88#include "RConfigure.h"
118 double likelihood = std::exp(-nll);
120 if (
fPrior) likelihood *= (*fPrior)(
x);
123 if (nCalls > 0 && nCalls % 1000 == 0) {
124 ooccoutD(
nullptr,Eval) <<
"Likelihood evaluation ncalls = " << nCalls
125 <<
" x0 " <<
x[0] <<
" nll = " << nll+
fOffset;
127 ooccoutD(
nullptr,Eval) <<
" likelihood " << likelihood
128 <<
" max Likelihood " <<
fMaxL << std::endl;
131 if (likelihood >
fMaxL ) {
133 if ( likelihood > 1.E10) {
134 ooccoutW(
nullptr,Eval) <<
"LikelihoodFunction::() WARNING - Huge likelihood value found for parameters ";
136 ooccoutW(
nullptr,Eval) <<
" x[" << i <<
" ] = " <<
x[i];
137 ooccoutW(
nullptr,Eval) <<
" nll = " << nll <<
" L = " << likelihood << std::endl;
149 return (*
this)(&tmp);
182 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorCdfFunction::Compute integral of posterior in nuisance and poi. "
183 <<
" nllMinimum is " << nllMinimum << std::endl;
185 std::vector<double> par(bindParams.
size());
186 for (
unsigned int i = 0; i <
fXmin.size(); ++i) {
191 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction::Integrate" << var.
GetName()
192 <<
" in interval [ " <<
fXmin[i] <<
" , " <<
fXmax[i] <<
" ] " << std::endl;
202 if (
fError)
ooccoutE(
nullptr,NumIntegration) <<
"PosteriorFunction::Error computing normalization - norm = " <<
fNorm << std::endl;
243 ooccoutD(
nullptr,NumIntegration) <<
" cloning function .........." << std::endl;
272 fXmin[0] = itr->first;
273 normcdf0 = itr->second;
283 double normcdf = cdf/
fNorm;
285 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorCdfFunction: poi = [" <<
fXmin[0] <<
" , "
286 <<
fXmax[0] <<
"] integral = " << cdf <<
" +/- " << error
287 <<
" norm-integ = " << normcdf <<
" cdf(x) = " << normcdf+normcdf0
290 if (
TMath::IsNaN(cdf) || cdf > std::numeric_limits<double>::max()) {
291 ooccoutE(
nullptr,NumIntegration) <<
"PosteriorFunction::Error computing integral - cdf = "
296 if (cdf != 0 && error / cdf > 0.2) {
297 oocoutW(
nullptr, NumIntegration)
298 <<
"PosteriorCdfFunction: integration error is larger than 20 % x0 = " <<
fXmin[0] <<
" x = " <<
x
299 <<
" cdf(x) = " << cdf <<
" +/- " << error << std::endl;
303 oocoutI(
nullptr,NumIntegration) <<
"PosteriorCdfFunction - integral of posterior = "
304 << cdf <<
" +/- " << error << std::endl;
317 if (normcdf > 1. + 3 * errnorm) {
318 oocoutW(
nullptr,NumIntegration) <<
"PosteriorCdfFunction: normalized cdf values is larger than 1"
319 <<
" x = " <<
x <<
" normcdf(x) = " << normcdf <<
" +/- " << error/
fNorm << std::endl;
352 norm = 1.0,
double nllOffset = 0,
int niter = 0) :
367 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction::Evaluate the posterior function by integrating the nuisances: " << std::endl;
368 for (
unsigned int i = 0; i <
fXmin.size(); ++i) {
372 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction::Integrate " << var.
