60   fInterpolateLowerLimit(
true),
 
   61   fInterpolateUpperLimit(
true),
 
   62   fFittedLowerLimit(
false),
 
   63   fFittedUpperLimit(
false),
 
   64   fInterpolOption(kLinear),
 
   67   fCLsCleanupThreshold(0.005)
 
 
   81     fUseCLs(
other.fUseCLs),
 
   82     fIsTwoSided(
other.fIsTwoSided),
 
   83     fInterpolateLowerLimit(
other.fInterpolateLowerLimit),
 
   84     fInterpolateUpperLimit(
other.fInterpolateUpperLimit),
 
   85     fFittedLowerLimit(
other.fFittedLowerLimit),
 
   86     fFittedUpperLimit(
other.fFittedUpperLimit),
 
   87     fInterpolOption(
other.fInterpolOption),
 
   88     fLowerLimitError(
other.fLowerLimitError),
 
   89     fUpperLimitError(
other.fUpperLimitError),
 
   90     fCLsCleanupThreshold(
other.fCLsCleanupThreshold),
 
   91     fXValues(
other.fXValues)
 
   97   for (
int i = 0; i < 
nOther; ++i)
 
 
  133  for (
int i=0; i < 
nOther; ++i) {
 
 
  156   fInterpolateLowerLimit(
true),
 
  157   fInterpolateUpperLimit(
true),
 
  158   fFittedLowerLimit(
false),
 
  159   fFittedUpperLimit(
false),
 
  160   fInterpolOption(kLinear),
 
  161   fLowerLimitError(-1),
 
  162   fUpperLimitError(-1),
 
  163   fCLsCleanupThreshold(0.005)
 
 
  217    if ( !
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
 
  227    const double x = *
itr;
 
  237       coutE(
Eval) << 
"HypoTestInverterResult::ExclusionCleanup - invalid size of sampling distribution" << std::endl;
 
  259      double * z = 
const_cast<double *
>(&values[0] ); 
 
  274    } 
else if (
CLsobs >= 0.) {
 
 
  322   if (
nOther == 0) 
return true;
 
  331                                << 
" in " << 
GetName() << std::endl;
 
  337      coutI(
Eval) << 
"HypoTestInverterResult::Add - merging also the expected p-values from pseudo-data" << std::endl;
 
  344      for (
int i = 0; i < 
nOther; ++i)
 
  351      for (
int i = 0; i < 
nOther; ++i) {
 
  371                     coutW(
Eval) << 
"HypoTestInverterResult::Add expected p values have been generated with different toys " << 
thisNToys << 
" , " << 
otherNToys << std::endl;
 
  390      coutI(
Eval) << 
"HypoTestInverterResult::Add  - new number of points is " << 
fXValues.size()
 
  393      coutI(
Eval) << 
"HypoTestInverterResult::Add  - new toys/point is " 
 
  415      if (!
r) 
return false;
 
 
  452      return result->CLsplusb();  
 
 
  467        return result->CLsError();
 
  469        return result->CLsplusbError();
 
 
  494    return result->CLsplusb();
 
 
  518    return result->CLbError();
 
 
  530    return result->CLsplusbError();
 
 
  542    return result->CLsError();
 
 
  565  const double tol = 1.E-12;
 
 
  584   std::cout << 
"using graph for search " << 
lowSearch << 
" min " << 
axmin << 
" max " << 
axmax << std::endl;
 
  589   const double * 
y = 
graph.GetY();
 
  592      ooccoutE(
this,
Eval) << 
"HypoTestInverterResult::GetGraphX - need at least 2 points for interpolation (n=" << 
n << 
")\n";
 
  593      return (
n>0) ?  
y[0] : 0;
 
  623      std::cout << 
"No range given - check if extrapolation is needed " << std::endl;
 
  629      double yfirst = 
graph.GetY()[0];
 
  630      double ylast = 
graph.GetY()[
n-1];
 
  645   auto func = [&](
double x) {
 
  652   brf.SetNpx(std::max(
graph.GetN()*2,100) );
 
  655             << 
" , " << 
graph.Eval(
xmax) << 
" target " << 
y0 << std::endl;
 
  658   bool ret = 
brf.Solve(100, 1.E-16, 1.E-6);
 
  660      ooccoutE(
this,
Eval) << 
"HypoTestInverterResult - interpolation failed for interval [" << 
xmin << 
"," << 
xmax 
  662                          << 
" target=" << 
y0 << 
" return inf" << std::endl
 
  663                          << 
"One may try to clean up invalid points using HypoTestInverterResult::ExclusionCleanup()." << std::endl;
 
