The Multi Variate Analysis package.
The TMVA Multi-Variate-Analysis classes.
See:
Classes | |
class | TMVA::AbsoluteDeviationLossFunction |
Absolute Deviation Loss Function. More... | |
class | TMVA::AbsoluteDeviationLossFunctionBDT |
Absolute Deviation BDT Loss Function. More... | |
class | TMVA::BDTEventWrapper |
class | TMVA::BinarySearchTree |
A simple Binary search tree including a volume search method. More... | |
class | TMVA::BinarySearchTreeNode |
Node for the BinarySearch or Decision Trees. More... | |
class | TMVA::BinaryTree |
Base class for BinarySearch and Decision Trees. More... | |
class | TMVA::CCPruner |
A helper class to prune a decision tree using the Cost Complexity method (see Classification and Regression Trees by Leo Breiman et al) More... | |
class | TMVA::CCTreeWrapper |
class | Classification |
Class to perform two class classification. More... | |
class | ClassificationResult |
Class to save the results of the classifier. More... | |
class | TMVA::ClassifierFactory |
This is the MVA factory. More... | |
class | TMVA::ClassInfo |
Class that contains all the information of a class. More... | |
class | TMVA::Config |
Singleton class for global configuration settings used by TMVA. More... | |
class | TMVA::ConvergenceTest |
Check for convergence. More... | |
class | TMVA::CostComplexityPruneTool |
A class to prune a decision tree using the Cost Complexity method. More... | |
class | CreateMethodPlugins |
Plugins analysis. More... | |
class | TMVA::CrossEntropy |
Implementation of the CrossEntropy as separation criterion. More... | |
class | TMVA::CrossValidation |
Class to perform cross validation, splitting the dataloader into folds. More... | |
class | TMVA::CrossValidationResult |
Class to save the results of cross validation, the metric for the classification ins ROC and you can ROC curves ROC integrals, ROC average and ROC standard deviation. More... | |
class | TMVA::DataInputHandler |
Class that contains all the data information. More... | |
class | TMVA::DataLoader |
class | TMVA::DataSet |
Class that contains all the data information. More... | |
class | TMVA::DataSetFactory |
Class that contains all the data information. More... | |
class | TMVA::DataSetInfo |
Class that contains all the data information. More... | |
class | TMVA::DataSetManager |
Class that contains all the data information. More... | |
class | TMVA::DecisionTree |
Implementation of a Decision Tree. More... | |
class | TMVA::Envelope |
Abstract base class for all high level ml algorithms, you can book ml methods like BDT, MLP. More... | |
class | TMVA::Event |
class | TMVA::ExpectedErrorPruneTool |
A helper class to prune a decision tree using the expected error (C4.5) method. More... | |
class | TMVA::Factory |
This is the main MVA steering class. More... | |
class | TMVA::FitterBase |
Base class for TMVA fitters. More... | |
class | TMVA::GeneticAlgorithm |
Base definition for genetic algorithm. More... | |
class | TMVA::GeneticFitter |
Fitter using a Genetic Algorithm. More... | |
class | TMVA::GeneticGenes |
Cut optimisation interface class for genetic algorithm. More... | |
class | TMVA::GeneticPopulation |
Population definition for genetic algorithm. More... | |
class | TMVA::GeneticRange |
Range definition for genetic algorithm. More... | |
class | TMVA::GiniIndex |
Implementation of the GiniIndex as separation criterion. More... | |
class | TMVA::GiniIndexWithLaplace |
Implementation of the GiniIndex With Laplace correction as separation criterion. More... | |
class | TMVA::HuberLossFunction |
Huber Loss Function. More... | |
class | TMVA::HuberLossFunctionBDT |
Huber BDT Loss Function. More... | |
class | TMVA::HyperParameterOptimisation |
class | TMVA::HyperParameterOptimisationResult |
class | TMVA::IFitterTarget |