GetName()
373 <<
" in interval [" <<
fXmin[i] <<
" , " <<
fXmax[i] <<
" ] " << std::endl;
375 if (
fXmin.size() == 1) {
383 else if (
fXmin.size() > 1) {
416 if (
fXmin.size() == 1) {
420 else if (
fXmin.size() > 1) {
429 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunction: POI value = "
430 <<
x <<
"\tf(x) = " <<
f <<
" +/- " << error
431 <<
" norm-f(x) = " <<
f/
fNorm
434 if (
f != 0 && error /
f > 0.2) {
436 <<
"PosteriorFunction::DoEval - Error from integration in " <<
fXmin.size() <<
" Dim is larger than 20 % "
437 <<
"x = " <<
x <<
" p(x) = " <<
f <<
" +/- " << error << std::endl;
463 RooAbsReal *prior =
nullptr,
double nllOffset = 0,
int niter = 0,
bool redoToys =
true)
481 ooccoutI(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC::Evaluate the posterior function by randomizing the nuisances: niter " <<
fNumIterations << std::endl;
483 ooccoutI(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC::Pdf used for randomizing the nuisance is " <<
fPdf->
GetName() << std::endl;
489 <<
" is not part of sampling pdf. "
490 <<
"they will be treated as constant " << std::endl;
495 ooccoutI(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC::Generate nuisance toys only one time (for all POI points)" << std::endl;
504 ooccoutE(
nullptr,InputArguments) <<
"PosteriorFunctionFromToyMC - failed to generate nuisance parameters" << std::endl;
541 std::vector<double>
p(npar);
542 for (
int i = 0; i < npar; ++i) {
546 assert(var !=
nullptr);
562 if( fval > std::numeric_limits<double>::max() ) {
563 ooccoutE(
nullptr,Eval) <<
"BayesianCalculator::EvalPosteriorFunctionFromToy : "
564 <<
"Likelihood evaluates to infinity " << std::endl;
565 ooccoutE(
nullptr,Eval) <<
"poi value = " <<
x << std::endl;
566 ooccoutE(
nullptr,Eval) <<
"Nuisance parameter values : ";
567 for (
int i = 0; i < npar; ++i)
569 ooccoutE(
nullptr,Eval) <<
" - return 0 " << std::endl;
575 ooccoutE(
nullptr,Eval) <<
"BayesianCalculator::EvalPosteriorFunctionFromToy : "
576 <<
"Likelihood is a NaN " << std::endl;
577 ooccoutE(
nullptr,Eval) <<
"poi value = " <<
x << std::endl;
578 ooccoutE(
nullptr,Eval) <<
"Nuisance parameter values : ";
579 for (
int i = 0; i < npar; ++i)
581 ooccoutE(
nullptr,Eval) <<
" - return 0 " << std::endl;
594 double dval2 = std::max( sum2/
double(
fNumIterations) - val*val, 0.0);
598 ooccoutD(
nullptr,NumIntegration) <<
"PosteriorFunctionFromToyMC: POI value = "
599 <<
x <<
"\tp(x) = " << val <<
" +/- " <<
fError << std::endl;
602 if (val != 0 &&
fError/val > 0.2 ) {
603 ooccoutW(
nullptr,NumIntegration) <<
"PosteriorFunctionFromToyMC::DoEval"
604 <<
" - Error in estimating posterior is larger than 20% ! "
605 <<
"x = " <<
x <<
" p(x) = " << val <<
" +/- " <<
fError << std::endl;
636 fNuisancePdf(nullptr),
637 fProductPdf (nullptr), fLikelihood (nullptr), fIntegratedLikelihood (nullptr), fPosteriorPdf(nullptr),
638 fPosteriorFunction(nullptr), fApproxPosterior(nullptr),
639 fLower(0), fUpper(0),
641 fSize(0.05), fLeftSideFraction(0.5),
642 fBrfPrecision(0.00005),
645 fValidInterval(false)
663 fPriorPdf(&priorPdf),
664 fNuisancePdf(nullptr),
665 fProductPdf (nullptr), fLikelihood (nullptr), fIntegratedLikelihood (nullptr), fPosteriorPdf(nullptr),
666 fPosteriorFunction(nullptr), fApproxPosterior(nullptr),
667 fLower(0), fUpper(0),
669 fSize(0.05), fLeftSideFraction(0.5),
670 fBrfPrecision(0.00005),
673 fValidInterval(false)
688 fPdf(model.GetPdf()),
689 fPriorPdf( model.GetPriorPdf()),
690 fNuisancePdf(nullptr),
691 fProductPdf (nullptr), fLikelihood (nullptr), fIntegratedLikelihood (nullptr), fPosteriorPdf(nullptr),
692 fPosteriorFunction(nullptr), fApproxPosterior(nullptr),
693 fLower(0), fUpper(0),
695 fSize(0.05), fLeftSideFraction(0.5),
