78 std::map<TString, TString>::const_iterator it =
keyValueMap.find(key);
142 std::vector<double> defaultValue)
150 std::vector<double> values;
157 std::stringstream
sstr;
178 " or cross entropy (binary classification).");
194 "Specify as 0.2 or 20% to use a fifth of the data set as validation set. "
195 "Specify as 100 to use exactly 100 events. (Default: 20%)");
207 "ConvergenceSteps=100,"
213 "Regularization=None,"
215 "TrainingStrategy",
"Defines the training strategies.");
223 Log() << kINFO <<
"Will ignore negative events in training!" <<
Endl;
227 Log() << kWARNING <<
"The STANDARD architecture is not supported anymore. "
228 "Please use Architecture=CPU or Architecture=CPU."
229 "See the TMVA Users' Guide for instructions if you "
230 "encounter problems."
232 Log() << kINFO <<
"We will use instead the CPU architecture" <<
Endl;
236 Log() << kERROR <<
"The OPENCL architecture has not been implemented yet. "
237 "Please use Architecture=CPU or Architecture=CPU for the "
238 "time being. See the TMVA Users' Guide for instructions "
239 "if you encounter problems."
242 Log() << kINFO <<
"We will try using the GPU-CUDA architecture if available" <<
Endl;
251 Log() << kINFO <<
"Will now use the GPU architecture !" <<
Endl;
253 Log() << kERROR <<
"CUDA backend not enabled. Please make sure "
254 "you have CUDA installed and it was successfully "
255 "detected by CMAKE by using -Dtmva-gpu=On "
258 Log() << kINFO <<
"Will now use instead the CPU architecture !" <<
Endl;
264 Log() << kINFO <<
"Will now use the CPU architecture with BLAS and IMT support !" <<
Endl;
266 Log() << kINFO <<
"Multi-core CPU backend not enabled. For better performances, make sure "
267 "you have a BLAS implementation and it was successfully "
268 "detected by CMake as well that the imt CMake flag is set."
270 Log() << kINFO <<
"Will use anyway the CPU architecture but with slower performance" <<
Endl;
290 Log() << kWARNING <<
"For regression only SUMOFSQUARES is a valid "
291 <<
" neural net error function. Setting error function to "
292 <<
" SUMOFSQUARES now." <<
Endl;
354 if (optimizer ==
"SGD") {
356 }
else if (optimizer ==
"ADAM") {
358 }
else if (optimizer ==
"ADAGRAD") {
360 }
else if (optimizer ==
"RMSPROP") {
362 }
else if (optimizer ==
"ADADELTA") {
371 std::vector<TString>
optimParamLabels = {
"_beta1",
"_beta2",
"_eps",
"_rho"};
374 {
"ADADELTA_eps", 1.E-8}, {
"ADADELTA_rho", 0.95},
375 {
"ADAGRAD_eps", 1.E-8},
376 {
"ADAM_beta1", 0.9}, {
"ADAM_beta2", 0.999}, {
"ADAM_eps", 1.E-7},
377 {
"RMSPROP_eps", 1.E-7}, {
"RMSPROP_rho", 0.9},
528template <
typename Architecture_t,
typename Layer_t>
582template <
typename Architecture_t,
typename Layer_t>
593 const size_t inputSize =
GetNvar();
625 }
else if (
width == 0) {
640 size_t outputSize = 1;
668template <
typename Architecture_t,
typename Layer_t>
767template <
typename Architecture_t,
typename Layer_t>
773 int filterHeight = 0;
812 deepNet.AddMaxPoolLayer(filterHeight, filterWidth, strideRows, strideCols);
815 if (
fBuildNet)
fNet->AddMaxPoolLayer(filterHeight, filterWidth, strideRows, strideCols);
828template <
typename Architecture_t,
typename Layer_t>
864 if (
flat ==
"FLAT") {
889template <
typename Architecture_t,
typename Layer_t>
896 double momentum = -1;
897 double epsilon = 0.0001;
908 momentum = std::atof(
token->GetString().Data());
912 epsilon = std::atof(
token->GetString().Data());
920 auto layer =
deepNet.AddBatchNormLayer(momentum, epsilon);
930template <
typename Architecture_t,
typename Layer_t>
1013 Log() << kFATAL <<
"Invalid Recurrent layer type " <<
Endl;
1021 fBatchHeight(), fBatchWidth(), fRandomSeed(0), fWeightInitialization(),
