5from graph_nets 
import utils_tf
 
   12snd = 
np.array([1,2,3,4,2,3,4,3,4,4,0,0,0,0,1,1,1,2,2,3], dtype=
'int32')
 
   13rec = 
np.array([0,0,0,0,1,1,1,2,2,3,1,2,3,4,2,3,4,3,4,4], dtype=
'int32')
 
   22def get_graph_data_dict(num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1):
 
 
   34      snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
 
 
   40  def __init__(self, name="MLPGraphIndependent"):
 
   43        edge_model_fn = 
lambda: 
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
 
   44        node_model_fn = 
lambda: 
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True),
 
   45        global_model_fn = 
lambda: 
snt.nets.MLP([LATENT_SIZE]*NUM_LAYERS, activate_final=
True))
 
 
 
   55            edge_model_fn=make_mlp_model,
 
   56            node_model_fn=make_mlp_model,
 
   57            global_model_fn=make_mlp_model)
 
 
 
   66               name="EncodeProcessDecode"):
 
 
   73  def __call__(self, input_op, num_processing_steps):
 
   77    for _ 
in range(num_processing_steps):
 
   79      latent = self.
_core(core_input)
 
 
 
  103output_gn = 
ep_model(input_graph_data, processing_steps)
 
  164        for _ 
in range(processing_steps):
 
 
 
  182for i 
in range(0,numevts):
 
  189for i 
in range(0,numevts):
 
  190    graphData = dataSet[i]
 
  196    output_gn = 
ep_model(inputGraphData, processing_steps)
 
 
  201for i 
in range(0,numevts):
 
  207print(
"elapsed time for ",numevts,
"events = ",end-start)
 
  211for i 
in range(0,numevts):
 
  212    graphData = dataSet[i]
 
  222print(
"time to convert data to SOFIE format",endSC-end)
 
  228print(
"time to create SOFIE GNN class", start-start0)
 
  229for i 
in range(0,numevts):
 
  236print(
"elapsed time for ",numevts,
"events = ",end-start)
 
  249hDg = 
ROOT.TH1D(
"hDg",
"Difference for global data",40,1,0)
 
  251for i 
in range(0,numevts):
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
__call__(self, input_op, num_processing_steps)
 
__init__(self, name="EncodeProcessDecode")
 
__init__(self, name="MLPGraphIndependent")
 
__init__(self, name="MLPGraphNetwork")
 
get_graph_data_dict(num_nodes, num_edges, NODE_FEATURE_SIZE=2, EDGE_FEATURE_SIZE=2, GLOBAL_FEATURE_SIZE=1)
 
PrintSofie(output, printShape=False)