91   BinCountTestStat(
void) : fColumnName(
"tmp") {}
 
   92   BinCountTestStat(
string columnName) : fColumnName(columnName) {}
 
   98      for (
int i = 0; i < 
data.numEntries(); i++) {
 
   99         value += 
data.get(i)->getRealValue(fColumnName.c_str());
 
  103   virtual const TString GetVarName()
 const { 
return fColumnName; }
 
  117   void HybridInstructional()
 
  147   w->factory(
"Poisson::px(x[150,0,500],sum::splusb(s[0,0,100],b[100,0,300]))");
 
  148   w->factory(
"Poisson::py(y[100,0,500],prod::taub(tau[1.],b))");
 
  149   w->factory(
"PROD::model(px,py)");
 
  150   w->factory(
"Uniform::prior_b(b)");
 
  176   w->factory(
"PROJ::averagedModel(PROD::foo(px|b,py,prior_b),b)");
 
  183   w->var(
"s")->setVal(50.);
 
  187   w->var(
"s")->setVal(0.);
 
  194   w->var(
"y")->setVal(100);
 
  195   w->var(
"x")->setVal(150);
 
  196   std::unique_ptr<RooAbsReal> cdf{
w->pdf(
"averagedModel")->createCdf(*
w->var(
"x"))};
 
  198   cout << 
"-----------------------------------------" << endl;
 
  199   cout << 
"Part 2" << endl;
 
  200   cout << 
"Hybrid p-value from direct integration = " << 1 - cdf->getVal() << endl;
 
  211   double p_Bi = NumberCountingUtils::BinomialWithTauObsP(150, 100, 1);
 
  212   double Z_Bi = NumberCountingUtils::BinomialWithTauObsZ(150, 100, 1);
 
  213   cout << 
"-----------------------------------------" << endl;
 
  214   cout << 
"Part 3" << endl;
 
  215   std::cout << 
"Z_Bi p-value (analytic): " << p_Bi << std::endl;
 
  216   std::cout << 
"Z_Bi significance (analytic): " << Z_Bi << std::endl;
 
  240   w->defineSet(
"obs", 
"x");
 
  241   w->defineSet(
"poi", 
"s");
 
  245   data->add(*
w->set(
"obs"));
 
  251   b_model.SetPdf(*
w->pdf(
"px"));
 
  252   b_model.SetObservables(*
w->set(
"obs"));
 
  253   b_model.SetParametersOfInterest(*
w->set(
"poi"));
 
  254   w->var(
"s")->setVal(0.0); 
 
  255   b_model.SetSnapshot(*
w->set(
"poi"));
 
  259   sb_model.SetPdf(*
w->pdf(
"px"));
 
  260   sb_model.SetObservables(*
w->set(
"obs"));
 
  261   sb_model.SetParametersOfInterest(*
w->set(
"poi"));
 
  262   w->var(
"s")->setVal(50.0); 
 
  263   sb_model.SetSnapshot(*
w->set(
"poi"));
 
  273   BinCountTestStat binCount(
"x");
 
  295   w->factory(
"Gaussian::gauss_prior(b,y, expr::sqrty('sqrt(y)',y))");
 
  299   w->factory(
"Lognormal::lognorm_prior(b,y, expr::kappa('1+1./sqrt(y)',y))");
 
  321   hc1.SetToys(20000, 1000);
 
  322   hc1.ForcePriorNuisanceAlt(*
w->pdf(
"py"));
 
  323   hc1.ForcePriorNuisanceNull(*
w->pdf(
"py"));
 
  345   cout << 
"-----------------------------------------" << endl;
 
  346   cout << 
"Part 4" << endl;
 
  366   slrts.SetNullParameters(*b_model.GetSnapshot());
 
  367   slrts.SetAltParameters(*sb_model.GetSnapshot());
 
  374   hc2.SetToys(20000, 1000);
 
  375   hc2.ForcePriorNuisanceAlt(*
w->pdf(
"py"));
 
  376   hc2.ForcePriorNuisanceNull(*
w->pdf(
"py"));
 
  396   cout << 
"-----------------------------------------" << endl;
 
  397   cout << 
"Part 5" << endl;
 
  422   w->defineSet(
"obsXY", 
"x,y");
 
  425   w->var(
"x")->setVal(150.);
 
  426   w->var(
"y")->setVal(100.);
 
  428   dataXY->
add(*
w->set(
"obsXY"));
 
  432   b_modelXY.SetPdf(*
w->pdf(
"model")); 
 
  433   b_modelXY.SetObservables(*
w->set(
"obsXY"));
 
  434   b_modelXY.SetParametersOfInterest(*
w->set(
"poi"));
 