1022 fOutputFunction(), fLossFunction(), fInputLayoutString(), fBatchLayoutString(),
1023 fLayoutString(), fErrorStrategy(), fTrainingStrategyString(), fWeightInitializationString(),
1024 fArchitectureString(), fResume(
false), fBuildNet(
true), fTrainingSettings(),
1034 fBatchWidth(), fRandomSeed(0), fWeightInitialization(), fOutputFunction(),
1035 fLossFunction(), fInputLayoutString(), fBatchLayoutString(), fLayoutString(),
1036 fErrorStrategy(), fTrainingStrategyString(), fWeightInitializationString(),
1037 fArchitectureString(), fResume(
false), fBuildNet(
true), fTrainingSettings(),
1115 if (fNumValidationString.EndsWith(
"%")) {
1123 Log() << kFATAL <<
"Cannot parse number \"" << fNumValidationString
1124 <<
"\". Expected string like \"20%\" or \"20.0%\"." <<
Endl;
1126 }
else if (fNumValidationString.IsFloat()) {
1137 Log() <<
kFATAL <<
"Cannot parse number \"" << fNumValidationString <<
"\". Expected string like \"0.2\" or \"100\"."
1144 Log() <<
kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is negative." <<
Endl;
1148 Log() <<
kFATAL <<
"Validation size \"" << fNumValidationString <<
"\" is zero." <<
Endl;
1152 Log() <<
kFATAL <<
"Validation size \"" << fNumValidationString
1153 <<
"\" is larger than or equal in size to training set (size=\"" <<
trainingSetSize <<
"\")." <<
Endl;
1163template <
typename Architecture_t>
1167 using Scalar_t =
typename Architecture_t::Scalar_t;
1196 size_t batchSize =
settings.batchSize;
1218 Error(
"Train",
"Given batch depth of %zu (specified in BatchLayout) should be equal to given batch size %zu",
batchDepth,batchSize);
1222 Error(
"Train",
"Given batch height of %zu (specified in BatchLayout) should be equal to given batch size %zu",
batchHeight,batchSize);
1236 Error(
"Train",
"Given input layout %zu x %zu x %zu is not compatible with batch layout %zu x %zu x %zu ",
1243 Log() << kFATAL <<
"Number of samples in the datasets are train: ("
1245 <<
"). One of these is smaller than the batch size of "
1246 <<
settings.batchSize <<
". Please increase the batch"
1247 <<
" size to be at least the same size as the smallest"
1248 <<
" of them." <<
Endl;
1251 DeepNet_t
deepNet(batchSize, inputDepth, inputHeight, inputWidth,
batchDepth,
batchHeight,
batchWidth, J,
I,
R,
weightDecay);
1264 std::vector<DeepNet_t>
nets{};
1266 for (
size_t i = 0; i <
nThreads; i++) {
1286 for (
size_t i = 0; i <
deepNet.GetDepth(); ++i) {
1287 deepNet.GetLayerAt(i)->CopyParameters(*
fNet->GetLayerAt(i));
1308 Log() <<
"***** Deep Learning Network *****" <<
Endl;
1309 if (
Log().GetMinType() <= kINFO)
1317 {inputDepth, inputHeight, inputWidth},
1323 {inputDepth, inputHeight, inputWidth},
1334 Log() <<
"Compute initial loss on the validation data " <<
Endl;
1336 auto inputTensor =
batch.GetInput();
1337 auto outputMatrix =
batch.GetOutput();
1338 auto weights =
batch.GetWeights();
1351 std::unique_ptr<DNN::VOptimizer<Architecture_t, Layer_t, DeepNet_t>> optimizer;
1356 case EOptimizer::kSGD:
1357 optimizer = std::unique_ptr<DNN::TSGD<Architecture_t, Layer_t, DeepNet_t>>(
1361 case EOptimizer::kAdam: {
1362 optimizer = std::unique_ptr<DNN::TAdam<Architecture_t, Layer_t, DeepNet_t>>(
1365 settings.optimizerParams[
"ADAM_beta2"],
settings.optimizerParams[
"ADAM_eps"]));
1369 case EOptimizer::kAdagrad:
1370 optimizer = std::unique_ptr<DNN::TAdagrad<Architecture_t, Layer_t, DeepNet_t>>(
1372 settings.optimizerParams[
"ADAGRAD_eps"]));
1375 case EOptimizer::kRMSProp:
1376 optimizer = std::unique_ptr<DNN::TRMSProp<Architecture_t, Layer_t, DeepNet_t>>(
1378 settings.optimizerParams[
"RMSPROP_rho"],
1379 settings.optimizerParams[
