Logo ROOT  
Reference Guide
 
Loading...
Searching...
No Matches
ApplicationClassificationPyTorch.py
Go to the documentation of this file.
1#!/usr/bin/env python
2## \file
3## \ingroup tutorial_tmva_pytorch
4## \notebook -nodraw
5## This tutorial shows how to apply a trained model to new data.
6##
7## \macro_code
8##
9## \date 2020
10## \author Anirudh Dagar <anirudhdagar6@gmail.com> - IIT, Roorkee
11
12
13# PyTorch has to be imported before ROOT to avoid crashes because of clashing
14# std::regexp symbols that are exported by cppyy.
15# See also: https://github.com/wlav/cppyy/issues/227
16import torch
17
18from ROOT import TMVA, TFile, TString
19from array import array
20from subprocess import call
21from os.path import isfile
22
23
24# Setup TMVA
27reader = TMVA.Reader("Color:!Silent")
28
29
30# Load data
32data = TFile.Open("http://root.cern.ch/files/tmva_class_example.root", "CACHEREAD")
33if data is None:
34 raise FileNotFoundError("Input file cannot be downloaded - exit")
35
36signal = data.Get('TreeS')
37background = data.Get('TreeB')
38
39branches = {}
40for branch in signal.GetListOfBranches():
41 branchName = branch.GetName()
42 branches[branchName] = array('f', [-999])
43 reader.AddVariable(branchName, branches[branchName])
44 signal.SetBranchAddress(branchName, branches[branchName])
45 background.SetBranchAddress(branchName, branches[branchName])
46
47
48# Define predict function
49def predict(model, test_X, batch_size=32):
50 # Set to eval mode
51 model.eval()
52
53 test_dataset = torch.utils.data.TensorDataset(torch.Tensor(test_X))
54 test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
55
56 predictions = []
57 with torch.no_grad():
58 for i, data in enumerate(test_loader):
59 X = data[0]
60 outputs = model(X)
61 predictions.append(outputs)
62 preds = torch.cat(predictions)
63
64 return preds.numpy()
65
66
67load_model_custom_objects = {"optimizer": None, "criterion": None, "train_func": None, "predict_func": predict}
68
69
70# Book methods
71reader.BookMVA('PyTorch', TString('dataset/weights/TMVAClassification_PyTorch.weights.xml'))
72
73
74# Print some example classifications
75print('Some signal example classifications:')
76for i in range(20):
77 signal.GetEntry(i)
78 print(reader.EvaluateMVA('PyTorch'))
79print('')
80
81print('Some background example classifications:')
82for i in range(20):
83 background.GetEntry(i)
84 print(reader.EvaluateMVA('PyTorch'))
static Bool_t SetCacheFileDir(ROOT::Internal::TStringView cacheDir, Bool_t operateDisconnected=kTRUE, Bool_t forceCacheread=kFALSE)
Definition TFile.h:323
static TFile * Open(const char *name, Option_t *option="", const char *ftitle="", Int_t compress=ROOT::RCompressionSetting::EDefaults::kUseCompiledDefault, Int_t netopt=0)
Create / open a file.
Definition TFile.cxx:4053
static void PyInitialize()
Initialize Python interpreter.
The Reader class serves to use the MVAs in a specific analysis context.
Definition Reader.h:64
static Tools & Instance()
Definition Tools.cxx:71
Basic string class.
Definition TString.h:139