696 fBrfPrecision(0.00005),
699 fValidInterval(false)
777 coutE(InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - missing pdf model" << std::endl;
781 coutE(InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - missing parameter of interest" << std::endl;
785 coutE(InputArguments) <<
"BayesianCalculator::GetPosteriorPdf - current implementation works only on 1D intervals" << std::endl;
801 ccoutD(Eval) <<
"BayesianCalculator::GetPosteriorFunction : "
803 <<
" neglogLikelihood = " <<
fLogLike->getVal() << std::endl;
810 if ( nllVal > std::numeric_limits<double>::max() ) {
811 coutE(Eval) <<
"BayesianCalculator::GetPosteriorFunction : "
812 <<
" Negative log likelihood evaluates to infinity " << std::endl
813 <<
" Non-const Parameter values : ";
815 for (std::size_t i = 0; i <
p.size(); ++i) {
817 if (
v!=
nullptr)
ccoutE(Eval) <<
v->
GetName() <<
" = " <<
v->getVal() <<
" ";
819 ccoutE(Eval) << std::endl;
820 ccoutE(Eval) <<
"-- Perform a full likelihood fit of the model before or set more reasonable parameter values"
822 coutE(Eval) <<
"BayesianCalculator::GetPosteriorFunction : " <<
" cannot compute posterior function " << std::endl;
842 coutI(Eval) <<
"BayesianCalculator::GetPosteriorFunction : "
843 <<
" nll value " << nllVal <<
" poi value = " << poi->
getVal() << std::endl;
848 bool ret = minim.
Minimize(100,1.E-3,1.E-3);
852 coutI(Eval) <<
"BayesianCalculator::GetPosteriorFunction : minimum of NLL vs POI for POI = "
860 ccoutD(Eval) <<
"BayesianCalculator::GetPosteriorFunction : use ROOFIT integration "
917 bool doToysEveryIteration =
true;
923 ccoutI(Eval) <<
"BayesianCalculator::GetPosteriorFunction : no nuisance pdf is provided, try using global pdf (this will be slower)"
953 <<
" errors reported in evaluating log-likelihood function " << std::endl;
971 if (!plike)
return nullptr;
1017 if (!posterior)
return nullptr;
1026 if (!
plot)
return nullptr;
1034 plot->GetYaxis()->SetTitle(
"posterior function");
1099 coutW(Eval) <<
"BayesianCalculator::GetInterval - recomputing interval for the same CL and same model" << std::endl;
1103 coutE(Eval) <<
"BayesianCalculator::GetInterval - no parameter of interest is set " << std::endl;
1142 coutW(Eval) <<
"BayesianCalculator::GetInterval - computing integral from cdf failed - do a scan in "
1153 <<
" errors reported in evaluating log-likelihood function " << std::endl;
1161 coutE(Eval) <<
"BayesianCalculator::GetInterval - cannot compute a valid interval - return a dummy [1,0] interval"
1165 coutI(Eval) <<
"BayesianCalculator::GetInterval - found a valid interval : [" <<
fLower <<
" , "
1166 <<
fUpper <<
" ]" << std::endl;
1171 interval->
SetTitle(
"SimpleInterval from BayesianCalculator");
1196 coutI(Eval) <<
"BayesianCalculator: Compute interval using RooFit: posteriorPdf + createCdf + RooBrentRootFinder " << std::endl;
1208 std::unique_ptr<RooAbsFunc> cdf_bind{cdf->bindVars(
fPOI,&
fPOI)};
1209 if (!cdf_bind)
return;
1214 double tmpVal = poi->
getVal();
1217 if (lowerCutOff > 0) {
1218 double y = lowerCutOff;
1224 if (upperCutOff < 1.0) {
1225 double y=upperCutOff;
1231 coutE(Eval) <<
"BayesianCalculator::GetInterval "
1232 <<
"Error returned from Root finder, estimated interval is not fully correct" << std::endl;
1247 coutI(InputArguments) <<
"BayesianCalculator:GetInterval Compute the interval from the posterior cdf " << std::endl;
1252 coutE(InputArguments) <<
"BayesianCalculator::GetInterval() cannot make posterior Function " << std::endl;
1267 coutE(Eval) <<
"BayesianCalculator: Numerical error computing CDF integral - try a different method " << std::endl;
1275 ccoutD(Eval) <<
"BayesianCalculator::GetInterval - finding roots of posterior using RF " << rf.