"RMSPROP_eps"]));
1382 case EOptimizer::kAdadelta:
1383 optimizer = std::unique_ptr<DNN::TAdadelta<Architecture_t, Layer_t, DeepNet_t>>(
1385 settings.optimizerParams[
"ADADELTA_rho"],
1386 settings.optimizerParams[
"ADADELTA_eps"]));
1392 std::vector<TTensorBatch<Architecture_t>>
batches{};
1395 size_t convergenceCount = 0;
1399 std::chrono::time_point<std::chrono::system_clock>
tstart,
tend;
1400 tstart = std::chrono::system_clock::now();
1421 <<
" Optimizer " <<
settings.optimizerName
1423 <<
" Learning rate = " <<
settings.learningRate <<
" regularization " << (char)
settings.regularization
1426 std::string separator(62,
'-');
1428 Log() << std::setw(10) <<
"Epoch"
1429 <<
" | " << std::setw(12) <<
"Train Err." << std::setw(12) <<
"Val. Err." << std::setw(12)
1430 <<
"t(s)/epoch" << std::setw(12) <<
"t(s)/Loss" << std::setw(12) <<
"nEvents/s" << std::setw(12)
1431 <<
"Conv. Steps" <<
Endl;
1443 Log() <<
"Initial Deep Net Weights " <<
Endl;
1451 Log() <<
" Start epoch iteration ..." <<
Endl;
1470 if (
debugFirstEpoch) std::cout <<
"\n\n----- batch # " << i <<
"\n\n";
1475 std::cout <<
"got batch data - doing forward \n";
1479 Architecture_t::PrintTensor(
my_batch.GetInput(),
"input tensor",
true);
1480 typename Architecture_t::Tensor_t
tOut(
my_batch.GetOutput());
1481 typename Architecture_t::Tensor_t
tW(
my_batch.GetWeights());
1482 Architecture_t::PrintTensor(
tOut,
"label tensor",
true) ;
1483 Architecture_t::PrintTensor(
tW,
"weight tensor",
true) ;
1489 auto outputMatrix =
my_batch.GetOutput();
1490 auto weights =
my_batch.GetWeights();
1495 std::cout <<
"- doing backward \n";
1500 if (
deepNet.GetLayerAt(
l)->GetWeights().size() > 0)
1501 Architecture_t::PrintTensor(
deepNet.GetLayerAt(
l)->GetWeightsAt(0),
1504 Architecture_t::PrintTensor(
deepNet.GetLayerAt(
l)->GetOutput(),
1514 std::cout <<
"- doing optimizer update \n";
1517 optimizer->IncrementGlobalStep();
1521 std::cout <<
"minmimizer step - momentum " <<
settings.momentum <<
" learning rate " << optimizer->GetLearningRate() << std::endl;
1523 if (
deepNet.GetLayerAt(
l)->GetWeights().size() > 0) {
1524 Architecture_t::PrintTensor(
deepNet.GetLayerAt(
l)->GetWeightsAt(0),
TString::Format(
"weights after step layer %d",
l).Data());
1525 Architecture_t::PrintTensor(
deepNet.GetLayerAt(
l)->GetWeightGradientsAt(0),
"weight gradients");
1532 if (
debugFirstEpoch) std::cout <<
"\n End batch loop - compute validation loss \n";
1537 std::chrono::time_point<std::chrono::system_clock>
t1,
t2;
1539 t1 = std::chrono::system_clock::now();
1547 auto inputTensor =
batch.GetInput();
1548 auto outputMatrix =
batch.GetOutput();
1549 auto weights =
batch.GetWeights();
1561 t2 = std::chrono::system_clock::now();
1565 convergenceCount = 0;
1567 convergenceCount +=
settings.testInterval;
1574 <<
" Minimum Test error found - save the configuration " <<
Endl;
1575 for (
size_t i = 0; i <
deepNet.GetDepth(); ++i) {
1576 fNet->GetLayerAt(i)->CopyParameters(*
deepNet.GetLayerAt(i));
1594 auto inputTensor =
batch.GetInput();
1595 auto outputMatrix =
batch.GetOutput();
1596 auto weights =
batch.GetWeights();
1608 tend = std::chrono::system_clock::now();
1629 << std::setw(12) << seconds /
settings.testInterval
1632 << std::setw(12) << convergenceCount
1638 tstart = std::chrono::system_clock::now();
1662 Log() << kFATAL <<
"Not implemented yet" <<
Endl;
1668#ifdef R__HAS_TMVAGPU
1669 Log() << kINFO <<
"Start of deep neural network training on GPU." <<
Endl <<
Endl;
1676 Log() << kFATAL <<
"CUDA backend not enabled. Please make sure "
1677 "you have CUDA installed and it was successfully "
1678 "detected by CMAKE."
