26#ifndef ROOT_TMVA_MethodKNN 
   27#define ROOT_TMVA_MethodKNN 
#define ClassDef(name, id)
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
A ROOT file is an on-disk file, usually with extension .root, that stores objects in a file-system-li...
 
Class that contains all the data information.
 
Virtual base Class for all MVA method.
 
virtual void ReadWeightsFromStream(std::istream &)=0
 
Analysis of k-nearest neighbor.
 
void Init(void)
Initialization.
 
Int_t fBalanceDepth
number of binary tree levels used for balancing tree
 
void MakeKNN(void)
create kNN
 
TString fKernel
="Gaus","Poln" - kernel type for smoothing
 
Float_t fScaleFrac
fraction of events used to compute variable width
 
virtual ~MethodKNN(void)
destructor
 
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
FDA can handle classification with 2 classes and regression with one regression-target.
 
const std::vector< Double_t > getRMS(const kNN::List &rlist, const kNN::Event &event_knn) const
Get polynomial kernel radius.
 
const Ranking * CreateRanking()
no ranking available
 
Int_t fTreeOptDepth
number of binary tree levels used for optimization
 
Double_t fSumOfWeightsS
sum-of-weights for signal training events
 
void MakeClassSpecific(std::ostream &, const TString &) const
write specific classifier response
 
MethodKNN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="KNN")
standard constructor
 
void DeclareCompatibilityOptions()
options that are used ONLY for the READER to ensure backward compatibility
 
Double_t getKernelRadius(const kNN::List &rlist) const
Get polynomial kernel radius.
 
void GetHelpMessage() const
get help message text
 
const std::vector< Float_t > & GetRegressionValues()
Return vector of averages for target values of k-nearest neighbors.
 
Double_t fSumOfWeightsB
sum-of-weights for background training events
 
kNN::EventVec fEvent
! (untouched) events used for learning
 
void Train(void)
kNN training
 
void ReadWeightsFromStream(std::istream &istr)
read the weights
 
double getLDAValue(const kNN::List &rlist, const kNN::Event &event_knn)
 
Double_t PolnKernel(Double_t value) const
polynomial kernel
 
void ProcessOptions()
process the options specified by the user
 
void ReadWeightsFromXML(void *wghtnode)
 
void AddWeightsXMLTo(void *parent) const
write weights to XML
 
kNN::ModulekNN * fModule
! module where all work is done
 
Bool_t fUseLDA
use local linear discriminant analysis to compute MVA
 
Float_t fSigmaFact
scale factor for Gaussian sigma in Gaus. kernel
 
Bool_t fTrim
set equal number of signal and background events
 
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
Compute classifier response.
 
Bool_t fUseWeight
use weights to count kNN
 
Bool_t fUseKernel
use polynomial kernel weight function
 
void DeclareOptions()
MethodKNN options.
 
void WriteWeightsToStream(TFile &rf) const
save weights to ROOT file
 
LDA fLDA
! Experimental feature for local knn analysis
 
Double_t GausKernel(const kNN::Event &event_knn, const kNN::Event &event, const std::vector< Double_t > &svec) const
Gaussian kernel.
 
Int_t fnkNN
number of k-nearest neighbors
 
Ranking for variables in method (implementation)
 
kNN::Event describes point in input variable vector-space, with additional functionality like distanc...
 
std::vector< TMVA::kNN::Event > EventVec
 
create variable transformations