Name()
1278 if (lowerCutOff > 0) {
1280 ccoutD(NumIntegration) <<
"Integrating posterior to get cdf and search lower limit at p =" << lowerCutOff << std::endl;
1283 coutW(Eval) <<
"BayesianCalculator: Numerical error integrating the CDF " << std::endl;
1285 coutE(NumIntegration) <<
"BayesianCalculator::GetInterval - Error from root finder when searching lower limit !" << std::endl;
1293 if (upperCutOff < 1.0) {
1295 ccoutD(NumIntegration) <<
"Integrating posterior to get cdf and search upper interval limit at p =" << upperCutOff << std::endl;
1298 coutW(Eval) <<
"BayesianCalculator: Numerical error integrating the CDF " << std::endl;
1300 coutE(NumIntegration) <<
"BayesianCalculator::GetInterval - Error from root finder when searching upper limit !" << std::endl;
1331 if (!posterior)
return;
1335 assert(tmp !=
nullptr);
1339 coutI(Eval) <<
"BayesianCalculator - scan posterior function in nbins = " << tmp->GetNpx() << std::endl;
1366 ccoutD(Eval) <<
"BayesianCalculator: Compute interval from the approximate posterior " << std::endl;
1372 double limits[2] = {0,0};
1373 prob[0] = lowerCutOff;
1374 prob[1] = upperCutOff;
1386 coutI(Eval) <<
"BayesianCalculator - computing shortest interval with CL = " << 1.-
fSize << std::endl;
1393 assert(
h1 !=
nullptr);
1399 std::vector<int>
index(
n);
1404 double actualCL = 0;
1409 for (
int i = 0; i <
n; ++i) {
1411 double p = bins[ idx] / norm;
1425 ccoutD(Eval) <<
"BayesianCalculator::ComputeShortestInterval - actual interval CL = "
1426 << actualCL <<
" difference from requested is " << (actualCL-(1.-
fSize))/
fSize*100. <<
"% "
1427 <<
" limits are [ " << lower <<
" , " <<
" upper ] " << std::endl;
1430 if (lower < upper) {
1434 if (std::abs(actualCL - (1. -
fSize)) > 0.1 * (1. -
fSize)) {
1435 coutW(Eval) <<
"BayesianCalculator::ComputeShortestInterval - actual interval CL = " << actualCL
1436 <<
" differs more than 10% from desired CL value - must increase nbins " <<
n
1437 <<
" to an higher value " << std::endl;
1441 coutE(Eval) <<
"BayesianCalculator::ComputeShortestInterval " <<
n <<
" bins are not sufficient " << std::endl;
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
winID h TVirtualViewer3D TVirtualGLPainter p
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h offset
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
User class for performing function minimization.
void SetFunction(const ROOT::Math::IGenFunction &f, double xlow, double xup)
Sets function to be minimized.
bool Minimize(int maxIter, double absTol=1.E-8, double relTol=1.E-10) override
Find minimum position iterating until convergence specified by the absolute and relative tolerance or...
double FValMinimum() const override
Return function value at current estimate of the minimum.
Functor1D class for one-dimensional functions.
Interface (abstract class) for generic functions objects of one-dimension Provides a method to evalua...
