ROOT
Version v6.32
master
v6.34
v6.30
v6.28
v6.26
v6.24
v6.22
v6.20
v6.18
v6.16
v6.14
v6.12
v6.10
v6.08
v6.06
Reference Guide
►
ROOT
•
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Properties
Friends
Macros
Modules
Pages
Loading...
Searching...
No Matches
rf403_weightedevts.py
Go to the documentation of this file.
1
## \file
2
## \ingroup tutorial_roofit
3
## \notebook
4
##
5
## 'DATA AND CATEGORIES' RooFit tutorial macro #403
6
##
7
## Using weights in unbinned datasets
8
##
9
## \macro_image
10
## \macro_code
11
## \macro_output
12
##
13
## \date February 2018
14
## \authors Clemens Lange, Wouter Verkerke (C version)
15
16
from
__future__
import
print_function
17
import
ROOT
18
19
20
# Create observable and unweighted dataset
21
# -------------------------------------------
22
23
# Declare observable
24
x =
ROOT.RooRealVar
(
"x"
,
"x"
, -10, 10)
25
x.setBins
(40)
26
27
# Construction a uniform pdf
28
p0 =
ROOT.RooPolynomial
(
"px"
,
"px"
, x)
29
30
# Sample 1000 events from pdf
31
data =
p0.generate
({x}, 1000)
32
33
# Calculate weight and make dataset weighted
34
# --------------------------------------------------
35
36
# Construct formula to calculate (fake) weight for events
37
wFunc =
ROOT.RooFormulaVar
(
"w"
,
"event weight"
,
"(x*x+10)"
, [x])
38
39
# Add column with variable w to previously generated dataset
40
w =
data.addColumn
(wFunc)
41
42
# Dataset d is now a dataset with two observable (x,w) with 1000 entries
43
data.Print
()
44
45
# Instruct dataset wdata in interpret w as event weight rather than as
46
# observable
47
wdata =
ROOT.RooDataSet
(
data.GetName
(),
data.GetTitle
(), data,
data.get
(),
""
,
w.GetName
())
48
49
# Dataset d is now a dataset with one observable (x) with 1000 entries and
50
# a sum of weights of ~430K
51
wdata.Print
()
52
53
# Unbinned ML fit to weighted data
54
# ---------------------------------------------------------------
55
56
# Construction quadratic polynomial pdf for fitting
57
a0 =
ROOT.RooRealVar
(
"a0"
,
"a0"
, 1)
58
a1 =
ROOT.RooRealVar
(
"a1"
,
"a1"
, 0, -1, 1)
59
a2 =
ROOT.RooRealVar
(
"a2"
,
"a2"
, 1, 0, 10)
60
p2 =
ROOT.RooPolynomial
(
"p2"
,
"p2"
, x, [a0, a1, a2], 0)
