15#ifndef ROOT_TMVA_MethodPyRandomForest
16#define ROOT_TMVA_MethodPyRandomForest
#define ClassDef(name, id)
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Class that contains all the data information.
Class that contains all the data information.
This is the main MVA steering class.
virtual void ReadWeightsFromStream(std::istream &)=0
PyObject * pMinWeightFractionLeaf
std::vector< Float_t > & GetMulticlassValues()
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
~MethodPyRandomForest(void)
std::vector< Float_t > classValues
PyObject * pMinSamplesLeaf
TString fFilenameClassifier
virtual void AddWeightsXMLTo(void *) const
void GetHelpMessage() const
std::vector< Double_t > mvaValues
virtual void ReadWeightsFromStream(std::istream &)
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
virtual void TestClassification()
initialization
const Ranking * CreateRanking()
DataSetManager * fDataSetManager
virtual void ReadWeightsFromXML(void *)
Double_t fMinWeightFractionLeaf
PyObject * pMinSamplesSplit
Ranking for variables in method (implementation)
The Reader class serves to use the MVAs in a specific analysis context.
create variable transformations