116   for (i = 0; i <= 
data->GetSignal()->GetLast(); i++) {
 
  118                 (((
TH1 *) (
data->GetSignal()->At(i)))->GetNbinsX() + 2) : 
maxbins;
 
  119      nsig   +=  ((
TH1 *) (
data->GetSignal()->At(i)))->Integral();
 
  120      nbg    +=  ((
TH1 *) (
data->GetBackground()->At(i)))->Integral();
 
  128   for (
Int_t channel = 0; channel <= 
data->GetSignal()->GetLast(); channel++)
 
  130           bin <= ((
TH1 *) (
data->GetSignal()->At(channel)))->GetNbinsX()+1;
 
  136         if ((
b == 0) && (s > 0)) {
 
  137            std::cout << 
"WARNING: Ignoring bin " << bin << 
" of channel " 
  138                 << channel << 
" which has s=" << s << 
" but b=" << 
b << std::endl;
 
  139            std::cout << 
"         Maybe the MC statistic has to be improved..." << std::endl;
 
  141         if ((s > 0) && (
b > 0))
 
  146         if ((s > 0) && (
b > 0))
 
  148         else if ((s > 0) && (
b == 0))
 
  164   for (i = 0; i < 
nmc; i++) {
 
  176      for (
Int_t channel = 0;
 
  177           channel <= 
fluctuated->GetSignal()->GetLast(); channel++) {
 
  179              bin <=((
TH1 *) (
fluctuated->GetSignal()->At(channel)))->GetNbinsX()+1;
 
  191               if ((s > 0) && (b2 > 0))
 
  193               else if ((s > 0) && (b2 == 0))
 
  199               if ((
s2 > 0) && (
b > 0))
 
  201               else if ((s > 0) && (
b == 0))
 
 
  256      for (
Int_t channel = 0; channel <= 
input->GetSignal()->GetLast(); channel++) {
 
  260            for(
int i=1; i<=
newsignal->GetNbinsX(); i++) {
 
  285      for (
Int_t channel = 0;
 
  286           channel <= 
input->GetSignal()->GetLast();
 
  291              bin <((
TVectorD *) (
input->GetErrorOnSignal()->At(channel)))->GetNrows();
 
  293            serrf[channel] += ((
TVectorD *) (
input->GetErrorOnSignal()->At(channel)))->operator[](bin) *
 
  295            berrf[channel] += ((
TVectorD *) (
input->GetErrorOnBackground()->At(channel)))->operator[](bin) *
 
  298         if ((
serrf[channel] < -1.0) || (
berrf[channel] < -0.9)) {
 
  308   for (
Int_t channel = 0; channel <= 
input->GetSignal()->GetLast();
 
  313         for(
int i=1; i<=
newsignal->GetNbinsX(); i++)
 
  316         for(
int i=1; i<=
newsignal->GetNbinsX(); i++)
 
 
  368   TH1D* sh = 
new TH1D(
"__sh",
"__sh",1,0,2);
 
 
  391   TH1D* sh = 
new TH1D(
"__sh",
"__sh",1,0,2);
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
Array of doubles (64 bits per element).
Class to compute 95% CL limits.
1-D histogram with a double per channel (see TH1 documentation)
TH1 is the base class of all histogram classes in ROOT.
virtual Int_t Fill(Double_t x)
Increment bin with abscissa X by 1.
This class serves as input for the TLimit::ComputeLimit method.
<div class="legacybox"><h2>Legacy Code</h2> TLimit is a legacy interface: there will be no bug fixes ...
static Double_t LogLikelihood(Double_t s, Double_t b, Double_t b2, Double_t d)
static TOrdCollection * fgSystNames
Collection of systematics names.
static TArrayD * fgTable
A log table... just to speed up calculation.
static bool Fluctuate(TLimitDataSource *input, TLimitDataSource *output, bool init, TRandom *, bool stat=false)
static TConfidenceLevel * ComputeLimit(TLimitDataSource *data, Int_t nmc=50000, bool stat=false, TRandom *generator=nullptr)
Collectable string class.
Random number generator class based on M.
This is the base class for the ROOT Random number generators.
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.
Double_t Log(Double_t x)
Returns the natural logarithm of x.