1683#ifdef R__HAS_TMVACPU
1686 Log() << kINFO <<
"Start of deep neural network training on CPU using MT, nthreads = "
1689 Log() << kINFO <<
"Start of deep neural network training on single thread CPU (without ROOT-MT support) " <<
Endl
1697 " is not a supported architecture for TMVA::MethodDL"
1713 if (!fNet || fNet->GetDepth() == 0) {
1714 Log() << kFATAL <<
"The network has not been trained and fNet is not built" <<
Endl;
1716 if (fNet->GetBatchSize() != 1) {
1717 Log() << kFATAL <<
"FillINputTensor::Network batch size must be equal to 1 when doing single event predicition" <<
Endl;
1721 const std::vector<Float_t> &
inputValues = GetEvent()->GetValues();
1722 size_t nVariables = GetEvent()->GetNVariables();
1725 if (fXInput.GetLayout() == TMVA::Experimental::MemoryLayout::ColumnMajor) {
1726 R__ASSERT(fXInput.GetShape().size() < 4);
1728 if (fXInput.GetShape().size() == 2) {
1729 nc = fXInput.GetShape()[0];
1731 ArchitectureImpl_t::PrintTensor(fXInput);
1732 Log() << kFATAL <<
"First tensor dimension should be equal to batch size, i.e. = 1" <<
Endl;
1734 nhw = fXInput.GetShape()[1];
1736 nc = fXInput.GetCSize();
1737 nhw = fXInput.GetWSize();
1740 Log() << kFATAL <<
"Input Event variable dimensions are not compatible with the built network architecture"
1741 <<
" n-event variables " <<
nVariables <<
" expected input tensor " << nc <<
" x " <<
nhw <<
Endl;
1743 for (
size_t j = 0;
j < nc;
j++) {
1744 for (
size_t k = 0; k <
nhw; k++) {
1751 assert(fXInput.GetShape().size() >= 4);
1752 size_t nc = fXInput.GetCSize();
1753 size_t nh = fXInput.GetHSize();
1754 size_t nw = fXInput.GetWSize();
1755 size_t n = nc *
nh *
nw;
1757 Log() << kFATAL <<
"Input Event variable dimensions are not compatible with the built network architecture"
1758 <<
" n-event variables " <<
nVariables <<
" expected input tensor " << nc <<
" x " <<
nh <<
" x " <<
nw
1761 for (
size_t j = 0;
j <
n;
j++) {
1767 fXInput.GetDeviceBuffer().CopyFrom(fXInputBuffer);
1784#ifdef DEBUG_MVAVALUE
1785 using Tensor_t = std::vector<MatrixImpl_t>;
1787 std::cout <<
"Input data - class " <<
GetEvent()->GetClass() << std::endl;
1789 std::cout <<
"Output of DeepNet " <<
mvaValue << std::endl;
1791 std::cout <<
"Loop on layers " << std::endl;
1792 for (
int l = 0;
l <
deepnet.GetDepth(); ++
l) {
1793 std::cout <<
"Layer " <<
l;
1797 std::cout <<
"DNN output " <<
layer_output.size() << std::endl;
1799#ifdef R__HAS_TMVAGPU
1808 std::cout <<
"DNN weights " <<
layer_weights.size() << std::endl;
1811#ifdef R__HAS_TMVAGPU
1827template <
typename Architecture_t>
1832 if (!
