1#ifndef TMVA_SOFIE_ROPERATOR_BatchNormalization
2#define TMVA_SOFIE_ROPERATOR_BatchNormalization
13namespace Experimental{
55 if(std::is_same<T, float>::value){
60 std::runtime_error(
"TMVA SOFIE Encountered unsupported type parsing a BatchNormalization operator");
71 if (
input.size() != 5 ) {
73 std::runtime_error(
"TMVA SOFIE BatchNormalization Op Shape inference need 5 input tensors");
75 for(
size_t i = 0; i <
input.size(); i++) {
78 std::runtime_error(
"TMVA SOFIE BatchNormalization Op Shape inference only accept tensor with 4 dimensions");
89 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNX +
" fnx is not found in model");
93 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNScale +
" fns is not found in model");
97 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNB +
" fnb is not found in model");
101 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNMean +
" fnm is not found in model");
105 std::runtime_error(
"TMVA SOFIE BatchNormalization op Input Tensor " +
fNVar +
" fnv is not found in model");
133 if (
fType ==
"float") {
142 size_t bs = 0, ch = 0,
h = 0,
w = 0;
154 for(
bs = 1;
bs<batchSize;
bs++){
161 for(
size_t i=0; i<
n; i++){
185 throw std::runtime_error(
"TMVA SOFIE Batch Normalization called to Generate without being initialized first");
188 std::stringstream out;
198 out <<
SP <<
"constexpr int "<<
OpName<<
"_incx = 1;\n";
199 out <<
SP <<
"constexpr int "<<
OpName<<
"_incy = 1;\n";
200 out <<
SP <<
"BLAS::scopy_(&" <<
OpName <<
"_N, " <<
"tensor_" <<
fNX <<
", &" <<
OpName <<
"_incx," <<
"tensor_" <<
fNY <<
", &" <<
OpName <<
"_incy);\n\n";
203 out <<
SP <<
"float "<<
OpName<<
"_alpha = -1;\n";
204 out <<
SP <<
"BLAS::saxpy_(&" <<
OpName <<
"_N, &" <<
OpName <<
"_alpha, " <<
"tensor_" <<
fNMean <<
", &" <<
OpName <<
"_incx,"
205 <<
"tensor_" <<
fNY <<
", &" <<
OpName <<
"_incy);\n\n ";
208 out <<
SP <<
"for (size_t i = 0; i < " <<
n <<
"; i++) {\n";
209 out <<
SP <<
SP <<
"tensor_" <<
fNY <<
"[i] *= tensor_" <<
fNScale <<
"[i] * tensor_" <<
fNVar <<
"[i]; \n";
213 out <<
SP <<
OpName<<
"_alpha = 1;\n";
214 out <<
SP <<
"BLAS::saxpy_(&" <<
OpName <<
"_N, &" <<
OpName <<
"_alpha, " <<
"tensor_" <<
fNB <<
", &" <<
OpName <<
"_incx, "
215 <<
"tensor_" <<
fNY <<
", &" <<
OpName <<
"_incy);\n\n";
220 std::vector<std::string>
GetBlasRoutines() {
return { std::string(
"Copy"), std::string(
"Axpy") }; }
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void input
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t height
const ETensorType & GetTensorType(std::string name)
void AddIntermediateTensor(std::string tensor_name, ETensorType type, std::vector< Dim > dim_shape)
bool CheckIfTensorAlreadyExist(std::string tensor_name)
const std::vector< size_t > & GetTensorShape(std::string name)
std::shared_ptr< void > GetInitializedTensorData(std::string tensor_name)
void UpdateInitializedTensor(std::string tensor_name, ETensorType type, std::vector< std::size_t > shape, std::shared_ptr< void > data)
std::vector< size_t > fShapeScale
ROperator_BatchNormalization()=delete
std::vector< std::string > GetBlasRoutines()
std::vector< size_t > fShapeY
std::string Generate(std::string OpName)
void Initialize(RModel &model)
std::vector< size_t > fShapeX
std::vector< std::vector< size_t > > ShapeInference(std::vector< std::vector< size_t > > input)
std::vector< size_t > fShapeB
std::vector< size_t > fShapeMean
std::size_t ftraining_mode
std::vector< ETensorType > TypeInference(std::vector< ETensorType > input)
std::vector< size_t > fShapeVar
ROperator_BatchNormalization(float epsilon, float momentum, std::size_t training_mode, std::string nameX, std::string nameScale, std::string nameB, std::string nameMean, std::string nameVar, std::string nameY)
const std::string SP
space used to correctly indent the generated C++ code
std::string ConvertShapeToString(std::vector< size_t > shape)
create variable transformations