29 double upp[5] = { 10, 10, 10, 10, 1 };
30 double low[5] = { 0, 0, 0, 0, .1 };
31 for (
int i = 0; i < 4; i++)
120 int nc =
fit->GetNCoefficients();
121 int nv =
fit->GetNVariables();
123 const int *
pindex =
fit->GetPowerIndex();
124 if (nc != 21)
return 1;
127 for (
int i=0;i<nc;i++) {
134 for (
int j=0;
j<
nv;
j++) {
141 gROOT->ProcessLine(
".L MDF.C");
143 double refMDF = (doFit) ? 43.95 : 43.98;
148 std::intptr_t
iret =
gROOT->ProcessLine(
" double xvalues[] = {5,5,5,5}; double result=MDF(xvalues); &result;");
159 std::cout <<
"*************************************************" << std::endl;
160 std::cout <<
"* Multidimensional Fit *" << std::endl;
161 std::cout <<
"* *" << std::endl;
162 std::cout <<
"* By Christian Holm <cholm@nbi.dk> 14/10/00 *" << std::endl;
163 std::cout <<
"*************************************************" << std::endl;
164 std::cout << std::endl;
180 int mPowers[] = { 6 , 6, 6, 6 };
182 fit->SetMaxFunctions(1000);
183 fit->SetMaxStudy(1000);
184 fit->SetMaxTerms(30);
185 fit->SetPowerLimit(1);
186 fit->SetMinAngle(10);
187 fit->SetMaxAngle(10);
188 fit->SetMinRelativeError(.01);
197 printf(
"======================================\n");
201 for (i = 0; i < nData ; i++) {
214 fit->MakeHistograms();
217 fit->FindParameterization();
226 for (i = 0; i <
nVars; i++) {
227 xMax[i] = (*
fit->GetMaxVariables())(i);
228 xMin[i] = (*
fit->GetMinVariables())(i);
231 nData =
fit->GetNCoefficients() * 100;
235 for (i = 0; i < nData ; i++) {
270 printf(
"\nmultidimfit .............................................. OK\n");
272 printf(
"\nmultidimfit .............................................. fails case %d\n",compare);
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
R__EXTERN TRandom * gRandom
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
Multidimensional Fits in ROOT.
This is the base class for the ROOT Random number generators.
virtual Double_t Gaus(Double_t mean=0, Double_t sigma=1)
Samples a random number from the standard Normal (Gaussian) Distribution with the given mean and sigm...
Double_t Rndm() override
Machine independent random number generator.
fit(model, train_loader, val_loader, num_epochs, batch_size, optimizer, criterion, save_best, scheduler)
Double_t Sqrt(Double_t x)
Returns the square root of x.
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
Short_t Abs(Short_t d)
Returns the absolute value of parameter Short_t d.