fNet ||
fNet->GetDepth() == 0) {
1833 Log() << kFATAL <<
"The network has not been trained and fNet is not built"
1851 using Matrix_t =
typename Architecture_t::Matrix_t;
1855 DeepNet_t
deepNet(batchSize, inputDepth, inputHeight, inputWidth,
batchDepth,
batchHeight,
batchWidth, J,
I,
R,
weightDecay);
1856 std::vector<DeepNet_t>
nets{};
1861 for (
size_t i = 0; i <
deepNet.GetDepth(); ++i) {
1862 deepNet.GetLayerAt(i)->CopyParameters(*
fNet->GetLayerAt(i));
1880 TensorDataLoader_t testData(
testTuple, nEvents, batchSize, {inputDepth, inputHeight, inputWidth}, {
n0,
n1,
n2},
deepNet.GetOutputWidth(), 1);
1897 <<
" sample (" << nEvents <<
" events)" <<
Endl;
1901 std::vector<double> mvaValues(nEvents);
1914 if (
n1 == batchSize &&
n0 == 1) {
1916 Log() << kFATAL <<
"Input Event variable dimensions are not compatible with the built network architecture"
1917 <<
" n-event variables " <<
nVariables <<
" expected input matrix " <<
n1 <<
" x " <<
n2
1922 Log() << kFATAL <<
"Input Event variable dimensions are not compatible with the built network architecture"
1923 <<
" n-event variables " <<
nVariables <<
" expected input tensor " <<
n0 <<
" x " <<
n1 <<
" x " <<
n2
1930 auto inputTensor =
batch.GetInput();
1935 for (
size_t i = 0; i < batchSize; ++i) {
1951 <<
"Elapsed time for evaluation of " << nEvents <<
" events: "
1952 <<
timer.GetElapsedTime() <<
" " <<
Endl;
1967 fNet->Prediction(*fYHat, fXInput, fOutputFunction);
1969 size_t nTargets = DataInfo().GetNTargets();
1973 for (
size_t i = 0; i <
nTargets; i++)
1974 output[i] = (*fYHat)(0, i);
1977 if (fRegressionReturnVal ==
NULL)
1978 fRegressionReturnVal =
new std::vector<Float_t>(
nTargets);
1983 for (
size_t i = 0; i <
nTargets; ++i) {
1986 const Event *
evT2 = GetTransformationHandler().InverseTransform(
evT);
1987 for (
size_t i = 0; i <
nTargets; ++i) {
1988 (*fRegressionReturnVal)[i] =
evT2->GetTarget(i);
1991 return *fRegressionReturnVal;
2001 fNet->Prediction(*fYHat, fXInput, fOutputFunction);
2003 size_t nClasses = DataInfo().GetNClasses();
2006 if (fMulticlassReturnVal ==
NULL) {
2007 fMulticlassReturnVal =
new std::vector<Float_t>(
nClasses);
2011 for (
size_t i = 0; i <
nClasses; i++) {
2012 (*fMulticlassReturnVal)[i] = (*fYHat)(0, i);
2014 return *fMulticlassReturnVal;
2033 if (
size_t(nEvents) < batchSize ) batchSize = nEvents;
2037#ifdef R__HAS_TMVAGPU
2038 Log() << kINFO <<
"Evaluate deep neural network on GPU using batches with size = " << batchSize <<
Endl <<
Endl;
2047 Log() << kINFO <<
"Evaluate deep neural network on CPU using batches with size = " << batchSize <<
Endl <<
Endl;
2055 void* nn =
xmlEngine.NewChild(parent, 0,
"Weights");
2063 Int_t inputDepth =
fNet->GetInputDepth();
2064 Int_t inputHeight =
fNet->GetInputHeight();
2065 Int_t inputWidth =
fNet->GetInputWidth();
2123 size_t inputDepth, inputHeight, inputWidth;
2173 for (
size_t i = 0; i <
netDepth; i++) {
2200 size_t strideRows, strideCols = 0;
2224 size_t filterHeight, filterWidth = 0;
2225 size_t strideRows, strideCols = 0;
2231 fNet->AddMaxPoolLayer(filterHeight, filterWidth, strideRows, strideCols);
2293 "Cannot use a reset gate after to false with CudNN - use implementation with resetgate=true");
2298 else if (
layerName ==
"BatchNormLayer") {
2300 fNet->AddBatchNormLayer(0., 0.0);
2303 fNet->GetLayers().back()->ReadWeightsFromXML(
layerXML);
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
winID h TVirtualViewer3D TVirtualGLPainter p
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t height
char * Form(const char *fmt,...)
