66struct HypoTestOptions {
 
   68   bool noSystematics = 
false; 
 
   69   double nToysRatio = 4;      
 
   72   bool generateBinned = 
false;       
 
   73   bool useProof = 
false;             
 
   74   bool enableDetailedOutput = 
false; 
 
   79void StandardHypoTestDemo(
const char *infile = 
"", 
const char *workspaceName = 
"combined",
 
   80                          const char *modelSBName = 
"ModelConfig", 
const char *modelBName = 
"",
 
   81                          const char *dataName = 
"obsData", 
int calcType = 0, 
 
   83                          int ntoys = 5000, 
bool useNC = 
false, 
const char *nuisPriorName = 0)
 
   86   bool noSystematics = optHT.noSystematics;
 
   87   double nToysRatio = optHT.nToysRatio; 
 
   88   double poiValue = optHT.poiValue;     
 
   89   int printLevel = optHT.printLevel;
 
   90   bool generateBinned = optHT.generateBinned; 
 
   91   bool useProof = optHT.useProof;             
 
   92   bool enableDetOutput = optHT.enableDetailedOutput;
 
  124   SimpleLikelihoodRatioTestStat::SetAlwaysReuseNLL(
true);
 
  125   ProfileLikelihoodTestStat::SetAlwaysReuseNLL(
true);
 
  126   RatioOfProfiledLikelihoodsTestStat::SetAlwaysReuseNLL(
true);
 
  141   if (!strcmp(infile, 
"")) {
 
  142      filename = 
"results/example_combined_GaussExample_model.root";
 
  147         cout << 
"HistFactory file cannot be generated on Windows - exit" << endl;
 
  151         cout << 
"will run standard hist2workspace example" << endl;
 
  152         gROOT->ProcessLine(
".! prepareHistFactory .");
 
  153         gROOT->ProcessLine(
".! hist2workspace config/example.xml");
 
  154         cout << 
"\n\n---------------------" << endl;
 
  155         cout << 
"Done creating example input" << endl;
 
  156         cout << 
"---------------------\n\n" << endl;
 
  167      cout << 
"StandardRooStatsDemoMacro: Input file " << 
filename << 
" is not found" << endl;
 
  178      cout << 
"workspace not found" << endl;
 
  190   if (!
data || !sbModel) {
 
  192      cout << 
"data or ModelConfig was not found" << endl;
 
  202      if (nuisPar && nuisPar->
getSize() > 0) {
 
  203         std::cout << 
"StandardHypoTestInvDemo" 
  204                   << 
"  -  Switch off all systematics by setting them constant to their initial values" << std::endl;
 
  215      Info(
"StandardHypoTestInvDemo", 
"The background model %s does not exist", modelBName);
 
  216      Info(
"StandardHypoTestInvDemo", 
"Copy it from ModelConfig %s and set POI to zero", modelSBName);
 
  222      double oldval = var->
getVal();
 
  230      Info(
"StandardHypoTestDemo", 
"Model %s has no snapshot  - make one using model poi", modelSBName);
 
  234      double oldval = var->
getVal();
 
  263   if (testStatType == 3)
 
  267   if (enableDetOutput) {
 
  277   AsymptoticCalculator::SetPrintLevel(printLevel);
 
  283   else if (calcType == 1)
 
  285   else if (calcType == 2)
 
  298      if (testStatType == 3)
 
  300      if (testStatType != 2 && testStatType != 3)
 
  301         Warning(
"StandardHypoTestDemo",
 
  302                 "Only the PL test statistic can be used with AsymptoticCalculator - use by default a two-sided PL");
 
  309         nuisPdf = 
w->pdf(nuisPriorName);
 
  312         Info(
"StandardHypoTestDemo",
 
  313              "No nuisance pdf given for the HybridCalculator - try to deduce  pdf from the   model");
 
  322            Info(
"StandardHypoTestDemo",
 
  323                 "No nuisance pdf given - try to use %s that is defined as a prior pdf in the B model",
 
  326            Error(
"StandardHypoTestDemo", 
"Cannot run Hybrid calculator because no prior on the nuisance parameter is " 
  327                                          "specified or can be derived");
 
  332      Info(
"StandardHypoTestDemo", 
"Using as nuisance Pdf ... ");
 
  338      if (
np->getSize() == 0) {
 
  339         Warning(
"StandardHypoTestDemo",
 
  340                 "Prior nuisance does not depend on nuisance parameters. They will be smeared in their full range");
 
  352   if (sampler && (calcType == 0 || calcType == 1)) {
 
  357            Warning(
"StandardHypoTestDemo", 
"Pdf is extended: but number counting flag is set: ignore it ");
 
  361            int nEvents = 
data->numEntries();
 
