23#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION 
   24#include <numpy/arrayobject.h> 
   67   fBaseEstimator(
"None"),
 
 
   79   fBaseEstimator(
"None"),
 
 
  106      The base estimator from which the boosted ensemble is built.\ 
  107      Support for sample weighting is required, as well as proper `classes_`\ 
  108      and `n_classes_` attributes.");
 
  111      The maximum number of estimators at which boosting is terminated.\ 
  112      In case of perfect fit, the learning procedure is stopped early.");
 
  115      Learning rate shrinks the contribution of each classifier by\ 
  116      ``learning_rate``. There is a trade-off between ``learning_rate`` and\ 
  120      If 'SAMME.R' then use the SAMME.R real boosting algorithm.\ 
  121      ``base_estimator`` must support calculation of class probabilities.\ 
  122      If 'SAMME' then use the SAMME discrete boosting algorithm.\ 
  123      The SAMME.R algorithm typically converges faster than SAMME,\ 
  124      achieving a lower test error with fewer boosting iterations.\ 
  125      'SAME.R' is deprecated since version 1.4 and removed since 1.6");
 
  128      If int, random_state is the seed used by the random number generator;\ 
  129      If RandomState instance, random_state is the random number generator;\ 
  130      If None, the random number generator is the RandomState instance used\ 
  134      "Store trained classifier in this file");
 
 
  144            << 
" The options are Object or None." << 
Endl;
 
  149      Log() << kFATAL << 
"NEstimators <=0 ... that does not work!" << 
Endl;
 
  155      Log() << kFATAL << 
"LearningRate <=0 ... that does not work!" << 
Endl;
 
  162            << 
" The options are SAMME of SAMME.R." << 
Endl;
 
  170            << 
"If int, random_state is the seed used by the random number generator;" 
  171            << 
"If RandomState instance, random_state is the random number generator;" 
  172            << 
"If None, the random number generator is the RandomState instance used by `np.random`." << 
Endl;
 
 
  235   PyRunString(
"classifier = sklearn.ensemble.AdaBoostClassifier(estimator=baseEstimator, n_estimators=nEstimators, learning_rate=learningRate, algorithm=algorithm, random_state=randomState)",
 
  236      "Failed to setup classifier");
 
  240   PyRunString(
"dump = classifier.fit(trainData, trainDataClasses, trainDataWeights)", 
"Failed to train classifier");
 
  245      Log() << kFATAL << 
"Can't create classifier object from AdaBoostClassifier" << 
Endl;
 
 
  282            << 
" sample (" << nEvents << 
" events)" << 
Endl;
 
  305   for (
int i = 0; i < nEvents; ++i) {
 
  314            << 
"Elapsed time for evaluation of " << nEvents <<  
" events: " 
  315            << 
timer.GetElapsedTime() << 
"       " << 
Endl;
 
 
  433   Log() << 
"An AdaBoost classifier is a meta-estimator that begins by fitting" << 
Endl;
 
  434   Log() << 
"a classifier on the original dataset and then fits additional copies" << 
Endl;
 
  435   Log() << 
"of the classifier on the same dataset but where the weights of incorrectly" << 
Endl;
 
  436   Log() << 
"classified instances are adjusted such that subsequent classifiers focus" << 
Endl;
 
  437   Log() << 
"more on difficult cases." << 
Endl;
 
  439   Log() << 
"Check out the scikit-learn documentation for more information." << 
Endl;
 
 
#define REGISTER_METHOD(CLASS)
for example
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
 
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
 
Class that contains all the data information.
 
UInt_t GetNClasses() const
 
const Event * GetEvent() const
returns event without transformations
 
Types::ETreeType GetCurrentType() const
 
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
 
Long64_t GetNTrainingEvents() const
 
void SetCurrentEvent(Long64_t ievt) const
 
const Event * GetTrainingEvent(Long64_t ievt) const
 
PyGILState_STATE m_GILState
 
virtual void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility they are hence without any...
 
const char * GetName() const
 
Bool_t IsModelPersistence() const
 
const TString & GetWeightFileDir() const
 
const TString & GetMethodName() const
 
DataSetInfo & DataInfo() const
 
virtual void TestClassification()
initialization
 
UInt_t GetNVariables() const
 
void NoErrorCalc(Double_t *const err, Double_t *const errUpper)
 
const TString & GetInputLabel(Int_t i) const
 
std::vector< Double_t > GetMvaValues(Long64_t firstEvt=0, Long64_t lastEvt=-1, Bool_t logProgress=false)
get all the MVA values for the events of the current Data type
 
PyObject * pBaseEstimator
 
std::vector< Double_t > mvaValues
 
TString fFilenameClassifier
 
void GetHelpMessage() const
 
Double_t GetMvaValue(Double_t *errLower=nullptr, Double_t *errUpper=nullptr)
 
const Ranking * CreateRanking()
 
std::vector< Float_t > classValues
 
MethodPyAdaBoost(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="")
 
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
 
virtual void TestClassification()
initialization
 
virtual void ReadModelFromFile()
 
std::vector< Float_t > & GetMulticlassValues()
 
static int PyIsInitialized()
Check Python interpreter initialization status.
 
PyObject * Eval(TString code)
Evaluate Python code.
 
static void PyInitialize()
Initialize Python interpreter.
 
static void Serialize(TString file, PyObject *classifier)
Serialize Python object.
 
static Int_t UnSerialize(TString file, PyObject **obj)
Unserialize Python object.
 
void PyRunString(TString code, TString errorMessage="Failed to run python code", int start=256)
Execute Python code from string.
 
Ranking for variables in method (implementation)
 
virtual void AddRank(const Rank &rank)
Add a new rank take ownership of it.
 
Timing information for training and evaluation of MVA methods.
 
Singleton class for Global types used by TMVA.
 
@ kSignal
Never change this number - it is elsewhere assumed to be zero !
 
const char * Data() const
 
create variable transformations
 
MsgLogger & Endl(MsgLogger &ml)