11#ifndef ROOFIT_BATCHCOMPUTE_ROOHETEROGENEOUSMATH_H
12#define ROOFIT_BATCHCOMPUTE_ROOHETEROGENEOUSMATH_H
22#if defined(__CUDACC__)
23#include <cuda/std/complex>
31#if defined(__CUDACC__)
32namespace STD = cuda::std;
47#if defined(__CUDACC__) || !(defined(__GNUC__) || defined(__clang__)) || !defined(__unix__) || !defined(__x86_64__) || \
48 !defined(__OPTIMIZE__) || defined(__OPTIMIZE_SIZE__) || defined(__INTEL_COMPILER) || defined(__OPEN64__) || \
49 defined(__PATHSCALE__)
50 const double e = std::exp(re);
51 re =
e * std::cos(im);
52 im =
e * std::sin(im);
66 "fsubr %%st,%%st(1)\n\t"
75 "testl $0x200, %%eax\n\t"
83 "testl $0x400,%%eax\n\t"
91 "testl $0x400,%%eax\n\t"
99 :
"=t" (im),
"=u" (re):
"0" (re),
"1" (im) :
105 ,
"st(5)",
"st(6)",
"st(7)"
119template <
class T,
unsigned N,
unsigned NTAYLOR,
unsigned NCF>
122 const T (&taylorarr)[
N * NTAYLOR * 2])
128 const T zim2 = zim * zim;
129 const T maxnorm = T(9) / T(1000000);
130 if (zim2 < maxnorm) {
133 const T dnsing = tm * zre / npi[1];
134 const T dnsingmax2 = (T(
N) - T(1) / T(2)) * (T(
N) - T(1) / T(2));
135 if (dnsing * dnsing < dnsingmax2) {
139 const bool negrez = zre < T(0);
141 const int nsing =
int(std::abs(dnsing) + T(1) / T(2));
143 const T zmnpire = std::abs(zre) - npi[nsing];
144 const T zmnpinorm = zmnpire * zmnpire + zim2;
146 if (zmnpinorm < maxnorm) {
147 const T *coeffs = &taylorarr[nsing * NTAYLOR * 2];
154 for (
unsigned i = 1; i < NTAYLOR; ++i) {
155 const T re = sumre * zmnpire - sumim * zim;
156 const T im = sumim * zmnpire + sumre * zim;
157 sumre = re + coeffs[2 * i + 0];
158 sumim = im + coeffs[2 * i + 1];
162 return STD::complex<T>(sumre, -sumim);
164 return STD::complex<T>(sumre, sumim);
171 const bool negimz = zim < T(0);
176 const T znorm = zre * zre + zim2;
177 if (znorm > tm * tm) {
179 const T isqrtpi = 5.64189583547756287e-01;
180 const T z2re = (zre + zim) * (zre - zim);
181 const T z2im = T(2) * zre * zim;
185 for (
unsigned k =
NCF; k; --k) {
186 cfre = +(T(k) / T(2)) * cfre / cfnorm;
187 cfim = -(T(k) / T(2)) * cfim / cfnorm;
189 cfre -= z2re, cfim -= z2im;
193 cfnorm = cfre * cfre + cfim * cfim;
195 T sumre = (zim * cfre - zre * cfim) * isqrtpi / cfnorm;
196 T sumim = -(zre * cfre + zim * cfim) * isqrtpi / cfnorm;
203 return STD::complex<T>(T(2) * ez2re - sumre, T(2) * ez2im - sumim);
205 return STD::complex<T>(sumre, sumim);
208 const T twosqrtpi = 3.54490770181103205e+00;
209 const T tmzre = tm * zre;
210 const T tmzim = tm * zim;
216 const T numerarr[4] = {T(1) - eitmzre, -eitmzim, T(1) + eitmzre, +eitmzim};
218 const T numertmz[4] = {tmzre * numerarr[0] - tmzim * numerarr[1], tmzre * numerarr[1] + tmzim * numerarr[0],
219 tmzre * numerarr[2] - tmzim * numerarr[3], tmzre * numerarr[3] + tmzim * numerarr[2]};
221 const T reimtmzm2 = T(-2) * tmzre * tmzim;
222 const T imtmz2 = tmzim * tmzim;
223 const T reimtmzm22 = reimtmzm2 * reimtmzm2;
231#if (defined(__CUDACC__) || !defined(__x86_64__)) || !defined(__OPTIMIZE__) || defined(__OPTIMIZE_SIZE__) || \