Interface for a fitter 'target'. More... | |
class | TMVA::IMethod |
Interface for all concrete MVA method implementations. More... | |
class | TMVA::Interval |
The TMVA::Interval Class. More... | |
class | TMVA::IPruneTool |
IPruneTool - a helper interface class to prune a decision tree. More... | |
class | TMVA::IPythonInteractive |
This class is needed by JsMVA, and it's a helper class for tracking errors during the training in Jupyter notebook. More... | |
class | TMVA::KDEKernel |
KDE Kernel for "smoothing" the PDFs. More... | |
class | kNN |
kNN::Event describes point in input variable vector-space, with additional functionality like distance between points More... | |
class | TMVA::LDA |
class | TMVA::LeastSquaresLossFunction |
Least Squares Loss Function. More... | |
class | TMVA::LeastSquaresLossFunctionBDT |
Least Squares BDT Loss Function. More... | |
class | TMVA::LogInterval |
The TMVA::Interval Class. More... | |
class | TMVA::MCFitter |
Fitter using Monte Carlo sampling of parameters. More... | |
class | TMVA::MethodANNBase |
Base class for all TMVA methods using artificial neural networks. More... | |
class | TMVA::MethodBase |
Virtual base Class for all MVA method. More... | |
class | TMVA::MethodBayesClassifier |
Description of bayesian classifiers. More... | |
class | TMVA::MethodBDT |
Analysis of Boosted Decision Trees. More... | |
class | TMVA::MethodBoost |
Class for boosting a TMVA method. More... | |
class | TMVA::MethodCategory |
Class for categorizing the phase space. More... | |
class | TMVA::MethodCFMlpANN |
Interface to Clermond-Ferrand artificial neural network. More... | |
class | TMVA::MethodCFMlpANN_Utils |
Implementation of Clermond-Ferrand artificial neural network. More... | |
class | TMVA::MethodCompositeBase |
Virtual base class for combining several TMVA method. More... | |
class | TMVA::MethodCrossValidation |
class | TMVA::MethodCuts |
Multivariate optimisation of signal efficiency for given background efficiency, applying rectangular minimum and maximum requirements. More... | |
class | TMVA::MethodDNN |
Deep Neural Network Implementation. More... | |
class | TMVA::MethodDT |
Analysis of Boosted Decision Trees. More... | |
class | TMVA::MethodFDA |
Function discriminant analysis (FDA). More... | |
class | TMVA::MethodFisher |
Fisher and Mahalanobis Discriminants (Linear Discriminant Analysis) More... | |
class | TMVA::MethodHMatrix |
H-Matrix method, which is implemented as a simple comparison of chi-squared estimators for signal and background, taking into account the linear correlations between the input variables. More... | |
class | TMVA::MethodKNN |
Analysis of k-nearest neighbor. More... | |
class | TMVA::MethodLD |
Linear Discriminant. More... | |
class | TMVA::MethodLikelihood |
Likelihood analysis ("non-parametric approach") More... | |
class | TMVA::MethodMLP |
Multilayer Perceptron class built off of MethodANNBase. More... | |
class | TMVA::MethodPDEFoam |
The PDEFoam method is an extension of the PDERS method, which divides the multi-dimensional phase space in a finite number of hyper-rectangles (cells) of constant event density. More... | |
class | TMVA::MethodPDERS |
This is a generalization of the above Likelihood methods to \( N_{var} \) dimensions, where \( N_{var} \) is the number of input variables used in the MVA. More... | |
class | TMVA::MethodRuleFit |
J Friedman's RuleFit method. More... | |
class | TMVA::MethodSVM |
SMO Platt's SVM classifier with Keerthi & Shavade improvements. More... | |
class | TMVA::MethodTMlpANN |
This is the TMVA TMultiLayerPerceptron interface class. More... | |
class | TMVA::MinuitFitter |
/Fitter using MINUIT More... | |
class | TMVA::MinuitWrapper |
Wrapper around MINUIT. More... | |
class | TMVA::MisClassificationError |
Implementation of the MisClassificationError as separation criterion. More... | |
