. Each fold will hold at most
290/// `nEntries / numFolds + 1` events.
291///
292
294{
295 // Generate assignment of the pattern `0, 1, 2, 0, 1, 2, 0, 1 ...` for
296 // `numFolds = 3`.
297 std::vector<UInt_t> fOrigToFoldMapping;
299
300 for (UInt_t iEvent = 0; iEvent < nEntries; ++iEvent) {
302 }
303
304 // Shuffle assignment
307
308 return fOrigToFoldMapping;
309}
310
311
312////////////////////////////////////////////////////////////////////////////////
313/// \brief Split sets for into k-folds
314/// \param[in] oldSet Original, unsplit, events
315/// \param[in] numFolds Number of folds to split data into
316/// \param[in] numClasses number of classes to stratify into
317///
318
319std::vector<std::vector<TMVA::Event *>>
320TMVA::CvSplitKFolds::SplitSets(std::vector<TMVA::Event *> &oldSet, UInt_t numFolds, UInt_t numClasses)
321{
322 const ULong64_t nEntries = oldSet.size();
324
325 std::vector<std::vector<Event *>> tempSets;
326 tempSets.reserve(fNumFolds);
327 for (UInt_t iFold = 0; iFold < numFolds; ++iFold) {
328 tempSets.emplace_back();
329 tempSets.at(iFold).reserve(foldSize);
330 }
331
332 Bool_t useSplitExpr = !(fSplitExpr == nullptr || fSplitExprString == "");
333
334 if (useSplitExpr) {
335 // Deterministic split
336 for (ULong64_t i = 0; i < nEntries; i++) {
337 TMVA::Event *ev = oldSet[i];
338 UInt_t iFold = fSplitExpr->Eval(numFolds, ev);
339 tempSets.at((UInt_t)iFold).push_back(ev);
340 }
341 } else {
342 if(!fStratified){
343 // Random split
344 std::vector<UInt_t> fOrigToFoldMapping;
345 fOrigToFoldMapping = GetEventIndexToFoldMapping(nEntries, numFolds, fSeed);
346
347 for (UInt_t iEvent = 0; iEvent < nEntries; ++iEvent) {
350 tempSets.at(iFold).push_back(ev);
351
352 fEventToFoldMapping[ev] = iFold;
353 }
354 } else {
355 // Stratified Split
356 std::vector<std::vector<TMVA::Event *>> oldSets;
357 oldSets.reserve(numClasses);
358
359 for(UInt_t iClass = 0; iClass < numClasses; iClass++){
360 oldSets.emplace_back();
361 //find a way to get number of events in each class
362 oldSets.reserve(nEntries);
363 }
364
365 for(UInt_t iEvent = 0; iEvent < nEntries; ++iEvent){
366 // check the class of event and add to its vector of events
368 UInt_t iClass = ev->GetClass();
369 oldSets.at(iClass).push_back(ev);
370 }
371
372 for(UInt_t i = 0; i<numClasses; ++i){
373 // Shuffle each vector individually
375 std::shuffle(oldSets.at(i).begin(), oldSets.at(i).end(), rng);
376 }
377
378 for(UInt_t i = 0; i<numClasses; ++i) {
379 std::vector<UInt_t> fOrigToFoldMapping;
380 fOrigToFoldMapping = GetEventIndexToFoldMapping(oldSets.at(i).size(), numFolds, fSeed);
381
382 for (UInt_t iEvent = 0; iEvent < oldSets.at(i).size(); ++iEvent) {
384 TMVA::Event *ev = oldSets.at(i)[iEvent];
385 tempSets.at(iFold).push_back(ev);
386 fEventToFoldMapping[ev] = iFold;
387 }
388 }
389 }
390 }
391 return tempSets;
392}
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
constexpr Bool_t kFALSE
Definition RtypesCore.h:94
constexpr Bool_t kTRUE
Definition RtypesCore.h:93
#define ClassImp(name)
Definition Rtypes.h:382
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
char name[80]
Definition TGX11.cxx:110
const_iterator begin() const
const_iterator end() const
The Formula class.
Definition TFormula.h:89
const char * GetParName(Int_t ipar) const
Return parameter name given by integer.
Bool_t IsValid() const
Definition TFormula.h:271
Int_t GetNpar() const
Definition TFormula.h:260
MsgLogger & Log() const
Int_t fIdxFormulaParNumFolds
Maps parameter indicies in splitExpr to their spectator index in the datasetinfo.
Definition CvSplit.h:81
UInt_t Eval(UInt_t numFolds, const Event *ev)
Definition CvSplit.cxx:164
std::vector< std::pair< Int_t, Int_t > > fFormulaParIdxToDsiSpecIdx
Definition CvSplit.h:80
UInt_t GetSpectatorIndexForName(DataSetInfo &dsi, TString name)
Definition CvSplit.cxx:206
static Bool_t Validate(TString expr)
Definition CvSplit.cxx:198
CvSplitKFoldsExpr(DataSetInfo &dsi, TString expr)
Definition CvSplit.cxx:139
TFormula fSplitFormula
Expression used to split data into folds. Should output values between 0 and numFolds.
Definition CvSplit.h:83
DataSetInfo & fDsi
Definition CvSplit.h:77
TString fSplitExpr
Keeps track of the index of reserved par "NumFolds" in splitExpr.
Definition CvSplit.h:82
std::vector< UInt_t > GetEventIndexToFoldMapping(UInt_t nEntries, UInt_t numFolds, UInt_t seed=100)
Generates a vector of fold assignments.
Definition CvSplit.cxx:293
void MakeKFoldDataSet(DataSetInfo &dsi) override
Prepares a DataSet for cross validation.
Definition CvSplit.cxx:255
std::vector< std::vector< Event * > > SplitSets(std::vector< TMVA::Event * > &oldSet, UInt_t numFolds, UInt_t numClasses)
Split sets for into k-folds.
Definition CvSplit.cxx:320
TString fSplitExprString
! Expression used to split data into folds. Should output values between 0 and numFolds.
Definition CvSplit.h:108
CvSplitKFolds(UInt_t numFolds, TString splitExpr="", Bool_t stratified=kTRUE, UInt_t seed=100)
Splits a dataset into k folds, ready for use in cross validation.
Definition CvSplit.cxx:243
virtual void RecombineKFoldDataSet(DataSetInfo &dsi, Types::ETreeType tt=Types::kTraining)
Definition CvSplit.cxx:114
virtual void PrepareFoldDataSet(DataSetInfo &dsi, UInt_t foldNumber, Types::ETreeType tt)
Set training and test set vectors of dataset described by dsi.
Definition CvSplit.cxx:57
CvSplit(UInt_t numFolds)
Definition CvSplit.cxx:38
Class that contains all the data information.
Definition DataSetInfo.h:62
@ kTraining
Definition Types.h:143
Class for type info of MVA input variable.
Basic string class.
Definition TString.h:139
const char * Data() const
Definition TString.h:376
MsgLogger & Endl(MsgLogger &ml)
Definition MsgLogger.h:148
auto * tt
Definition textangle.C:16
static uint64_t sum(uint64_t i)
Definition Factory.cxx:2345