  666   double limit =  
brf.Root();
 
  669   if (
lowSearch) std::cout << 
"lower limit search : ";
 
  670   else std::cout << 
"Upper limit search :  ";
 
  671   std::cout << 
"interpolation done between " << 
xmin << 
"  and " << 
xmax 
  672             << 
"\n Found limit using RootFinder is " << limit << std::endl;
 
  678      graph.Write(
"graph");
 
  687   std::cout << 
"do new interpolation dividing from " << 
index << 
"  and " << 
y[
index] << std::endl;
 
 
  724      coutW(
Eval) << 
"HypoTestInverterResult::FindInterpolatedLimit" 
  725                         << 
" - not enough points to get the inverted interval - return " 
  734   std::vector<unsigned int> 
index(
n );
 
  738   for (
int i = 0; i < 
n; ++i)
 
  799      std::cout << 
" found xmin, xmax  = " << 
xmin << 
"  " << 
xmax << 
" for search " << 
lowSearch << std::endl;
 
  824   std::cout << 
"finding " << 
lowSearch << 
" limit between " << 
xmin << 
"  " << 
xmax << endl;
 
  835   ooccoutD(
this,
Eval) << 
"HypoTestInverterResult::FindInterpolateLimit " 
  836      << 
"the computed " << 
limitType << 
" limit is " << limit << 
" +/- " << error << std::endl;
 
  839   std::cout << 
"Found limit is " << limit << 
" +/- " << error << std::endl;
 
 
  912  std::vector<unsigned int> 
indx(
n);
 
 
  976     coutW(
Eval) << 
"HypoTestInverterResult::CalculateEstimateError" 
  977                        << 
"Empty result \n";
 
  982     coutW(
Eval) << 
"HypoTestInverterResult::CalculateEstimateError" 
  983                        << 
" only  points - return its error\n";
 
  993  std::cout << 
"calculate estimate error " << 
type << 
" between " << 
xmin << 
" and " << 
xmax << std::endl;
 
 1015  if (
graph.GetN() < 2) {
 
 1016     if (
np >= 2) 
coutW(
Eval) << 
"HypoTestInverterResult::CalculateEstimatedError - no valid points - cannot estimate  the " << 
type << 
" limit error " << std::endl;
 
 1027  TF1 fct(
"fct", 
"exp([0] * (x - [2] ) + [1] * (x-[2])**2)", 
minX, 
maxX);
 
 1032     fct.SetParLimits(1,0, 10./
scale); }
 
 1035     fct.SetParLimits(0,-100./
scale, 0);
 
 1036     fct.SetParLimits(1,-100./
scale, 0); }
 
 1038  if (
graph.GetN() < 3) 
fct.FixParameter(1,0.);
 
 1047  std::cout << 
"fitting for limit " << 
type << 
"between " << 
minX << 
" , " << 
maxX << 
" points considered " << 
graph.GetN() <<  std::endl;
 
 1049  graph.SetMarkerStyle(20);
 
 1068     coutW(
Eval) << 
"HypoTestInverterResult::CalculateEstimatedError - cannot estimate  the " << 
type << 
" limit error " << std::endl;
 
 
 1120   if (!
result) 
return nullptr;
 
 1121   return !
result->GetBackGroundIsAlt() ? 
result->GetAltDistribution() : 
result->GetNullDistribution();
 
 
 1168   std::vector<double> values(
npoints);
 
 1169   for (
int i = 0; i < 
npoints; ++i) {
 
 1172      if (pval < 0) { 
return nullptr;}
 
 1175   return new SamplingDistribution(
"Asymptotic expected values",
"Asymptotic expected values",values);
 
 
 1185      coutE(
Eval) << 
"HypoTestInverterResult::GetLimitDistribution" 
 1186                         << 
" not  enough points -  return 0 " << std::endl;
 
 1190   ooccoutD(
this,
Eval) << 
"HypoTestInverterResult - computing  limit distribution...." << std::endl;
 
 1197   for (
unsigned int i = 0; i < 
distVec.size(); ++i) {
 
 1209      ooccoutW(
this,
InputArguments) << 
"HypoTestInverterResult - set a minimum size of 10 for limit distribution" <<   std::endl;
 
 1218  for (
int i = 0; i <  
npoints; ++i) {
 
 1223     std::vector<double> 
pvalues = 
distVec[i]->GetSamplingDistribution();
 
 1233        p[0] = std::min( (
ibin+1) * 1./
double(
size), 1.0);
 
 1249  std::vector<double> limits(
size);
 