232 defined(__INTEL_COMPILER) || defined(__clang__) || defined(__OPEN64__) || defined(__PATHSCALE__) || \
234 T sumre = (-
a[0] / znorm) * (numerarr[0] * zre + numerarr[1] * zim);
235 T sumim = (-
a[0] / znorm) * (numerarr[1] * zre - numerarr[0] * zim);
236 for (
unsigned i = 0; i <
N; ++i) {
237 const unsigned j = (i << 1) & 2;
239 const T wk = imtmz2 + (npi[i] + tmzre) * (npi[i] - tmzre);
241 const T norm = wk * wk + reimtmzm22;
242 const T
f = T(2) * tm *
a[i] / norm;
244 sumre -=
f * (numertmz[j] * wk + numertmz[j + 1] * reimtmzm2);
245 sumim -=
f * (numertmz[j + 1] * wk - numertmz[j] * reimtmzm2);
250 for (
unsigned i = 0; i <
N; ++i) {
251 const T wk = imtmz2 + (npi[i] + tmzre) * (npi[i] - tmzre);
253 tmp[2 * i + 1] = T(2) * tm *
a[i] / (wk * wk + reimtmzm22);
255 for (
unsigned i = 0; i <
N / 2; ++i) {
256 T wk = tmp[4 * i + 0],
f = tmp[4 * i + 1];
257 tmp[4 * i + 0] = -
f * (numertmz[0] * wk + numertmz[1] * reimtmzm2);
258 tmp[4 * i + 1] = -
f * (numertmz[1] * wk - numertmz[0] * reimtmzm2);
259 wk = tmp[4 * i + 2],
f = tmp[4 * i + 3];
260 tmp[4 * i + 2] = -
f * (numertmz[2] * wk + numertmz[3] * reimtmzm2);
261 tmp[4 * i + 3] = -
f * (numertmz[3] * wk - numertmz[2] * reimtmzm2);
266 const T wk = tmp[2 *
N - 2],
f = tmp[2 *
N - 1];
267 tmp[2 * (
N - 1) + 0] = -
f * (numertmz[0] * wk + numertmz[1] * reimtmzm2);
268 tmp[2 * (
N - 1) + 1] = -
f * (numertmz[1] * wk - numertmz[0] * reimtmzm2);
270 T sumre = (-
a[0] / znorm) * (numerarr[0] * zre + numerarr[1] * zim);
271 T sumim = (-
a[0] / znorm) * (numerarr[1] * zre - numerarr[0] * zim);
272 for (
unsigned i = 0; i <
N; ++i) {
273 sumre += tmp[2 * i + 0];
274 sumim += tmp[2 * i + 1];
282 const T z2im = -T(2) * zre * zim;
283 const T z2re = -(zre + zim) * (zre - zim);
287 return STD::complex<T>(T(2) * ez2re + sumim / twosqrtpi, T(2) * ez2im - sumre / twosqrtpi);
289 return STD::complex<T>(-sumim / twosqrtpi, sumre / twosqrtpi);
295 0.00000000000000000e+00, 3.14159265358979324e+00, 6.28318530717958648e+00,
296 9.42477796076937972e+00, 1.25663706143591730e+01, 1.57079632679489662e+01,
297 1.88495559215387594e+01, 2.19911485751285527e+01, 2.51327412287183459e+01,
298 2.82743338823081391e+01, 3.14159265358979324e+01, 3.45575191894877256e+01,
299 3.76991118430775189e+01, 4.08407044966673121e+01, 4.39822971502571053e+01,
300 4.71238898038468986e+01, 5.02654824574366918e+01, 5.34070751110264851e+01,
301 5.65486677646162783e+01, 5.96902604182060715e+01, 6.28318530717958648e+01,
302 6.59734457253856580e+01, 6.91150383789754512e+01, 7.22566310325652445e+01,
305 2.95408975150919338e-01, 2.75840233292177084e-01, 2.24573955224615866e-01,
306 1.59414938273911723e-01, 9.86657664154541891e-02, 5.32441407876394120e-02,
307 2.50521500053936484e-02, 1.02774656705395362e-02, 3.67616433284484706e-03,
308 1.14649364124223317e-03, 3.11757015046197600e-04, 7.39143342960301488e-05,
309 1.52794934280083635e-05, 2.75395660822107093e-06, 4.32785878190124505e-07,
310 5.93003040874588103e-08, 7.08449030774820423e-09, 7.37952063581678038e-10,
311 6.70217160600200763e-11, 5.30726516347079017e-12, 3.66432411346763916e-13,