  362            Info(
"StandardHypoTestDemo",
 
  363                 "Pdf is not extended: number of events to generate taken  from observed data set is %d", nEvents);
 
  366            Info(
"StandardHypoTestDemo", 
"using a number counting pdf");
 
  371      if (
data->isWeighted() && !generateBinned) {
 
  372         Info(
"StandardHypoTestDemo", 
"Data set is weighted, nentries = %d and sum of weights = %8.1f but toy " 
  373                                      "generation is unbinned - it would be faster to set generateBinned to true\n",
 
  374              data->numEntries(), 
data->sumEntries());
 
  386      if (testStatType == 0)
 
  388      if (testStatType == 1)
 
  390      if (testStatType == 2 || testStatType == 3)
 
  406      plot->SetLogYaxis(
true);
 
  409      std::cout << 
"Asymptotic results " << std::endl;
 
  422      for (
int i = 0; i < 5; ++i) {
 
  429      for (
int i = 0; i < 5; ++i) {
 
  430         htExp.SetTestStatisticData(
q[i]);
 
  432         std::cout << 
" Expected p -value and significance at " << sig << 
" sigma = " << htExp.NullPValue()
 
  433                   << 
" significance " << htExp.Significance() << 
" sigma " << std::endl;
 
  437      for (
int i = 0; i < 5; ++i) {
 
  441         std::cout << 
" Expected p -value and significance at " << sig << 
" sigma = " << pval << 
" significance " 
  447   bool writeResult = (calcType != 2);
 
  449   if (enableDetOutput) {
 
  451      Info(
"StandardHypoTestDemo", 
"Detailed output will be written in output result file");
 
  454   if (htr != NULL && writeResult) {
 
  457      const char *calcTypeName = (calcType == 0) ? 
"Freq" : (calcType == 1) ? 
"Hybr" : 
"Asym";
 
  463      resultFileName += 
name;
 
  465      TFile *fileOut = 
new TFile(resultFileName, 
"RECREATE");
 
  467      Info(
"StandardHypoTestDemo", 
"HypoTestResult has been written in the file %s", resultFileName.
Data());
 
void Info(const char *location, const char *msgfmt,...)
Use this function for informational messages.
 
void Error(const char *location, const char *msgfmt,...)
Use this function in case an error occurred.
 
void Warning(const char *location, const char *msgfmt,...)
Use this function in warning situations.
 
winID h TVirtualViewer3D TVirtualGLPainter p
 
winID h TVirtualViewer3D TVirtualGLPainter char TVirtualGLPainter plot
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t winding char text const char depth char const char Int_t count const char ColorStruct_t color const char filename
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void char Point_t Rectangle_t WindowAttributes_t Float_t Float_t Float_t Int_t Int_t UInt_t UInt_t Rectangle_t Int_t Int_t Window_t TString Int_t GCValues_t GetPrimarySelectionOwner GetDisplay GetScreen GetColormap GetNativeEvent const char const char dpyName wid window const char font_name cursor keysym reg const char only_if_exist regb h Point_t np
 
R__EXTERN TSystem * gSystem
 
void Print(Option_t *options=nullptr) const override
Print the object to the defaultPrintStream().
 
RooFit::OwningPtr< RooArgSet > getObservables(const RooArgSet &set, bool valueOnly=true) const
Given a set of possible observables, return the observables that this PDF depends on.
 
Int_t getSize() const
Return the number of elements in the collection.
 
RooAbsArg * first() const
 
RooAbsData is the common abstract base class for binned and unbinned datasets.
 
bool canBeExtended() const
If true, PDF can provide extended likelihood term.
 
double getVal(const RooArgSet *normalisationSet=nullptr) const
Evaluate object.
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
RooRealVar represents a variable that can be changed from the outside.
 
void setVal(double value) override
Set value of variable to 'value'.
 
Hypothesis Test Calculator based on the asymptotic formulae for the profile likelihood ratio.
 
Does a frequentist hypothesis test.
 
Same purpose as HybridCalculatorOriginal, but different implementation.
 
Common base class for the Hypothesis Test Calculators.
 
HypoTestResult * GetHypoTest() const override
inherited methods from HypoTestCalculator interface
 
TestStatSampler * GetTestStatSampler(void) const
Returns instance of TestStatSampler.
 
This class provides the plots for the result of a study performed with any of the HypoTestCalculatorG...
 
