88using std::stringstream;
141 MethodCFMlpANN_nsel(0)
158 MethodCFMlpANN_nsel(0)
178 DeclareOptionRef( fNcycles =3000,
"NCycles",
"Number of training cycles" );
179 DeclareOptionRef( fLayerSpec=
"N,N-1",
"HiddenLayers",
"Specification of hidden layer architecture" );
187 fNodes =
new Int_t[20];
207 fNodes[0] = GetNvar();
208 fNodes[fNlayers-1] = 2;
210 if (IgnoreEventsWithNegWeightsInTraining()) {
211 Log() << kFATAL <<
"Mechanism to ignore events with negative weights in training not yet available for method: "
212 << GetMethodTypeName()
213 <<
" --> please remove \"IgnoreNegWeightsInTraining\" option from booking string."
217 Log() << kINFO <<
"Use configuration (nodes per layer): in=";
218 for (
Int_t i=0; i<fNlayers-1; i++) Log() << kINFO << fNodes[i] <<
":";
219 Log() << kINFO << fNodes[fNlayers-1] <<
"=out" <<
Endl;
222 Log() <<
"Use " << fNcycles <<
" training cycles" <<
Endl;
240 (*fClass)[
ievt] = DataInfo().IsSignal(
ev) ? 1 : 2;
260 SetNormalised(
kTRUE );
263 MethodCFMlpANN_nsel = 0;
276 for (
Int_t i=0; i<fNlayers; i++)
delete[] fYNN[i];
290 Int_t nvar(GetNvar());
298 for (
Int_t i=0; i<fNlayers; i++)
delete[] fYNN[i];
310 Log() << kWARNING <<
"<Train> sorry CFMlpANN does not run on Windows" <<
Endl;
328 std::vector<Double_t>
inputVec( GetNvar() );
332 if (!
isOK) Log() << kFATAL <<
"EvalANN returns (!isOK) for event " <<
Endl;
355 if (fVarn_1.xmax[
jvar] == fVarn_1.xmin[
jvar]) {
386 for (
Int_t k=1; k<=fNeur_1.neuron[
layer-1]; k++) {
387 x += fYNN[
layer-1][k-1]*W_ref(fNeur_1.w,
layer+1,
j, k);
401 if (
u/fDel_1.temp[i] > 170)
f = +1;
402 else if (
u/fDel_1.temp[i] < -170)
f = -1;
405 f = (1 -
yy)/(1 +
yy);
422 if (GetNvar() !=
nva)
423 Log() << kFATAL <<
"<ReadWeightsFromFile> mismatch in number of variables" <<
Endl;
427 Log() << kFATAL <<
"<ReadWeightsFromFile> mismatch in number of classes" <<
Endl;
431 Log() << kFATAL <<
"<ReadWeightsFromStream> reached EOF prematurely " <<
Endl;
438 istr >> fParam_1.layerm;
441 for (
Int_t i=0; i<fNlayers; i++)
delete[] fYNN[i];
445 fYNN =
new Double_t*[fParam_1.layerm];
474 for (
Int_t i=1; i<=fNeur_1.neuron[
layer-1]; i++) {
494 if ((
Int_t)GetNvar() != fNeur_1.neuron[0]) {
495 Log() << kFATAL <<
"<ReadWeightsFromFile> mismatch in zeroth layer:"
496 << GetNvar() <<
" " << fNeur_1.neuron[0] <<
Endl;
499 fNlayers = fParam_1.layerm;
517 Log() << kFATAL <<
"ERROR in MethodCFMlpANN_DataInterface zero pointer xpg" <<
Endl;
519 if (*nvar != (
Int_t)this->GetNvar()) {
520 Log() << kFATAL <<
"ERROR in MethodCFMlpANN_DataInterface mismatch in num of variables: "
521 << *nvar <<
" " << this->GetNvar() <<
Endl;
525 *iclass = (
int)this->GetClass( MethodCFMlpANN_nsel );
527 xpg[
ivar] = (
double)this->GetData( MethodCFMlpANN_nsel,
ivar );
529 ++MethodCFMlpANN_nsel;
547 s << std::scientific << fVarn_1.xmin[
ivar] <<
" " << fVarn_1.xmax[
ivar] <<
" ";
553 n << std::scientific << fNeur_1.neuron[
layer] <<
" ";
559 for (
Int_t neuron=0; neuron<fNeur_1.neuron[
layer]; neuron++) {
561 stringstream weights;
562 weights.precision( 16 );
563 weights << std::scientific << Ww_ref(fNeur_1.ww,
layer+1, neuron+1);
564 for (
Int_t i=0; i<fNeur_1.neuron[
layer-1]; i++) {
565 weights <<
" " << std::scientific << W_ref(fNeur_1.w,
layer+1, neuron+1, i+1);
572 temp.precision( 16 );
574 temp << std::scientific << fDel_1.temp[
layer] <<
" ";
590 for (
Int_t i=0; i<fNlayers; i++)
delete[] fYNN[i];