312 2.20589494494103134e-14, 1.15782686262855879e-15, 5.29871142946730482e-17,
317 0.00000000000000000e-00, 3.00901111225470020e-01,
318 5.00000000000000000e-01, 0.00000000000000000e-00,
319 0.00000000000000000e-00, -7.52252778063675049e-01,
320 -1.00000000000000000e-00, 0.00000000000000000e-00,
321 0.00000000000000000e-00, 1.12837916709551257e+00,
322 1.00000000000000000e-00, 0.00000000000000000e-00,
324 -2.22423508493755319e-01, 1.87966717746229718e-01,
325 3.41805419240637628e-01, 3.42752593807919263e-01,
326 4.66574321730757753e-01, -5.59649213591058097e-01,
327 -8.05759710273191021e-01, -5.38989366115424093e-01,
328 -4.88914083733395200e-01, 9.80580906465856792e-01,
329 9.33757118080975970e-01, 2.82273885115127769e-01,
331 -2.60522586513312894e-01, -4.26259455096092786e-02,
332 1.36549702008863349e-03, 4.39243227763478846e-01,
333 6.50591493715480700e-01, -1.23422352472779046e-01,
334 -3.43379903564271318e-01, -8.13862662890748911e-01,
335 -7.96093943501906645e-01, 6.11271022503935772e-01,
336 7.60213717643090957e-01, 4.93801903948967945e-01,
338 -1.18249853727020186e-01, -1.90471659765411376e-01,
339 -2.59044664869706839e-01, 2.69333898502392004e-01,
340 4.99077838344125714e-01, 2.64644800189075006e-01,
341 1.26114512111568737e-01, -7.46519337025968199e-01,
342 -8.47666863706379907e-01, 1.89347715957263646e-01,
343 5.39641485816297176e-01, 5.97805988669631615e-01,
345 4.94825297066481491e-02, -1.71428212158876197e-01,
346 -2.97766677111471585e-01, 1.60773286596649656e-02,
347 1.88114210832460682e-01, 4.11734391195006462e-01,
348 3.98540613293909842e-01, -4.63321903522162715e-01,
349 -6.99522070542463639e-01, -1.32412024008354582e-01,
350 3.33997185986131785e-01, 6.01983450812696742e-01,
352 1.18367078448232332e-01, -6.09533063579086850e-02,
353 -1.74762998833038991e-01, -1.39098099222000187e-01,
354 -6.71534655984154549e-02, 3.34462251996496680e-01,
355 4.37429678577360024e-01, -1.59613865629038012e-01,
356 -4.71863911886034656e-01, -2.92759316465055762e-01,
357 1.80238737704018306e-01, 5.42834914744283253e-01,
359 8.87698096005701290e-02, 2.84339354980994902e-02,
360 -3.18943083830766399e-02, -1.53946887977045862e-01,
361 -1.71825061547624858e-01, 1.70734367410600348e-01,
362 3.33690792296469441e-01, 3.97048587678703930e-02,
363 -2.66422678503135697e-01, -3.18469797424381480e-01,
364 8.48049724711137773e-02, 4.60546329221462864e-01,
366 2.99767046276705077e-02, 5.34659695701718247e-02,
367 4.53131030251822568e-02, -9.37915401977138648e-02,
368 -1.57982359988083777e-01, 3.82170507060760740e-02,
369 1.98891589845251706e-01, 1.17546677047049354e-01,
370 -1.27514335237079297e-01, -2.72741112680307074e-01,
371 3.47906344595283767e-02, 3.82277517244493224e-01,
373 -7.35922494437203395e-03, 3.72011290318534610e-02,
374 5.66783220847204687e-02, -3.21015398169199501e-02,
375 -1.00308737825172555e-01, -2.57695148077963515e-02,
376 9.67294850588435368e-02, 1.18174625238337507e-01,
377 -5.21266530264988508e-02, -2.08850084114630861e-01,
378 1.24443217440050976e-02, 3.19239968065752286e-01,