  435   w->var(
"s")->setVal(0.0); 
 
  436   b_modelXY.SetSnapshot(*
w->set(
"poi"));
 
  440   sb_modelXY.SetPdf(*
w->pdf(
"model")); 
 
  441   sb_modelXY.SetObservables(*
w->set(
"obsXY"));
 
  442   sb_modelXY.SetParametersOfInterest(*
w->set(
"poi"));
 
  443   w->var(
"s")->setVal(50.0); 
 
  444   sb_modelXY.SetSnapshot(*
w->set(
"poi"));
 
  459   ropl.SetSubtractMLE(
false);
 
  474   w->factory(
"y0[100]");
 
  475   w->factory(
"Gamma::gamma_y0(b,sum::temp0(y0,1),1,0)");
 
  476   w->factory(
"Gaussian::gauss_prior_y0(b,y0, expr::sqrty0('sqrt(y0)',y0))");
 
  483   hc3.SetToys(30000, 1000);
 
  484   hc3.ForcePriorNuisanceAlt(*
w->pdf(
"gamma_y0"));
 
  485   hc3.ForcePriorNuisanceNull(*
w->pdf(
"gamma_y0"));
 
  505   cout << 
"-----------------------------------------" << endl;
 
  506   cout << 
"Part 6" << endl;
 
  515   c->GetPad(4)->SetLogy();
 
  519   c->SaveAs(
"zbi.pdf");
 
#define ClassDef(name, id)
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void data
 
Option_t Option_t TPoint TPoint const char GetTextMagnitude GetFillStyle GetLineColor GetLineWidth GetMarkerStyle GetTextAlign GetTextColor GetTextSize void value
 
RooAbsData is the common abstract base class for binned and unbinned datasets.
 
RooArgSet is a container object that can hold multiple RooAbsArg objects.
 
RooDataSet is a container class to hold unbinned data.
 
void add(const RooArgSet &row, double weight=1.0, double weightError=0.0) override
Add one ore more rows of data.
 
static RooMsgService & instance()
Return reference to singleton instance.
 
void setGlobalKillBelow(RooFit::MsgLevel level)
 
RooFit::MsgLevel globalKillBelow() const
 
A RooPlot is a plot frame and a container for graphics objects within that frame.
 
static RooPlot * frame(const RooAbsRealLValue &var, double xmin, double xmax, Int_t nBins)
Create a new frame for a given variable in x.
 
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
 
Same purpose as HybridCalculatorOriginal, but different implementation.
 
This class provides the plots for the result of a study performed with any of the HypoTestCalculatorG...
 
HypoTestResult is a base class for results from hypothesis tests.
 
void Print(const Option_t *="") const override
Print out some information about the results Note: use Alt/Null labels for the hypotheses here as the...
 
MaxLikelihoodEstimateTestStat: TestStatistic that returns maximum likelihood estimate of a specified ...
 
ModelConfig is a simple class that holds configuration information specifying how a model should be u...
 
ProfileLikelihoodTestStat is an implementation of the TestStatistic interface that calculates the pro...
 
Holds configuration options for proof and proof-lite.
 
TestStatistic that returns the ratio of profiled likelihoods.
 
void Draw(Option_t *options=nullptr) override
Draw this plot and all of the elements it contains.
 
TestStatistic class that returns -log(L[null] / L[alt]) where L is the likelihood.
 
TestStatistic is an interface class to provide a facility for construction test statistics distributi...
 
ToyMCSampler is an implementation of the TestStatSampler interface.
 
void SetProofConfig(ProofConfig *pc=nullptr)
calling with argument or nullptr deactivates proof
 
virtual void SetTestStatistic(TestStatistic *testStatistic, unsigned int i)
Set the TestStatistic (want the argument to be a function of the data & parameter points.
 
virtual void SetNEventsPerToy(const Int_t nevents)
Forces the generation of exactly n events even for extended PDFs.
 
The RooWorkspace is a persistable container for RooFit projects.
 
void Divide(Int_t nx=1, Int_t ny=1, Float_t xmargin=0.01, Float_t ymargin=0.01, Int_t color=0) override
Automatic pad generation by division.
 
void Start(Bool_t reset=kTRUE)
Start the stopwatch.
 
void Stop()
Stop the stopwatch.
 
void Print(Option_t *option="") const override
Print the real and cpu time passed between the start and stop events.
 
RooCmdArg LineColor(Color_t color)
 
The namespace RooFit contains mostly switches that change the behaviour of functions of PDFs (or othe...
 
MsgLevel
Verbosity level for RooMsgService::StreamConfig in RooMsgService.
 
Namespace for the RooStats classes.
 
double PValueToSignificance(double pvalue)
returns one-sided significance corresponding to a p-value