Formats a string in a circular formatting buffer.
const_iterator end() const
OptionBase * DeclareOptionRef(T &ref, const TString &name, const TString &desc="")
void AddPreDefVal(const T &)
Adadelta Optimizer class.
static Tensor_t CreateTensor(size_t n, size_t c, size_t h, size_t w)
Generic Deep Neural Network class.
Stochastic Batch Gradient Descent Optimizer class.
Generic General Layer class.
Class that contains all the data information.
UInt_t GetNClasses() const
Types::ETreeType GetCurrentType() const
Long64_t GetNEvents(Types::ETreeType type=Types::kMaxTreeType) const
void SetCurrentEvent(Long64_t ievt) const
Virtual base Class for all MVA method.
const char * GetName() const
Bool_t IgnoreEventsWithNegWeightsInTraining() const
const std::vector< TMVA::Event * > & GetEventCollection(Types::ETreeType type)
returns the event collection (i.e.
UInt_t GetNTargets() const
const TString & GetMethodName() const
const Event * GetEvent() const
DataSetInfo & DataInfo() const
UInt_t GetNVariables() const
Types::EAnalysisType fAnalysisType
TrainingHistory fTrainHistory
IPythonInteractive * fInteractive
temporary dataset used when evaluating on a different data (used by MethodCategory::GetMvaValues)
size_t fBatchHeight
The height of the batch used to train the deep net.
void GetHelpMessage() const
DNN::ELossFunction fLossFunction
The loss function.
std::vector< size_t > fInputShape
Contains the batch size (no.
TString fLayoutString
The string defining the layout of the deep net.
void SetInputDepth(int inputDepth)
Setters.
std::unique_ptr< MatrixImpl_t > fYHat
void Train()
Methods for training the deep learning network.
size_t GetBatchHeight() const
virtual std::vector< Double_t > GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress)
Evaluate the DeepNet on a vector of input values stored in the TMVA Event class Here we will evaluate...
TString fWeightInitializationString
The string defining the weight initialization method.
void ParseMaxPoolLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate max pool layer.
size_t fRandomSeed
The random seed used to initialize the weights and shuffling batches (default is zero)
virtual const std::vector< Float_t > & GetMulticlassValues()
TString fArchitectureString
The string defining the architecture: CPU or GPU.
void Init()
default initializations
MethodDL(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption)
Constructor.
void TrainDeepNet()
train of deep neural network using the defined architecture
const std::vector< TTrainingSettings > & GetTrainingSettings() const
DNN::EOutputFunction GetOutputFunction() const
void ParseDenseLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate dense layer.
UInt_t GetNumValidationSamples()
parce the validation string and return the number of event data used for validation
TString GetBatchLayoutString() const
void SetInputWidth(int inputWidth)
HostBufferImpl_t fXInputBuffer
size_t fBatchWidth
The width of the batch used to train the deep net.
size_t GetInputDepth() const
std::unique_ptr< DeepNetImpl_t > fNet
TString GetInputLayoutString() const
void SetBatchHeight(size_t batchHeight)
std::vector< std::map< TString, TString > > KeyValueVector_t
size_t GetInputHeight() const
TString GetArchitectureString() const
void ParseBatchLayout()
Parse the input layout.
void ParseBatchNormLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate reshape layer.
void ReadWeightsFromStream(std::istream &)
void ReadWeightsFromXML(void *wghtnode)
TString fNumValidationString
The string defining the number (or percentage) of training data used for validation.
typename ArchitectureImpl_t::Tensor_t TensorImpl_t
DNN::EOutputFunction fOutputFunction
The output function for making the predictions.
DNN::EInitialization fWeightInitialization
The initialization method.
size_t GetBatchDepth() const
void ParseRecurrentLayer(ERecurrentLayerType type, DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate rnn layer.
std::vector< TTrainingSettings > fTrainingSettings
The vector defining each training strategy.
size_t GetInputWidth() const
void SetInputShape(std::vector< size_t > inputShape)
DNN::ELossFunction GetLossFunction() const
TString fBatchLayoutString
The string defining the layout of the batch.
Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t numberTargets)
Check the type of analysis the deep learning network can do.
void ParseConvLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate convolutional layer.
void ParseReshapeLayer(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets, TString layerString, TString delim)
Pases the layer string and creates the appropriate reshape layer.
virtual const std::vector< Float_t > & GetRegressionValues()
TString fTrainingStrategyString
The string defining the training strategy.
const Ranking * CreateRanking()
typename ArchitectureImpl_t::HostBuffer_t HostBufferImpl_t
void SetBatchDepth(size_t batchDepth)
KeyValueVector_t ParseKeyValueString(TString parseString, TString blockDelim, TString tokenDelim)
Function for parsing the training settings, provided as a string in a key-value form.
void SetBatchWidth(size_t batchWidth)
std::vector< Double_t > PredictDeepNet(Long64_t firstEvt, Long64_t lastEvt, size_t batchSize, Bool_t logProgress)
perform prediction of the deep neural network using batches (called by GetMvaValues)
DNN::EInitialization GetWeightInitialization() const
void SetBatchSize(size_t batchSize)
TString GetLayoutString() const
size_t fBatchDepth
The depth of the batch used to train the deep net.
TMVA::DNN::TDeepNet< ArchitectureImpl_t > DeepNetImpl_t
size_t GetBatchWidth() const
typename ArchitectureImpl_t::Matrix_t MatrixImpl_t
void AddWeightsXMLTo(void *parent) const
virtual ~MethodDL()
Virtual Destructor.
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
void ParseInputLayout()
Parse the input layout.
void FillInputTensor()
Get the input event tensor for evaluation Internal function to fill the fXInput tensor with the corre...
bool fBuildNet
Flag to control whether to build fNet, the stored network used for the evaluation.
void SetInputHeight(int inputHeight)
void CreateDeepNet(DNN::TDeepNet< Architecture_t, Layer_t > &deepNet, std::vector< DNN::TDeepNet< Architecture_t, Layer_t > > &nets)
After calling the ProcesOptions(), all of the options are parsed, so using the parsed options,...
TString fErrorStrategy
The string defining the error strategy for training.
void DeclareOptions()
The option handling methods.
TString fInputLayoutString
The string defining the layout of the input.
EMsgType GetMinType() const
Ranking for variables in method (implementation)
Timing information for training and evaluation of MVA methods.
void AddValue(TString Property, Int_t stage, Double_t value)
Singleton class for Global types used by TMVA.
void Print(Option_t *option="") const override
Dump this marker with its attributes.
void Print(Option_t *option="") const override
Print TNamed name and title.
Collectable string class.
virtual void Warning(const char *method, const char *msgfmt,...) const
Issue warning message.
virtual void Error(const char *method, const char *msgfmt,...) const
Issue error message.
const char * Data() const
TString & ReplaceAll(const TString &s1, const TString &s2)
void ToUpper()
Change string to upper case.
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
XMLNodePointer_t GetChild(XMLNodePointer_t xmlnode, Bool_t realnode=kTRUE)
returns first child of xmlnode
const char * GetNodeName(XMLNodePointer_t xmlnode)
returns name of xmlnode
EOptimizer
Enum representing the optimizer used for training.
EOutputFunction
Enum that represents output functions.
double weightDecay(double error, ItWeight itWeight, ItWeight itWeightEnd, double factorWeightDecay, EnumRegularization eRegularization)
compute the weight decay for regularization (L1 or L2)
auto regularization(const typename Architecture_t::Matrix_t &A, ERegularization R) -> decltype(Architecture_t::L1Regularization(A))
Evaluate the regularization functional for a given weight matrix.
ERegularization
Enum representing the regularization type applied for a given layer.
EActivationFunction
Enum that represents layer activation functions.
ELossFunction
Enum that represents objective functions for the net, i.e.
std::tuple< const std::vector< Event * > &, const DataSetInfo & > TMVAInput_t
create variable transformations
TString fetchValueTmp(const std::map< TString, TString > &keyValueMap, TString key)
MsgLogger & Endl(MsgLogger &ml)
Double_t Log(Double_t x)
Returns the natural logarithm of x.
All of the options that can be specified in the training string.