class | TMVA::MsgLogger |
ostringstream derivative to redirect and format output More... | |
class | TMVA::kNN::Node< T > |
This file contains binary tree and global function template that searches tree for k-nearest neigbors. More... | |
class | TMVA::Node |
Node for the BinarySearch or Decision Trees. More... | |
class | TMVA::OptimizeConfigParameters |
class | TMVA::OptionBase |
Class for TMVA-option handling. More... | |
class | TMVA::OptionMap |
class to storage options for the differents methods More... | |
class | TMVA::PDEFoam |
Implementation of PDEFoam. More... | |
class | TMVA::PDEFoamCell |
class | TMVA::PDEFoamDecisionTree |
This PDEFoam variant acts like a decision tree and stores in every cell the discriminant. More... | |
class | TMVA::PDEFoamDecisionTreeDensity |
This is a concrete implementation of PDEFoam. More... | |
class | TMVA::PDEFoamDensityBase |
This is an abstract class, which provides an interface for a PDEFoam density estimator. More... | |
class | TMVA::PDEFoamDiscriminant |
This PDEFoam variant stores in every cell the discriminant. More... | |
class | TMVA::PDEFoamDiscriminantDensity |
This is a concrete implementation of PDEFoam. More... | |
class | TMVA::PDEFoamEvent |
This PDEFoam variant stores in every cell the sum of event weights and the sum of the squared event weights. More... | |
class | TMVA::PDEFoamEventDensity |
This is a concrete implementation of PDEFoam. More... | |
class | TMVA::PDEFoamKernelBase |
This class is the abstract kernel interface for PDEFoam. More... | |
class | TMVA::PDEFoamKernelGauss |
This PDEFoam kernel estimates a cell value for a given event by weighting all cell values with a gauss function. More... | |
class | TMVA::PDEFoamKernelLinN |
This PDEFoam kernel estimates a cell value for a given event by weighting with cell values of the nearest neighbor cells. More... | |
class | TMVA::PDEFoamKernelTrivial |
This class is a trivial PDEFoam kernel estimator. More... | |
class | TMVA::PDEFoamMultiTarget |
This PDEFoam variant is used to estimate multiple targets by creating an event density foam (PDEFoamEvent), which has dimension: More... | |
class | TMVA::PDEFoamTarget |
This PDEFoam variant stores in every cell the average target fTarget (see the Constructor) as well as the statistical error on the target fTarget. More... | |
class | TMVA::PDEFoamTargetDensity |
This is a concrete implementation of PDEFoam. More... | |
class | TMVA::PDEFoamVect |
class | TMVA::PDF |
PDF wrapper for histograms; uses user-defined spline interpolation. More... | |
class | TMVA::QuickMVAProbEstimator |
class | TMVA::Ranking |
Ranking for variables in method (implementation) More... | |
class | TMVA::Reader |
The Reader class serves to use the MVAs in a specific analysis context. More... | |
class | TMVA::RegressionVariance |
Calculate the "SeparationGain" for Regression analysis separation criteria used in various training algorithms. More... | |
class | TMVA::Results |
Class that is the base-class for a vector of result. More... | |
class | TMVA::ResultsClassification |
Class that is the base-class for a vector of result. More... | |
class | TMVA::ResultsMulticlass |
Class which takes the results of a multiclass classification. More... | |
class | TMVA::ResultsRegression |
Class that is the base-class for a vector of result. More... | |
class | TMVA::ROCCalc |
class | TMVA::ROCCurve |
class | TMVA::RootFinder |
Root finding using Brents algorithm (translated from CERNLIB function RZERO) More... | |
class | TMVA::Rule |
Implementation of a rule. More... | |
class | TMVA::RuleCut |
A class describing a 'rule cut'. More... | |
class | TMVA::RuleEnsemble |
class | TMVA::RuleFit |
A class implementing various fits of rule ensembles. More... | |
class | TMVA::RuleFitAPI |