 1251  for (
int j = 0; 
j < 
size; ++
j ) {
 
 1254     for (
int k = 0; k < 
npoints ; ++k) {
 
 
 1320   if (!
r->GetNullDistribution() && !
r->GetAltDistribution() ) {
 
 1325      const std::vector<double> & values = 
limitDist->GetSamplingDistribution();
 
 1326      if (values.size() <= 1) 
return 0;
 
 1343   if (
option.Contains(
"P")) {
 
 1355            ooccoutI(
this,
Eval) << 
"HypoTestInverterResult - cannot compute expected p value distribution for point, x = " 
 1356                                << 
GetXValue(i)  << 
" skip it " << std::endl;
 
 1360         double * 
x = 
const_cast<double *
>(&values[0]); 
 
 1366         ooccoutE(
this,
Eval) << 
"HypoTestInverterResult - cannot compute limits , not enough points, n =  " << 
g.GetN() << std::endl;
 
 1378   const std::vector<double> & values = 
limitDist->GetSamplingDistribution();
 
 1379   double * 
x = 
const_cast<double *
>(&values[0]); 
 
 
size_t size(const MatrixT &matrix)
retrieve the size of a square matrix
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t target
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t r
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t result
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t index
 
Option_t Option_t TPoint TPoint const char mode
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char Pixmap_t Pixmap_t PictureAttributes_t attr const char char ret_data h unsigned char height h Atom_t Int_t ULong_t ULong_t unsigned char prop_list Atom_t Atom_t Atom_t Time_t type
 
Class for finding the root of a one dimensional function using the Brent algorithm.
 
Functor1D class for one-dimensional functions.
 
const_iterator begin() const
 
const_iterator end() const
 
virtual void removeAll()
Remove all arguments from our set, deleting them if we own them.
 
RooAbsArg * first() const
 
virtual bool addOwned(RooAbsArg &var, bool silent=false)
Add an argument and transfer the ownership to the collection.
 
virtual double getMax(const char *name=nullptr) const
Get maximum of currently defined range.
 
virtual double getMin(const char *name=nullptr) const
Get minimum of currently defined range.
 
Variable that can be changed from the outside.
 
static double GetExpectedPValues(double pnull, double palt, double nsigma, bool usecls, bool oneSided=true)
function given the null and the alt p value - return the expected one given the N - sigma value
 
HypoTestInverterResult class holds the array of hypothesis test results and compute a confidence inte...
 
bool fInterpolateUpperLimit
 
double GetYValue(int index) const
function to return the value of the confidence level for the i^th entry in the results
 
double LowerLimitEstimatedError()
rough estimation of the error on the computed bound of the confidence interval Estimate of lower limi...
 
double FindInterpolatedLimit(double target, bool lowSearch=false, double xmin=1, double xmax=0.0)
interpolate to find a limit value Use a linear or a spline interpolation depending on the interpolati...
 
double UpperLimitEstimatedError()
Estimate of lower limit error function evaluates only a rough error on the lower limit.
 
SamplingDistribution * GetSignalAndBackgroundTestStatDist(int index) const
get the signal and background test statistic distribution
 
double fCLsCleanupThreshold
 
HypoTestResult * GetResult(int index) const
return a pointer to the i^th result object
 
HypoTestInverterResult & operator=(const HypoTestInverterResult &other)
operator =
 
InterpolOption_t fInterpolOption
interpolation option (linear or spline)
 
int ArraySize() const
number of entries in the results array
 
bool fInterpolateLowerLimit
 
std::vector< double > fXValues
 
double CLsplusbError(int index) const
return the observed CLsplusb value for the i-th entry
 
double CLsError(int index) const
return the observed CLb value for the i-th entry
 
double GetGraphX(const TGraph &g, double y0, bool lowSearch, double &xmin, double &xmax) const
return the X value of the given graph for the target value y0 the graph is evaluated using linear int...
 
double CLbError(int index) const
return the observed CLb value for the i-th entry
 
double GetExpectedUpperLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
 
HypoTestInverterResult(const char *name=nullptr)
default constructor
 
double GetXValue(int index) const
function to return the value of the parameter of interest for the i^th entry in the results
 
double UpperLimit() override
return the interval upper limit
 
bool Add(const HypoTestInverterResult &otherResult)
merge with the content of another HypoTestInverterResult object
 
int FindClosestPointIndex(double target, int mode=0, double xtarget=0)
 
TList fExpPValues
list of expected sampling distribution for each point
 
double GetExpectedLowerLimit(double nsig=0, const char *opt="") const
get Limit value corresponding at the desired nsigma level (0) is median -1 sigma is 1 sigma
 
bool fIsTwoSided
two sided scan (look for lower/upper limit)
 
double CalculateEstimatedError(double target, bool lower=true, double xmin=1, double xmax=0.0)
Return an error estimate on the upper(lower) limit.
 