61
62
# Fit quadratic polynomial to weighted data
63
64
# NOTE: A plain Maximum likelihood fit to weighted data does in general
65
# NOT result in correct error estimates, individual
66
# event weights represent Poisson statistics themselves.
67
#
68
# Fit with 'wrong' errors
69
r_ml_wgt =
p2.fitTo
(wdata, Save=
True
, PrintLevel=-1)
70
71
# A first order correction to estimated parameter errors in an
72
# (unbinned) ML fit can be obtained by calculating the
73
# covariance matrix as
74
#
75
# V' = V C-1 V
76
#
77
# where V is the covariance matrix calculated from a fit
78
# to -logL = - sum [ w_i log f(x_i) ] and C is the covariance
79
# matrix calculated from -logL' = -sum [ w_i^2 log f(x_i) ]
80
# (i.e. the weights are applied squared)
81
#
82
# A fit in self mode can be performed as follows:
83
84
r_ml_wgt_corr =
p2.fitTo
(wdata, Save=
True
, SumW2Error=
True
, PrintLevel=-1)
85
86
# Plot weighted data and fit result
87
# ---------------------------------------------------------------
88
89
# Construct plot frame
90
frame =
x.frame
(Title=
"Unbinned ML fit, chi^2 fit to weighted data"
)
91
92
# Plot data using sum-of-weights-squared error rather than Poisson errors
93
wdata.plotOn
(frame, DataError=
"SumW2"
)
94
95
# Overlay result of 2nd order polynomial fit to weighted data
96
p2.plotOn
(frame)
97
98
# ML fit of pdf to equivalent unweighted dataset
99
# ---------------------------------------------------------------------
100
101
# Construct a pdf with the same shape as p0 after weighting
102
genPdf =
ROOT.RooGenericPdf
(
"genPdf"
,
"x*x+10"
, [x])
103
104
# Sample a dataset with the same number of events as data
105
data2 =
genPdf.generate
({x}, 1000)
106
107
# Sample a dataset with the same number of weights as data
108
data3 =
genPdf.generate
({x}, 43000)
109
110
# Fit the 2nd order polynomial to both unweighted datasets and save the
111
# results for comparison
112
r_ml_unw10 =
p2.fitTo
(data2, Save=
True
, PrintLevel=-1)
113
r_ml_unw43 =
p2.fitTo
(data3, Save=
True
, PrintLevel=-1)
114
115
# Chis2 fit of pdf to binned weighted dataset
116
# ---------------------------------------------------------------------------
117
118
# Construct binned clone of unbinned weighted dataset
119
binnedData =
wdata.binnedClone
()
120
binnedData.Print
(
"v"
)
121
122
# Perform chi2 fit to binned weighted dataset using sum-of-weights errors
123
#
124
# NB: Within the usual approximations of a chi2 fit, chi2 fit to weighted
125
# data using sum-of-weights-squared errors does give correct error
126
# estimates
127
chi2 =
p2.createChi2
(binnedData,
ROOT.RooFit.DataError
(
"SumW2"
))
128
m =
ROOT.RooMinimizer
(chi2)
129
m.migrad
()
130
m.hesse
()
131
132
# Plot chi^2 fit result on frame as well
133
r_chi2_wgt =
m.save
()
134
p2.plotOn
(frame, LineStyle=
"--"
, LineColor=
"r"
)
135
136
# Compare fit results of chi2, L fits to (un)weighted data
137
# ------------------------------------------------------------
138
139
# Note that ML fit on 1Kevt of weighted data is closer to result of ML fit on 43Kevt of unweighted data
140
# than to 1Kevt of unweighted data, the reference chi^2 fit with SumW2 error gives a result closer to
141
# that of an unbinned ML fit to 1Kevt of unweighted data.
142
143
print(
"==> ML Fit results on 1K unweighted events"
)
144
r_ml_unw10.Print
()
145
print(
"==> ML Fit results on 43K unweighted events"
)
146
r_ml_unw43.Print
()
147
print(
"==> ML Fit results on 1K weighted events with a summed weight of 43K"
)
148
r_ml_wgt.Print
()
149
print(
"==> Corrected ML Fit results on 1K weighted events with a summed weight of 43K"
)
150
r_ml_wgt_corr.Print
()
151
print(
"==> Chi2 Fit results on 1K weighted events with a summed weight of 43K"
)
152
r_chi2_wgt.Print
()
153
154
c =
ROOT.TCanvas
(
"rf403_weightedevts"
,
"rf403_weightedevts"
, 600, 600)
155
ROOT.gPad.SetLeftMargin
(0.15)
156
frame.GetYaxis
().SetTitleOffset(1.8)
157
frame.Draw
()
158
159
c.SaveAs
(
"rf403_weightedevts.png"
)
TRangeDynCast
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Definition
TCollection.h:358
tutorials
roofit
rf403_weightedevts.py
ROOT v6-32 - Reference Guide Generated on Wed Apr 2 2025 08:24:49 (GVA Time) using Doxygen 1.10.0