380 -1.66126772808035320e-02, 1.46180329587665321e-02,
381 3.85927576915247303e-02, 1.18910471133003227e-03,
382 -4.94003498320899806e-02, -3.93468443660139110e-02,
383 3.92113167048952835e-02, 9.03306084789976219e-02,
384 -1.82889636251263500e-02, -1.53816215444915245e-01,
385 3.88103861995563741e-03, 2.72090310854550347e-01,
387 -1.21245068916826880e-02, 1.59080224420074489e-03,
388 1.91116222508366035e-02, 1.05879549199053302e-02,
389 -1.97228428219695318e-02, -3.16962067712639397e-02,
390 1.34110372628315158e-02, 6.18045654429108837e-02,
391 -5.52574921865441838e-03, -1.14259663804569455e-01,
392 1.05534036292203489e-03, 2.37326534898818288e-01,
394 -5.96835002183177493e-03, -2.42594931567031205e-03,
395 7.44753817476594184e-03, 9.33450807578394386e-03,
396 -6.52649522783026481e-03, -2.08165802069352019e-02,
397 3.89988065678848650e-03, 4.12784313451549132e-02,
398 -1.44110721106127920e-03, -8.76484782997757425e-02,
399 2.50210184908121337e-04, 2.11131066219336647e-01,
401 -2.24505212235034193e-03, -2.38114524227619446e-03,
402 2.36375918970809340e-03, 5.97324040603806266e-03,
403 -1.81333819936645381e-03, -1.28126250720444051e-02,
404 9.69251586187208358e-04, 2.83055679874589732e-02,
405 -3.24986363596307374e-04, -6.97056268370209313e-02,
406 5.17231862038123061e-05, 1.90681117197597520e-01,
408 -6.76887607549779069e-04, -1.48589685249767064e-03,
409 6.22548369472046953e-04, 3.43871156746448680e-03,
410 -4.26557147166379929e-04, -7.98854145009655400e-03,
411 2.06644460919535524e-04, 2.03107152586353217e-02,
412 -6.34563929410856987e-05, -5.71425144910115832e-02,
413 9.32252179140502456e-06, 1.74167663785025829e-01,
415 -1.67596437777156162e-04, -8.05384193869903178e-04,
416 1.37627277777023791e-04, 1.97652692602724093e-03,
417 -8.54392244879459717e-05, -5.23088906415977167e-03,
418 3.78965577556493513e-05, 1.52191559129376333e-02,
419 -1.07393019498185646e-05, -4.79347862153366295e-02,
420 1.46503970628861795e-06, 1.60471011683477685e-01,
422 -3.45715760630978778e-05, -4.31089554210205493e-04,
423 2.57350138106549737e-05, 1.19449262097417514e-03,
424 -1.46322227517372253e-05, -3.61303766799909378e-03,
425 5.99057675687392260e-06, 1.17993805017130890e-02,
426 -1.57660578509526722e-06, -4.09165023743669707e-02,
427 2.00739683204152177e-07, 1.48879348585662670e-01,
429 -5.99735188857573424e-06, -2.42949218855805052e-04,
430 4.09249090936269722e-06, 7.67400152727128171e-04,
431 -2.14920611287648034e-06, -2.60710519575546230e-03,
432 8.17591694958640978e-07, 9.38581640137393053e-03,
433 -2.00910914042737743e-07, -3.54045580123653803e-02,
434 2.39819738182594508e-08, 1.38916449405613711e-01,
436 -8.80708505155966658e-07, -1.46479474515521504e-04,
437 5.55693207391871904e-07, 5.19165587844615415e-04,
438 -2.71391142598826750e-07, -1.94439427580099576e-03,
439 9.64641799864928425e-08, 7.61536975207357980e-03,
440 -2.22357616069432967e-08, -3.09762939485679078e-02,
441 2.49806920458212581e-09, 1.30247401712293206e-01,
443 -1.10007111030476390e-07, -9.35886150886691786e-05,
