27template<
typename AFloat>
 
   36template<
typename AFloat>
 
   46   TMVA::DNN::evaluateDerivative<TCuda<AFloat>>(
dX, 
activFunct, 
X); 
 
 
   52template<
typename AFloat>
 
   58   cudaStream_t s = A.GetComputeStream();
 
   59   ::TMVA::DNN::Cuda::IdentityDerivative<<<gridDims, blockDims, 0, s>>>(
 
   63   B.SetComputeStream(s);
 
 
   67template<
typename AFloat>
 
   72   cudaStream_t s = A.GetComputeStream();
 
   73   ::TMVA::DNN::Cuda::Relu<<<gridDims, blockDims, 0, s>>>(
 
 
   80template<
typename AFloat>
 
   84    assert(B.GetNrows() == A.GetNrows() && B.GetNcols() == A.GetNcols());
 
   87   cudaStream_t s = A.GetComputeStream();
 
   88   ::TMVA::DNN::Cuda::ReluDerivative<<<gridDims, blockDims, 0, s>>>(
 
   93   B.SetComputeStream(s);
 
 
   97template<
typename AFloat>
 
  102   cudaStream_t s = A.GetComputeStream();
 
  103   ::TMVA::DNN::Cuda::Sigmoid<<<gridDims, blockDims, 0, s>>>(
 
  110template<
typename AFloat>
 
  114    assert(B.GetNrows() == A.GetNrows() && B.GetNcols() == A.GetNcols());
 
  117   cudaStream_t s = A.GetComputeStream();
 
  118   ::TMVA::DNN::Cuda::SigmoidDerivative<<<gridDims, blockDims, 0, s>>>(
 
  123   B.SetComputeStream(s);
 
 
  127template<
typename AFloat>
 
  132   cudaStream_t s = A.GetComputeStream();
 
  133   ::TMVA::DNN::Cuda::Tanh<<<gridDims, blockDims, 0, s>>>(
 
 
  140template<
typename AFloat>
 
  144    assert(B.GetNrows() == A.GetNrows() && B.GetNcols() == A.GetNcols());
 
  147   cudaStream_t s = A.GetComputeStream();
 
  148   ::TMVA::DNN::Cuda::TanhDerivative<<<gridDims, blockDims, 0, s>>>(
 
  153   B.SetComputeStream(s);
 
 
  157template<
typename AFloat>
 
  162   cudaStream_t s = A.GetComputeStream();
 
  163   ::TMVA::DNN::Cuda::SymmetricRelu<<<gridDims, blockDims, 0, s>>>(
 
 
  170template<
typename AFloat>
 
  174    assert(B.GetNrows() == A.GetNrows() && B.GetNcols() == A.GetNcols());
 
  177   cudaStream_t s = A.GetComputeStream();
 
  178   ::TMVA::DNN::Cuda::SymmetricReluDerivative<<<gridDims, blockDims, 0, s>>>(
 
  183   B.SetComputeStream(s);
 
 
  187template<
typename AFloat>
 
  192   cudaStream_t s = A.GetComputeStream();
 
  193   ::TMVA::DNN::Cuda::SoftSign<<<gridDims, blockDims, 0, s>>>(
 
 
  200template<
typename AFloat>
 
  204    assert(B.GetNrows() == A.GetNrows() && B.GetNcols() == A.GetNcols());
 
  207   cudaStream_t s = A.GetComputeStream();
 
  208   ::TMVA::DNN::Cuda::SoftSignDerivative<<<gridDims, blockDims, 0, s>>>(
 
  213   B.SetComputeStream(s);
 
 
  217template<
typename AFloat>
 
  222   cudaStream_t s = A.GetComputeStream();
 
  223   ::TMVA::DNN::Cuda::Gauss<<<gridDims, blockDims, 0, s>>>(
 
 
  230template<
typename AFloat>
 
  234    assert(B.GetNrows() == A.GetNrows() && B.GetNcols() == A.GetNcols());
 
  237   cudaStream_t s = A.GetComputeStream();
 
  238   ::TMVA::DNN::Cuda::GaussDerivative<<<gridDims, blockDims, 0, s>>>(
 
  243   B.SetComputeStream(s);
 
 
ROOT::Detail::TRangeCast< T, true > TRangeDynCast
TRangeDynCast is an adapter class that allows the typed iteration through a TCollection.
 
static void SoftSignDerivative(Tensor_t &B, const Tensor_t &A)
 
static void SymmetricReluDerivative(Tensor_t &B, const Tensor_t &A)
 
static void IdentityDerivative(Tensor_t &B, const Tensor_t &A)
 
static void ActivationFunctionForward(Tensor_t &X, EActivationFunction activFunct, const ActivationDescriptor_t activationDescr, const double coef=0.0, const AFloat alpha=1, const AFloat beta=0)
 
static void SoftSign(Tensor_t &B)
 
static void Gauss(Tensor_t &B)
 
static void Sigmoid(Tensor_t &B)
 
static void Tanh(Tensor_t &B)
 
static void ActivationFunctionBackward(Tensor_t &dX, const Tensor_t &Y, const Tensor_t &dY, const Tensor_t &X, EActivationFunction activFunct, const ActivationDescriptor_t activationDescr, const AFloat alpha=1, const AFloat beta=0)
Computes the gradient of the activation function.
 
static void ReluDerivative(Tensor_t &B, const Tensor_t &A)
 
static void GaussDerivative(Tensor_t &B, const Tensor_t &A)
 
static void Relu(Tensor_t &B)
 
static void SymmetricRelu(Tensor_t &B)
 
static void SigmoidDerivative(Tensor_t &B, const Tensor_t &A)
 
static void TanhDerivative(Tensor_t &B, const Tensor_t &A)
 
static dim3 BlockDims2D()
 
static dim3 GridDims2D(int nrows, int ncols)
 
EActivationFunction
Enum that represents layer activation functions.
 
create variable transformations