| AddBasicGRULayer(size_t stateSize, size_t inputSize, size_t timeSteps, bool rememberState=false, bool returnSequence=false, bool resetGateAfter=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddBasicGRULayer(TBasicGRULayer< Architecture_t > *basicGRULayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddBasicLSTMLayer(size_t stateSize, size_t inputSize, size_t timeSteps, bool rememberState=false, bool returnSequence=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddBasicLSTMLayer(TBasicLSTMLayer< Architecture_t > *basicLSTMLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddBasicRNNLayer(size_t stateSize, size_t inputSize, size_t timeSteps, bool rememberState=false, bool returnSequence=false, EActivationFunction f=EActivationFunction::kTanh) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddBasicRNNLayer(TBasicRNNLayer< Architecture_t > *basicRNNLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddBatchNormLayer(Scalar_t momentum=-1, Scalar_t epsilon=0.0001) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddConvLayer(size_t depth, size_t filterHeight, size_t filterWidth, size_t strideRows, size_t strideCols, size_t paddingHeight, size_t paddingWidth, EActivationFunction f, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddConvLayer(TConvLayer< Architecture_t > *convLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddDenseLayer(size_t width, EActivationFunction f, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddDenseLayer(TDenseLayer< Architecture_t > *denseLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddMaxPoolLayer(size_t frameHeight, size_t frameWidth, size_t strideRows, size_t strideCols, Scalar_t dropoutProbability=1.0) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddMaxPoolLayer(CNN::TMaxPoolLayer< Architecture_t > *maxPoolLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddReshapeLayer(size_t depth, size_t height, size_t width, bool flattening) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | AddReshapeLayer(TReshapeLayer< Architecture_t > *reshapeLayer) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Backward(const Tensor_t &input, const Matrix_t &groundTruth, const Matrix_t &weights) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | calculateDimension(int imgDim, int fltDim, int padding, int stride) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | Clear() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | fBatchDepth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fBatchHeight | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fBatchSize | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fBatchWidth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fI | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fInputDepth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fInputHeight | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fInputWidth | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fIsTraining | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fJ | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fLayers | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | Forward(Tensor_t &input, bool applyDropout=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | fR | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | fWeightDecay | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | private | 
  | GetBatchDepth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetBatchHeight() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetBatchSize() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetBatchWidth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetDepth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetInitialization() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetInputDepth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetInputHeight() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetInputWidth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetLayerAt(size_t i) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetLayerAt(size_t i) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetLayers() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetLayers() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetLossFunction() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetOutputWidth() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetRegularization() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | GetWeightDecay() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | Initialize() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | isInteger(Scalar_t x) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inlineprivate | 
  | IsTraining() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | Loss(const Matrix_t &groundTruth, const Matrix_t &weights, bool includeRegularization=true) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Loss(Tensor_t &input, const Matrix_t &groundTruth, const Matrix_t &weights, bool inTraining=false, bool includeRegularization=true) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Matrix_t typedef | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Prediction(Matrix_t &predictions, EOutputFunction f) const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Prediction(Matrix_t &predictions, Tensor_t &input, EOutputFunction f) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Print() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | RegularizationTerm() const | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | ResetTraining() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Scalar_t typedef | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | SetBatchDepth(size_t batchDepth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetBatchHeight(size_t batchHeight) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetBatchSize(size_t batchSize) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetBatchWidth(size_t batchWidth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetDropoutProbabilities(const std::vector< Double_t > &probabilities) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | SetInitialization(EInitialization I) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetInputDepth(size_t inputDepth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetInputHeight(size_t inputHeight) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetInputWidth(size_t inputWidth) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetLossFunction(ELossFunction J) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetRegularization(ERegularization R) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | SetWeightDecay(Scalar_t weightDecay) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > | inline | 
  | TDeepNet() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | TDeepNet(size_t BatchSize, size_t InputDepth, size_t InputHeight, size_t InputWidth, size_t BatchDepth, size_t BatchHeight, size_t BatchWidth, ELossFunction fJ, EInitialization fI=EInitialization::kZero, ERegularization fR=ERegularization::kNone, Scalar_t fWeightDecay=0.0, bool isTraining=false) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | TDeepNet(const TDeepNet &) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Tensor_t typedef | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | Update(Scalar_t learningRate) | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  | 
  | ~TDeepNet() | TMVA::DNN::TDeepNet< Architecture_t, Layer_t > |  |