Numerical multi dimensional integration options.
void Print(std::ostream &os=std::cout) const
print all the options
void SetNCalls(unsigned int calls)
set maximum number of function calls
User class for performing multidimensional integration.
double Integral(const double *xmin, const double *xmax)
evaluate the integral with the previously given function between xmin[] and xmax[]
void SetFunction(Function &f, unsigned int dim)
set integration function using a generic function implementing the operator()(double *x) The dimensio...
static IntegrationMultiDim::Type GetType(const char *name)
static function to get the enumeration from a string
ROOT::Math::IntegratorMultiDimOptions Options() const
retrieve the options
double Error() const
return integration error
static IntegrationOneDim::Type GetType(const char *name)
static function to get the enumeration from a string
User Class to find the Root of one dimensional functions.
const char * Name() const
Return the current and latest estimate of the lower value of the Root-finding interval (for bracketin...
bool Solve(Function &f, Derivative &d, double start, int maxIter=100, double absTol=1E-8, double relTol=1E-10)
Solve f(x) = 0, given a derivative d.
double Root() const
Return the current and latest estimate of the Root.
Common abstract base class for objects that represent a value and a "shape" in RooFit.
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
RooFit::OwningPtr< RooArgSet > getVariables(bool stripDisconnected=true) const
Return RooArgSet with all variables (tree leaf nodes of expression tree)
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
Storage_t const & get() const
Const access to the underlying stl container.
const char * GetName() const override
Returns name of object.
virtual bool add(const RooAbsArg &var, bool silent=false)
Add the specified argument to list.
Storage_t::size_type size() const
RooAbsArg * first() const
RooAbsArg * find(const char *name) const
Find object with given name in list.
Abstract base class for binned and unbinned datasets.
void resetNumCall() const
Reset function call counter.
Int_t numCall() const
Return number of function calls since last reset.
Abstract interface for all probability density functions.
RooFit::OwningPtr< RooAbsReal > createNLL(RooAbsData &data, CmdArgs_t const &... cmdArgs)
Construct representation of -log(L) of PDF with given dataset.
RooFit::OwningPtr< RooAbsReal > createCdf(const RooArgSet &iset, const RooArgSet &nset=RooArgSet())
Create a cumulative distribution function of this p.d.f in terms of the observables listed in iset.
RooFit::OwningPtr< RooDataSet > generate(const RooArgSet &whatVars, Int_t nEvents, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={})
See RooAbsPdf::generate(const RooArgSet&,const RooCmdArg&,const RooCmdArg&,const RooCmdArg&,...
Abstract base class for objects that represent a real value that may appear on the left hand side of ...
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
RooPlot * frame(const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create a new RooPlot on the heap with a drawing frame initialized for this object,...
Abstract base class for objects that represent a real value and implements functionality common to al...
RooFit::OwningPtr< RooAbsReal > createIntegral(const RooArgSet &iset, const RooCmdArg &arg1, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}) const
Create an object that represents the integral of the function over one or more observables listed in ...
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
TF1 * asTF(const RooArgList &obs, const RooArgList &pars=RooArgList(), const RooArgSet &nset=RooArgSet()) const
Return a ROOT TF1,2,3 object bound to this RooAbsReal with given definition of observables and parame...
static Int_t numEvalErrors()
Return the number of logged evaluation errors since the last clearing.
static void setEvalErrorLoggingMode(ErrorLoggingMode m)
Set evaluation error logging mode.
static void clearEvalErrorLog()
Clear the stack of evaluation error messages.
virtual RooPlot * plotOn(RooPlot *frame, const RooCmdArg &arg1={}, const RooCmdArg &arg2={}, const RooCmdArg &arg3={}, const RooCmdArg &arg4={}, const RooCmdArg &arg5={}, const RooCmdArg &arg6={}, const RooCmdArg &arg7={}, const RooCmdArg &arg8={}, const RooCmdArg &arg9={}, const RooCmdArg &arg10={}) const
Plot (project) PDF on specified frame.
RooArgList is a container object that can hold multiple RooAbsArg objects.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
Implement the abstract 1-dimensional root finding interface using the Brent-Decker method.
bool findRoot(double &result, double xlo, double xhi, double value=0) const
Do the root finding using the Brent-Decker method.
void setTol(double tol)
Set convergence tolerance parameter.
RooCFunction1Binding is a templated implementation of class RooAbsReal that binds generic C(++) funct...
Lightweight interface adaptor that exports a RooAbsPdf as a functor.