444 6.46244096997824390e-08, 3.65267193418479043e-04,
445 -2.95175785569292542e-08, -1.48730955943961081e-03,
446 9.84949251974795537e-09, 6.27824679148707177e-03,
447 -2.13827217704781576e-09, -2.73545766571797965e-02,
448 2.26877724435352177e-10, 1.22627158810895267e-01,
450 -1.17302439957657553e-08, -6.24890956722053332e-05,
451 6.45231881609786173e-09, 2.64799907072561543e-04,
452 -2.76943921343331654e-09, -1.16094187847598385e-03,
453 8.71074689656480749e-10, 5.24514377390761210e-03,
454 -1.78730768958639407e-10, -2.43489203319091538e-02,
455 1.79658223341365988e-11, 1.15870972518909888e-01,
457 -1.07084502471985403e-09, -4.31515421260633319e-05,
458 5.54152563270547927e-10, 1.96606443937168357e-04,
459 -2.24423474431542338e-10, -9.21550077887211094e-04,
460 6.67734377376211580e-11, 4.43201203646827019e-03,
461 -1.29896907717633162e-11, -2.18236356404862774e-02,
462 1.24042409733678516e-12, 1.09836276968151848e-01,
464 -8.38816525569060600e-11, -3.06091807093959821e-05,
465 4.10033961556230842e-11, 1.48895624771753491e-04,
466 -1.57238128435253905e-11, -7.42073499862065649e-04,
467 4.43938379112418832e-12, 3.78197089773957382e-03,
468 -8.21067867869285873e-13, -1.96793607299577220e-02,
469 7.46725770201828754e-14, 1.04410965521273064e-01,
471 -5.64848922712870507e-12, -2.22021942382507691e-05,
472 2.61729537775838587e-12, 1.14683068921649992e-04,
473 -9.53316139085394895e-13, -6.05021573565916914e-04,
474 2.56116039498542220e-13, 3.25530796858307225e-03,
475 -4.51482829896525004e-14, -1.78416955716514289e-02,
476 3.91940313268087086e-15, 9.95054815464739996e-02,
478 -3.27482357793897640e-13, -1.64138890390689871e-05,
479 1.44278798346454523e-13, 8.96362542918265398e-05,
480 -5.00524303437266481e-14, -4.98699756861136127e-04,
481 1.28274026095767213e-14, 2.82359118537843949e-03,
482 -2.16009593993917109e-15, -1.62538825704327487e-02,
483 1.79368667683853708e-16, 9.50473084594884184e-02
487 0.00000000000000000e+00, 3.14159265358979324e+00, 6.28318530717958648e+00,
488 9.42477796076937972e+00, 1.25663706143591730e+01, 1.57079632679489662e+01,
489 1.88495559215387594e+01, 2.19911485751285527e+01, 2.51327412287183459e+01,
490 2.82743338823081391e+01, 3.14159265358979324e+01
493 4.43113462726379007e-01, 3.79788034073635143e-01, 2.39122407410867584e-01,
494 1.10599187402169792e-01, 3.75782250080904725e-02, 9.37936104296856288e-03,
495 1.71974046186334976e-03, 2.31635559000523461e-04, 2.29192401420125452e-05,
496 1.66589592139340077e-06, 8.89504561311882155e-08
501 -1.00000000000000000e+00, 0.00000000000000000e+00,
502 0.00000000000000000e-01, 1.12837916709551257e+00,
503 1.00000000000000000e+00, 0.00000000000000000e+00,
505 -5.92741768247463996e-01, -7.19914991991294310e-01,
506 -6.73156763521649944e-01, 8.14025039279059577e-01,
507 8.57089811121701143e-01, 4.00248106586639754e-01,
509 1.26114512111568737e-01, -7.46519337025968199e-01,
510 -8.47666863706379907e-01, 1.89347715957263646e-01,
511 5.39641485816297176e-01, 5.97805988669631615e-01,
513 4.43238482668529408e-01, -3.03563167310638372e-01,