HypoTestResult is a base class for results from hypothesis tests.
 
void Print(const Option_t *="") const override
Print out some information about the results Note: use Alt/Null labels for the hypotheses here as the...
 
void SetBackgroundAsAlt(bool l=true)
 
virtual double AlternatePValue() const
Return p-value for alternate hypothesis.
 
virtual double NullPValue() const
Return p-value for null hypothesis.
 
void SetPValueIsRightTail(bool pr)
 
SamplingDistribution * GetAltDistribution(void) const
 
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
 
virtual void SetSnapshot(const RooArgSet &set)
Set parameter values for a particular hypothesis if using a common PDF by saving a snapshot in the wo...
 
ModelConfig * Clone(const char *name="") const override
clone
 
const RooArgSet * GetParametersOfInterest() const
get RooArgSet containing the parameter of interest (return nullptr if not existing)
 
const RooArgSet * GetNuisanceParameters() const
get RooArgSet containing the nuisance parameters (return nullptr if not existing)
 
const RooArgSet * GetObservables() const
get RooArgSet for observables (return nullptr if not existing)
 
const RooArgSet * GetSnapshot() const
get RooArgSet for parameters for a particular hypothesis (return nullptr if not existing)
 
RooAbsPdf * GetPdf() const
get model PDF (return nullptr if pdf has not been specified or does not exist)
 
RooAbsPdf * GetPriorPdf() const
get parameters prior pdf (return nullptr if not existing)
 
ProfileLikelihoodTestStat is an implementation of the TestStatistic interface that calculates the pro...
 
void SetPrintLevel(Int_t printlevel)
 
virtual void EnableDetailedOutput(bool e=true, bool withErrorsAndPulls=false)
 
void SetOneSidedDiscovery(bool flag=true)
 
Holds configuration options for proof and proof-lite.
 
TestStatistic that returns the ratio of profiled likelihoods.
 
void SetSubtractMLE(bool subtract)
 
virtual void EnableDetailedOutput(bool e=true)
 
This class simply holds a sampling distribution of some test statistic.
 
const std::vector< double > & GetSamplingDistribution() const
Get test statistics values.
 
TestStatistic class that returns -log(L[null] / L[alt]) where L is the likelihood.
 
virtual void EnableDetailedOutput(bool e=true)
 
void SetNullParameters(const RooArgSet &nullParameters)
 
void SetAltParameters(const RooArgSet &altParameters)
 
ToyMCSampler is an implementation of the TestStatSampler interface.
 
void SetProofConfig(ProofConfig *pc=nullptr)
calling with argument or nullptr deactivates proof
 
virtual void SetTestStatistic(TestStatistic *testStatistic, unsigned int i)
Set the TestStatistic (want the argument to be a function of the data & parameter points.
 
void SetGenerateBinned(bool binned=true)
control to use bin data generation (=> see RooFit::AllBinned() option)
 
virtual void SetNEventsPerToy(const Int_t nevents)
Forces the generation of exactly n events even for extended PDFs.
 
The RooWorkspace is a persistable container for RooFit projects.
 
A ROOT file is a suite of consecutive data records (TKey instances) with a well defined format.
 
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
 
void Close(Option_t *option="") override
Close a file.
 
const char * GetName() const override
Returns name of object.
 
virtual void SetName(const char *name)
Set the name of the TNamed.
 
virtual Int_t Write(const char *name=nullptr, Int_t option=0, Int_t bufsize=0)
Write this object to the current directory.
 
virtual void Draw(Option_t *option="")
Default Draw method for all objects.
 
TString & Replace(Ssiz_t pos, Ssiz_t n, const char *s)
 
const char * Data() const
 
static TString Format(const char *fmt,...)
Static method which formats a string using a printf style format descriptor and return a TString.
 
virtual Bool_t AccessPathName(const char *path, EAccessMode mode=kFileExists)
Returns FALSE if one can access a file using the specified access mode.
 
double normal_cdf(double x, double sigma=1, double x0=0)
Cumulative distribution function of the normal (Gaussian) distribution (lower tail).
 
double normal_quantile_c(double z, double sigma)
Inverse ( ) of the cumulative distribution function of the upper tail of the normal (Gaussian) distri...
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
Namespace for the RooStats classes.
 
bool SetAllConstant(const RooAbsCollection &coll, bool constant=true)
utility function to set all variable constant in a collection (from G.
 
RooAbsPdf * MakeNuisancePdf(RooAbsPdf &pdf, const RooArgSet &observables, const char *name)
extract constraint terms from pdf
 
void Quantiles(Int_t n, Int_t nprob, Double_t *x, Double_t *quantiles, Double_t *prob, Bool_t isSorted=kTRUE, Int_t *index=nullptr, Int_t type=7)
Computes sample quantiles, corresponding to the given probabilities.