Implementation of a probability density function that takes a RooArgList of servers and a C++ express...
Plot frame and a container for graphics objects within that frame.
Efficient implementation of a product of PDFs of the form.
Variable that can be changed from the outside.
void setVal(double value) override
Set value of variable to 'value'.
BayesianCalculator is a concrete implementation of IntervalCalculator, providing the computation of a...
ROOT::Math::IGenFunction * fPosteriorFunction
function representing the posterior
RooAbsReal * fLikelihood
internal pointer to likelihood function
double fNLLMin
minimum value of Nll
int fNumIterations
number of iterations (when using ToyMC)
RooAbsPdf * GetPosteriorPdf() const
return posterior pdf (object is managed by the user)
RooAbsData * fData
data set
RooPlot * GetPosteriorPlot(bool norm=false, double precision=0.01) const
get the plot with option to get it normalized
int fNScanBins
number of bins to scan, if = -1 no scan is done (default)
void ClearAll() const
clear all cached pdf objects
void ComputeShortestInterval() const
compute the shortest interval from the histogram representing the posterior
RooAbsPdf * fNuisancePdf
nuisance pdf (needed when using nuisance sampling technique)
RooArgSet fConditionalObs
conditional observables
double fBrfPrecision
root finder precision
RooAbsReal * fIntegratedLikelihood
integrated likelihood function, i.e - unnormalized posterior function
void ApproximatePosterior() const
approximate posterior in nbins using a TF1 scan the poi values and evaluate the posterior at each poi...
double fSize
size used for getting the interval
RooArgSet fNuisanceParameters
nuisance parameters
double fLeftSideFraction
fraction of probability content on left side of interval
RooArgSet fGlobalObs
global observables
double GetMode() const
return the mode (most probable value of the posterior function)
RooAbsPdf * fPdf
model pdf (could contain the nuisance pdf as constraint term)
SimpleInterval * GetInterval() const override
compute the interval.
RooAbsPdf * fProductPdf
internal pointer to model * prior
TF1 * fApproxPosterior
TF1 representing the scanned posterior function.
RooAbsReal * GetPosteriorFunction() const
return posterior function (object is managed by the BayesianCalculator class)
void SetIntegrationType(const char *type)
set the integration type (possible type are) :
RooAbsPdf * fPosteriorPdf
normalized (on the poi) posterior pdf
double fUpper
upper interval bound
double fLower
computer lower interval bound
TH1 * GetPosteriorHistogram() const
return the approximate posterior as histogram (TH1 object). Note the object is managed by the Bayesia...
void ComputeIntervalFromApproxPosterior(double c1, double c2) const
compute the interval using the approximate posterior function
BayesianCalculator()
constructor
void SetModel(const ModelConfig &model) override
set the model via the ModelConfig
RooAbsPdf * fPriorPdf
prior pdf (typically for the POI)
std::unique_ptr< RooAbsReal > fLogLike
internal pointer to log likelihood function
double ConfidenceLevel() const override
Get the Confidence level for the test.
~BayesianCalculator() override
destructor
void ComputeIntervalUsingRooFit(double c1, double c2) const
internal function compute the interval using RooFit
void ComputeIntervalFromCdf(double c1, double c2) const
internal function compute the interval using Cdf integration
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
const RooArgSet * GetConditionalObservables() const
get RooArgSet for conditional observables (return nullptr if not existing)
const RooArgSet * GetGlobalObservables() const
get RooArgSet for global observables (return nullptr if not existing)
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return nullptr if not existing)
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return nullptr if not existing)
std::shared_ptr< RooFunctor > fPriorFunc
PosteriorCdfFunction & operator=(const PosteriorCdfFunction &)
void SetOffset(double offset)
PosteriorCdfFunction(const PosteriorCdfFunction &rhs)
std::vector< double > fXmax
ROOT::Math::IntegratorMultiDim fIntegrator
PosteriorCdfFunction(RooAbsReal &nll, RooArgList &bindParams, RooAbsReal *prior=nullptr, const char *integType=nullptr, double nllMinimum=0)
double DoEval(double x) const override
implementation of the evaluation function. Must be implemented by derived classes
std::map< double, double > fNormCdfValues
std::vector< double > fXmin
ROOT::Math::IGenFunction * Clone() const override
Clone a function.
