14from os.path 
import exists
 
   16ROOT.TMVA.PyMethodBase.PyInitialize()
 
   20modelFile = 
"Higgs_trained_model.h5" 
   22if not exists(modelFile):
 
   23    raise FileNotFoundError(
"You need to run TMVA_Higgs_Classification.C to generate the Keras trained model")
 
   26model = ROOT.TMVA.Experimental.SOFIE.PyKeras.Parse(modelFile)
 
   30model.OutputGenerated(
"Higgs_generated_Sofie_model.hxx")
 
   34print(
"compiling SOFIE model and functor....")
 
   35ROOT.gInterpreter.Declare(
'#include "Higgs_generated_Sofie_model.hxx"')
 
   36modelName = 
"Higgs_trained_model" 
   37ROOT.gInterpreter.Declare(
'auto sofie_functor = TMVA::Experimental::SofieFunctor<7,TMVA_SOFIE_'+modelName+
'::Session>(0,"Higgs_generated_Sofie_model.dat");')
 
   40inputFile = 
"http://root.cern/files/Higgs_data.root" 
   42h1 = df1.Define(
"DNN_Value", 
"sofie_functor(rdfslot_,m_jj, m_jjj, m_lv, m_jlv, m_bb, m_wbb, m_wwbb)").Histo1D((
"h_sig", 
"", 100, 0, 1),
"DNN_Value")
 
   45h2 = df2.Define(
"DNN_Value", 
"sofie_functor(rdfslot_,m_jj, m_jjj, m_lv, m_jlv, m_bb, m_wbb, m_wwbb)").Histo1D((
"h_bkg", 
"", 100, 0, 1),
"DNN_Value")
 
   50print(
"Number of signal entries",h1.GetEntries())
 
   51print(
"Number of background entries",h2.GetEntries())
 
   53h1.SetLineColor(ROOT.kRed)
 
   54h2.SetLineColor(ROOT.kBlue)
 
   57ROOT.gStyle.SetOptStat(0)
 
ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree ,...
 
void RunGraphs(std::vector< RResultHandle > handles)
Trigger the event loop of multiple RDataFrames concurrently.