39namespace TestStatistics {
57 :
RooAbsL(clonePdfData(*pdf, *
data, evalBackend),
data->numEntries(), 1, extended)
60 paramTracker_ = std::make_unique<RooChangeTracker>(
"chtracker",
"change tracker", *params,
true);
66 RooFit::Detail::BatchModeDataHelpers::getDataSpans(*
data,
"",
nullptr,
true,
68 for (
auto const &item : dataSpans) {
69 evaluator_->setInput(item.first->GetName(), item.second,
false);
76 apply_weight_squared(other.apply_weight_squared),
78 lastSection_(other.lastSection_),
79 cachedResult_(other.cachedResult_),
80 evaluator_(other.evaluator_)
102using ComputeResult = std::pair<ROOT::Math::KahanSum<double>,
double>;
106 std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent,
113 for (
auto i = firstEvent; i < lastEvent; i += stepSize) {
116 double weight = dataClone->
weight();
118 if (0. == weight * weight)
123 double logProba = pdfClone->
getLogVal(normSet);
126 logProba -= offsetPdf->getLogVal(normSet);
129 const double term = -weight * logProba;
131 kahanWeight.
Add(weight);
133 packedNaN.accumulate(term);
136 if (packedNaN.getPayload() != 0.) {
141 return {kahanProb, kahanWeight.
Sum()};
146 std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent)
152 for (
auto i = firstEvent; i < lastEvent; i += stepSize) {
155 double weight = dataClone->
weight();
157 if (0. == weight * weight)
162 double logProba = std::log(probas[i]);
163 const double term = -weight * logProba;
165 kahanWeight.
Add(weight);
167 packedNaN.accumulate(term);
170 if (packedNaN.getPayload() != 0.) {
175 return {kahanProb, kahanWeight.
Sum()};
205 std::span<const double> probas =
evaluator_->run();
206 std::tie(
result, sumWeight) =
229 pdf_->wireAllCaches();
static RooNLLVar::ComputeResult computeScalarFunc(const RooAbsPdf *pdfClone, RooAbsData *dataClone, RooArgSet *normSet, bool weightSq, std::size_t stepSize, std::size_t firstEvent, std::size_t lastEvent, RooAbsPdf const *offsetPdf=nullptr)
std::pair< ROOT::Math::KahanSum< double >, double > ComputeResult
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
The Kahan summation is a compensated summation algorithm, which significantly reduces numerical error...
void Add(T x)
Single-element accumulation. Will not vectorise.
RooFit::OwningPtr< RooArgSet > getParameters(const RooAbsData *data, bool stripDisconnected=true) const
Create a list of leaf nodes in the arg tree starting with ourself as top node that don't match any of...
Abstract base class for binned and unbinned datasets.
virtual double weight() const =0
virtual const RooArgSet * get() const
virtual double weightSquared() const =0
Abstract interface for all probability density functions.
virtual double getLogVal(const RooArgSet *set=nullptr) const
Return the log of the current value with given normalization An error message is printed if the argum...
static ErrorLoggingMode evalErrorLoggingMode()
Return current evaluation error logging mode.
static Int_t numEvalErrors()
Return the number of logged evaluation errors since the last clearing.
RooArgSet is a container object that can hold multiple RooAbsArg objects.
std::shared_ptr< RooAbsData > data_
std::unique_ptr< RooArgSet > normSet_
Pointer to set with observables used for normalization.
std::shared_ptr< RooAbsPdf > pdf_
ROOT::Math::KahanSum< double > cachedResult_
bool setApplyWeightSquared(bool flag)
Returns true if value was changed, false otherwise.
ROOT::Math::KahanSum< double > evaluatePartition(Section events, std::size_t components_begin, std::size_t components_end) override
Calculate and return likelihood on subset of data from firstEvent to lastEvent processed with a step ...
std::unique_ptr< RooChangeTracker > paramTracker_
bool apply_weight_squared
Apply weights squared?
RooUnbinnedL(RooAbsPdf *pdf, RooAbsData *data, RooAbsL::Extended extended=RooAbsL::Extended::Auto, RooFit::EvalBackend evalBackend=RooFit::EvalBackend::Legacy())
std::stack< std::vector< double > > _vectorBuffers
std::shared_ptr< RooFit::Evaluator > evaluator_
! For batched evaluation
std::unique_ptr< T > compileForNormSet(T const &arg, RooArgSet const &normSet)
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
A part of some range delimited by two fractional points between 0 and 1 (inclusive).
std::size_t begin(std::size_t N_total) const
std::size_t end(std::size_t N_total) const
Little struct that can pack a float into the unused bits of the mantissa of a NaN double.