LikelihoodFunction fLikelihood
Posterior function obtaining sampling toy MC for the nuisance according to their pdf.
void GenerateToys() const
LikelihoodFunction fLikelihood
std::shared_ptr< RooFunctor > fPriorFunc
std::unique_ptr< RooDataSet > fGenParams
double DoEval(double x) const override
implementation of the evaluation function. Must be implemented by derived classes
PosteriorFunctionFromToyMC(RooAbsReal &nll, RooAbsPdf &pdf, RooRealVar &poi, RooArgList &nuisParams, RooAbsReal *prior=nullptr, double nllOffset=0, int niter=0, bool redoToys=true)
ROOT::Math::IGenFunction * Clone() const override
Clone a function.
LikelihoodFunction fLikelihood
PosteriorFunction(RooAbsReal &nll, RooRealVar &poi, RooArgList &nuisParams, RooAbsReal *prior=nullptr, const char *integType=nullptr, double norm=1.0, double nllOffset=0, int niter=0)
std::shared_ptr< RooFunctor > fPriorFunc
std::unique_ptr< ROOT::Math::IntegratorMultiDim > fIntegratorMultiDim
ROOT::Math::IGenFunction * Clone() const override
Clone a function.
std::vector< double > fXmin
std::vector< double > fXmax
double DoEval(double x) const override
implementation of the evaluation function. Must be implemented by derived classes
std::unique_ptr< ROOT::Math::Integrator > fIntegratorOneDim
SimpleInterval is a concrete implementation of the ConfInterval interface.
Use TF1, TF2, TF3 functions as RooFit objects.
const Float_t * GetArray() const
virtual Double_t GetBinUpEdge(Int_t bin) const
Return up edge of bin.
virtual TH1 * GetHistogram() const
Return a pointer to the histogram used to visualise the function Note that this histogram is managed ...
virtual Int_t GetQuantiles(Int_t n, Double_t *xp, const Double_t *p)
Compute Quantiles for density distribution of this function.
virtual Int_t GetNpx() const
1-D histogram with a double per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
virtual Double_t GetBinCenter(Int_t bin) const
Return bin center for 1D histogram.
virtual Double_t GetBinLowEdge(Int_t bin) const
Return bin lower edge for 1D histogram.
void SetName(const char *name) override
Change the name of this histogram.
virtual Double_t GetSumOfWeights() const
Return the sum of weights excluding under/overflows.
virtual void SetTitle(const char *title="")
Set the title of the TNamed.
const char * GetName() const override
Returns name of object.
const char * GetTitle() const override
Returns title of object.
void ToUpper()
Change string to upper case.
void Form(const char *fmt,...)
Formats a string using a printf style format descriptor.
Bool_t Contains(const char *pat, ECaseCompare cmp=kExact) const
RooCmdArg Constrain(const RooArgSet ¶ms)
RooCmdArg GlobalObservables(Args_t &&... argsOrArgSet)
RooCmdArg ConditionalObservables(Args_t &&... argsOrArgSet)
Create a RooCmdArg to declare conditional observables.
RooCmdArg Precision(double prec)
RooCmdArg DrawOption(const char *opt)
RooCmdArg Range(const char *rangeName, bool adjustNorm=true)
RooCmdArg FillColor(Color_t color)
Namespace for new Math classes and functions.
tbb::task_arena is an alias of tbb::interface7::task_arena, which doesn't allow to forward declare tb...
Namespace for the RooStats classes.
void RemoveConstantParameters(RooArgSet *set)
const ROOT::Math::RootFinder::EType kRootFinderType
void Sort(Index n, const Element *a, Index *index, Bool_t down=kTRUE)
Sort the n elements of the array a of generic templated type Element.
void SetPrior(RooFunctor *prior)
LikelihoodFunction(RooFunctor &f, RooFunctor *prior=nullptr, double offset=0)
double operator()(const double *x) const
static uint64_t sum(uint64_t i)