static int fgAsymptoticNumPoints
number of points used to build expected p-values
 
static double fgAsymptoticMaxSigma
max sigma value used to scan asymptotic expected p values
 
int ExclusionCleanup()
remove points that appear to have failed.
 
double LowerLimit() override
lower and upper bound of the confidence interval (to get upper/lower limits, multiply the size( = 1-c...
 
double CLs(int index) const
return the observed CLb value for the i-th entry
 
int FindIndex(double xvalue) const
find the index corresponding at the poi value xvalue If no points is found return -1 Note that a tole...
 
double GetYError(int index) const
function to return the estimated error on the value of the confidence level for the i^th entry in the...
 
double CLb(int index) const
return the observed CLb value for the i-th entry
 
TList fYObjects
list of HypoTestResult for each point
 
double GetExpectedLimit(double nsig, bool lower, const char *opt="") const
get expected limit (lower/upper) depending on the flag for asymptotic is a special case (the distribu...
 
SamplingDistribution * GetExpectedPValueDist(int index) const
return expected distribution of p-values (Cls or Clsplusb)
 
double CLsplusb(int index) const
return the observed CLsplusb value for the i-th entry
 
SamplingDistribution * GetLimitDistribution(bool lower) const
get the limit distribution (lower/upper depending on the flag) by interpolating the expected p values...
 
SamplingDistribution * GetNullTestStatDist(int index) const
same in terms of alt and null
 
SamplingDistribution * GetBackgroundTestStatDist(int index) const
get the background test statistic distribution
 
~HypoTestInverterResult() override
destructor
 
HypoTestResult is a base class for results from hypothesis tests.
 
TObject * Clone(const char *newname=nullptr) const override
clone method, required since some data members cannot rely on the streamers to copy them
 
This class simply holds a sampling distribution of some test statistic.
 
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
 
SimpleInterval is a concrete implementation of the ConfInterval interface.
 
double fUpperLimit
upper interval limit
 
RooArgSet fParameters
set containing the parameter of interest
 
double ConfidenceLevel() const override
return the confidence interval
 
double fLowerLimit
lower interval limit
 
double fConfidenceLevel
confidence level
 
SimpleInterval & operator=(const SimpleInterval &other)
default constructor
 
virtual void RemoveAll(TCollection *col)
Remove all objects in collection col from this collection.
 
virtual void SetOwner(Bool_t enable=kTRUE)
Set whether this collection is the owner (enable==true) of its content.
 
virtual Int_t GetSize() const
Return the capacity of the collection, i.e.
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
A TGraphErrors is a TGraph with error bars.
 
A TGraph is an object made of two arrays X and Y with npoints each.
 
virtual void SetPoint(Int_t i, Double_t x, Double_t y)
Set x and y values for point number i.
 
void Add(TObject *obj) override
 
TObject * First() const override
Return the first object in the list. Returns 0 when list is empty.
 
void Delete(Option_t *option="") override
Remove all objects from the list AND delete all heap based objects.
 
TObject * At(Int_t idx) const override
Returns the object at position idx. Returns 0 if idx is out of range.
 
const char * GetName() const override
Returns name of object.
 
virtual TObject * Clone(const char *newname="") const
Make a clone of an object using the Streamer facility.
 
virtual TObject * RemoveAt(Int_t idx)
 
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
 
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
Namespace for the RooStats classes.
 
void SortItr(Iterator first, Iterator last, IndexIterator index, Bool_t down=kTRUE)
Sort the n1 elements of the Short_t array defined by its iterators.
 
Double_t QuietNaN()
Returns a quiet NaN as defined by IEEE 754.
 
Double_t Floor(Double_t x)
Rounds x downward, returning the largest integral value that is not greater than x.
 
T MinElement(Long64_t n, const T *a)
Returns minimum of array a of length n.
 
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.
 
Bool_t AreEqualRel(Double_t af, Double_t bf, Double_t relPrec)
Comparing floating points.
 
Bool_t AreEqualAbs(Double_t af, Double_t bf, Double_t epsilon)
Comparing floating points.
 
T MaxElement(Long64_t n, const T *a)
Returns maximum of array a of length n.
 
Long64_t BinarySearch(Long64_t n, const T *array, T value)
Binary search in an array of n values to locate value.
 
Double_t Infinity()
Returns an infinity as defined by the IEEE standard.
 
static uint64_t sum(uint64_t i)