J Friedman's RuleFit method. More... | |
class | TMVA::RuleFitParams |
A class doing the actual fitting of a linear model using rules as base functions. More... | |
class | TMVA::SdivSqrtSplusB |
Implementation of the SdivSqrtSplusB as separation criterion. More... | |
class | TMVA::SeparationBase |
An interface to calculate the "SeparationGain" for different separation criteria used in various training algorithms. More... | |
class | TMVA::SimulatedAnnealing |
Base implementation of simulated annealing fitting procedure. More... | |
class | TMVA::SimulatedAnnealingFitter |
Fitter using a Simulated Annealing Algorithm. More... | |
class | TMVA::SVEvent |
Event class for Support Vector Machine. More... | |
class | TMVA::SVKernelFunction |
Kernel for Support Vector Machine. More... | |
class | TMVA::SVKernelMatrix |
Kernel matrix for Support Vector Machine. More... | |
class | TMVA::SVWorkingSet |
Working class for Support Vector Machine. More... | |
class | TMVA::TActivation |
Interface for TNeuron activation function classes. More... | |
class | TMVA::TActivationChooser |
Class for easily choosing activation functions. More... | |
class | TMVA::TActivationIdentity |
Identity activation function for TNeuron. More... | |
class | TMVA::TActivationRadial |
Radial basis activation function for ANN. More... | |
class | TMVA::TActivationReLU |
Rectified Linear Unit activation function for TNeuron. More... | |
class | TMVA::TActivationSigmoid |
Sigmoid activation function for TNeuron. More... | |
class | TMVA::TActivationTanh |
Tanh activation function for ANN. More... | |
class | TMVA::Timer |
Timing information for training and evaluation of MVA methods. More... | |
class | TMVA |
Base Class for all classes that need option parsing. More... | |
class | TMVA::TNeuron |
Neuron class used by TMVA artificial neural network methods. More... | |
class | TMVA::TNeuronInput |
Interface for TNeuron input calculation classes. More... | |
class | TMVA::TNeuronInputAbs |
TNeuron input calculator – calculates the sum of the absolute values of the weighted inputs. More... | |
class | TMVA::TNeuronInputChooser |
Class for easily choosing neuron input functions. More... | |
class | TMVA::TNeuronInputSqSum |
TNeuron input calculator – calculates the squared weighted sum of inputs. More... | |
class | TMVA::TNeuronInputSum |
TNeuron input calculator – calculates the weighted sum of inputs. More... | |
class | TMVA::Tools |
Global auxiliary applications and data treatment routines. More... | |
class | TMVA::TrainingHistory |
Tracking data from training. More... | |
class | TMVA::TransformationHandler |
Class that contains all the data information. More... | |
class | TMVA::TSpline1 |
Linear interpolation of TGraph. More... | |
class | TMVA::TSpline2 |
Quadratic interpolation of TGraph. More... | |
class | TMVA::TSynapse |
Synapse class used by TMVA artificial neural network methods. More... | |
class | TMVA::Types |
Singleton class for Global types used by TMVA. More... | |
class | TMVA::VariableDecorrTransform |
Linear interpolation class. More... | |
class | TMVA::VariableGaussTransform |
Gaussian Transformation of input variables. More... | |
class | TMVA::VariableIdentityTransform |
Linear interpolation class. More... | |
class | TMVA::VariableImportance |
class | TMVA::VariableImportanceResult |
class | TMVA::VariableInfo |
Class for type info of MVA input variable. More... | |
class | TMVA::VariableNormalizeTransform |
Linear interpolation class. More... | |
class | TMVA::VariablePCATransform |
Linear interpolation class. More... | |
class | TMVA::VariableRearrangeTransform |
Rearrangement of input variables. More... | |
class | TMVA::VariableTransformBase |
Linear interpolation class. More... | |
class | TMVA::Volume |
Volume for BinarySearchTree. More... | |