514 -5.88095866853990048e-01, -2.32638360700858412e-01,
515 2.49595637924601714e-01, 5.77633779156009340e-01,
517 3.33690792296469441e-01, 3.97048587678703930e-02,
518 -2.66422678503135697e-01, -3.18469797424381480e-01,
519 8.48049724711137773e-02, 4.60546329221462864e-01,
521 1.42043544696751869e-01, 1.24094227867032671e-01,
522 -8.31224229982140323e-02, -2.40766729258442100e-01,
523 2.11669512031059302e-02, 3.48650139549945097e-01,
525 3.92113167048952835e-02, 9.03306084789976219e-02,
526 -1.82889636251263500e-02, -1.53816215444915245e-01,
527 3.88103861995563741e-03, 2.72090310854550347e-01,
529 7.37741897722738503e-03, 5.04625223970221539e-02,
530 -2.87394336989990770e-03, -9.96122819257496929e-02,
531 5.22745478269428248e-04, 2.23361039070072101e-01,
533 9.69251586187208358e-04, 2.83055679874589732e-02,
534 -3.24986363596307374e-04, -6.97056268370209313e-02,
535 5.17231862038123061e-05, 1.90681117197597520e-01,
537 9.01625563468897100e-05, 1.74961124275657019e-02,
538 -2.65745127697337342e-05, -5.22070356354932341e-02,
539 3.75952450449939411e-06, 1.67018782142871146e-01,
541 5.99057675687392260e-06, 1.17993805017130890e-02,
542 -1.57660578509526722e-06, -4.09165023743669707e-02,
543 2.00739683204152177e-07, 1.48879348585662670e-01
549 return RooHeterogeneousMath::faddeeva_smabmq_impl<double, 24, 6, 9>(
556 return RooHeterogeneousMath::faddeeva_smabmq_impl<double, 11, 3, 3>(
568 const double rootpi = STD::sqrt(STD::atan2(0., -1.));
569 const STD::complex<double> z(_x *
c, u +
c);
570 const STD::complex<double> zc(u +
c, -_x *
c);
571 const STD::complex<double> zsq((z.real() + z.imag()) * (z.real() - z.imag()), 2. * z.real() * z.imag());
572 const STD::complex<double>
v(-zsq.real() - u * u, -zsq.imag());
573 const STD::complex<double> ev = STD::exp(
v);
574 const STD::complex<double> mez2zcrootpi = -STD::exp(zsq) / (zc * rootpi);
576 return 2. * (ev * (mez2zcrootpi + 1.));
586 const double z = u +
c;
587 return z > -4.0 ? (STD::exp(
c * (
c + 2. * u)) * STD::erfc(z)) :
evalCerfApprox(0., u,
c);
592 STD::complex<double> z(swt *
c, u +
c);
__roodevice__ const double npi11[11]
__roodevice__ static __roohost__ STD::complex< T > faddeeva_smabmq_impl(T zre, T zim, const T tm, const T(&a)[N], const T(&npi)[N], const T(&taylorarr)[N *NTAYLOR *2])
__roodevice__ static __roohost__ void cexp(double &re, double &im)
static __roodevice__ const double a24[24]
__roodevice__ const double a11[11]
__roodevice__ const double taylorarr11[11 *6]
__roodevice__ __roohost__ STD::complex< double > faddeeva(STD::complex< double > z)
static __roodevice__ const double taylorarr24[24 *12]
__roohost__ __roodevice__ STD::complex< double > evalCerfApprox(double _x, double u, double c)
use the approximation: erf(z) = exp(-z*z)/(STD::sqrt(pi)*z) to explicitly cancel the divergent exp(y*...
__roohost__ __roodevice__ STD::complex< double > evalCerf(double swt, double u, double c)
__roodevice__ __roohost__ STD::complex< double > faddeeva_fast(STD::complex< double > z)
static __roodevice__ const double npi24[24]