594 fYNN =
new Double_t*[fParam_1.layerm];
608 for (
Int_t neuron=0; neuron<fNeur_1.neuron[
layer]; neuron++) {
611 weights >> Ww_ref(fNeur_1.ww,
layer+1, neuron+1);
612 for (
Int_t i=0; i<fNeur_1.neuron[
layer-1]; i++) {
613 weights >> W_ref(fNeur_1.w,
layer+1, neuron+1, i+1);
620 stringstream t(temp);
622 t >> fDel_1.temp[
layer];
624 fNlayers = fParam_1.layerm;
633 o <<
"Number of vars " << fParam_1.nvar << std::endl;
634 o <<
"Output nodes " << fParam_1.lclass << std::endl;
638 o <<
"Var " <<
ivar <<
" [" << fVarn_1.xmin[
ivar] <<
" - " << fVarn_1.xmax[
ivar] <<
"]" << std::endl;
641 o <<
"Number of layers " << fParam_1.layerm << std::endl;
643 o <<
"Nodes per layer ";
646 o << fNeur_1.neuron[
layer] <<
" ";
667 o << Ww_ref(fNeur_1.ww,
layer+1,
j) <<
" ";
672 for (i=1; i<=fNeur_1.neuron[
layer-1]; i++) {
675 o << W_ref(fNeur_1.w,
layer+1,
j, i) <<
" ";
685 o <<
"Del.temp in layer " <<
layer <<
" : " << fDel_1.temp[
layer] << std::endl;
694 fout <<
" // not implemented for class: \"" << className <<
"\"" << std::endl;
695 fout <<
"};" << std::endl;
716 Log() <<
"<None>" <<
Endl;
720 Log() <<
"<None>" <<
Endl;
724 Log() <<
"<None>" <<
Endl;
#define REGISTER_METHOD(CLASS)
for example
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t nchar
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
TMatrixT< Float_t > TMatrix
Class that contains all the data information.
Virtual base Class for all MVA method.
void SetLogger(MsgLogger *l)
Interface to Clermond-Ferrand artificial neural network.
Double_t GetMvaValue(Double_t *err=nullptr, Double_t *errUpper=nullptr)
returns CFMlpANN output (normalised within [0,1])
void PrintWeights(std::ostream &o) const
write the weights of the neural net
void MakeClassSpecific(std::ostream &, const TString &) const
Double_t EvalANN(std::vector< Double_t > &, Bool_t &isOK)
evaluates NN value as function of input variables
void DeclareOptions()
define the options (their key words) that can be set in the option string know options: NCycles=xx :t...
virtual Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t)
CFMlpANN can handle classification with 2 classes.
void NN_ava(Double_t *)
auxiliary functions
void AddWeightsXMLTo(void *parent) const
write weights to xml file
void ProcessOptions()
decode the options in the option string
void Train(void)
training of the Clement-Ferrand NN classifier
Double_t NN_fonc(Int_t, Double_t) const
activation function
void ReadWeightsFromStream(std::istream &istr)
read back the weight from the training from file (stream)
void MakeClassSpecificHeader(std::ostream &, const TString &="") const
write specific classifier response for header
virtual ~MethodCFMlpANN(void)
destructor
MethodCFMlpANN(const TString &jobName, const TString &methodTitle, DataSetInfo &theData, const TString &theOption="3000:N-1:N-2")
standard constructor
void Init(void)
default initialisation called by all constructors
Int_t DataInterface(Double_t *, Double_t *, Int_t *, Int_t *, Int_t *, Int_t *, Double_t *, Int_t *, Int_t *)
data interface function
void ReadWeightsFromXML(void *wghtnode)
read weights from xml file
void GetHelpMessage() const
get help message text
Singleton class for Global types used by TMVA.
create variable transformations
MsgLogger & Endl(MsgLogger &ml)
Double_t Exp(Double_t x)
Returns the base-e exponential function of x, which is e raised to the power x.